函數(shù)課件
發(fā)布時間:2024-06-08 函數(shù)課件函數(shù)課件八篇。
居安思危,思則有備,有備無患。當幼兒園教師的教學(xué)任務(wù)遇到困難時,往往都需要參考一下我們提前準備參考資料。資料是時代的記錄,它是產(chǎn)生于人類實踐活動。參考資料我們接下來的學(xué)習(xí)工作才會更加好!那么,你知道優(yōu)秀的幼師資料是怎樣的呢?下面是小編精心收集整理,為你帶來的函數(shù)課件八篇,供你參考和使用,請收藏和分享。
函數(shù)課件 篇1
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
一、學(xué)生知識狀況分析
通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了二次函數(shù)的三種表示方式和性質(zhì)。學(xué)生已經(jīng)經(jīng)歷了由實際問題轉(zhuǎn)化為數(shù)學(xué)問題的過程,對解決這類問題有了一定處理經(jīng)驗。
二、教學(xué)目標
知識目標:
能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能夠運用二次函數(shù)的知識解決實際問題中的最大(小)值.
能力目標:
1.通過分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,培養(yǎng)學(xué)生的分析判斷能力.
2.通過運用二次函數(shù)的知識解決實際問題,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.
情感態(tài)度與價值觀:
1.經(jīng)歷探究長方形和窗戶透光最大面積問題的過程,獲得利用數(shù)學(xué)方法解決實際問題的經(jīng)驗,并進一步感受數(shù)學(xué)模型思想和數(shù)學(xué)的應(yīng)用價值.
2.能夠?qū)鉀Q問題的基本策略進行反思,形成個人解決問題的風(fēng)格.
3.進一步體會數(shù)學(xué)與人類社會的密切聯(lián)系,了解數(shù)學(xué)的價值,增進對數(shù)學(xué)的理解和學(xué)習(xí)的信心,具有初步的創(chuàng)新精神和實踐能力.
三、教學(xué)重點
1.經(jīng)歷探究長方形和窗戶透光最大面積問題的過程,進一步獲得利用數(shù)學(xué)方法解決實際問題的經(jīng)驗,并進一步感受數(shù)學(xué)模型思想和數(shù)學(xué)知識的應(yīng)用價值. 2.能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能夠運用二次函數(shù)的知識解決實際問題.
四、教學(xué)難點
能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能運用二次函數(shù)的有關(guān)知識解決最大面積的問題.
五、教學(xué)過程
一、創(chuàng)設(shè)情境,引入新課
探究一:
如圖,在一個直角三角形的內(nèi)部作一個矩形ABCD,其中AB和AD分別在兩直角邊上,AN=40m,AM=30m,
(1)如果設(shè)矩形的一邊AB=xm,那么AD邊的長度如何表示?
(2)設(shè)矩形的面積ym2,當x取何值時,y的最大?最大值是多少?
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
設(shè)計目的:對于這個問題,教師將其作為例題,不論是對問題本身的分析,還是具體的解法過程,都將作出細致、規(guī)范的講解和示范。具體的過程如下:
分析:(1)要求AD邊的長度,即求BC邊的長度,而BC是△EBC中的一邊,因此可以用三角形相似求出BC.由△EBC∽△EAF,得《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計即《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計.所以AD=BC=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計(40-x).
(2)要求面積y的最大值,即求函數(shù)y=AB·AD=x·《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計(40-x)的最大值,就轉(zhuǎn)化為數(shù)學(xué)問題了.
y=-《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計(x-20)2+300.
當x=20時,y最大=300.
即當x取20m時,y的值最大,最大值是300m2.
探究二:
如果把矩形改為如下圖所示的位置,其頂點A和頂點D分別在兩直角邊上,BC在斜邊上.其他條件不變,那么矩形的最大面積是多少?
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
設(shè)計目的:通過兩種情況的分析,訓(xùn)練學(xué)生的發(fā)散思維能力,關(guān)鍵是教會學(xué)生方法,也是這類問題的難點所在,即怎樣設(shè)未知數(shù),怎樣轉(zhuǎn)化為我們熟悉的數(shù)學(xué)問題.在此基礎(chǔ)上對變式三進行探究,進而總結(jié)此類題型,得出解決問題的一般方法.
二、例題講解
某建筑物的窗戶如下圖所示,它的上半部是半圓,下半部是矩形,制造窗框的材料總長(圖中所有黑線的長度和)為15m.當x等于多少時,窗戶通過的光線最多(結(jié)果精確到)?此時,窗戶的面積是多少?(結(jié)果精確到)
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
分析:x為半圓的半徑,也是矩形的較長邊,因此x與半圓面積和矩形面積都有關(guān)系.要求透過窗戶的光線最多,也就是求矩形和半圓的面積之和最大。
解:∵7x+4y+πx=15,
∴y=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計.
設(shè)窗戶的面積是S(m2),則
S=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計πx2+2xy
=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計πx2+2x·《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計
=-+
=-(x2-《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計x)
=-(x-《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計)2+《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計.
∴當x=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計≈時,S最大=《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計≈.
因此,當x約為時,窗戶通過的光線最多。此時,窗戶的面積約為
三、歸納總結(jié)
“二次函數(shù)應(yīng)用”的思路:
1.理解問題;
2.分析問題中的變量和常量,以及它們之間的關(guān)系;
3.用數(shù)學(xué)的方式表示出它們之間的關(guān)系;
4.運用數(shù)學(xué)知識求解;
5.檢驗結(jié)果的合理性, 給出問題的解答.
四、鞏固練習(xí)
習(xí)題 第1題
《二次函數(shù)的應(yīng)用(一)》教學(xué)設(shè)計1.一根鋁合金型材長為6m,用它制作一個“日”字型的窗框,如果恰好用完整條鋁合金型材,那么窗架的長、寬各為多少米時,窗架的面積最大?
五、談?wù)劚竟?jié)課你的收獲。
六、布置作業(yè):
習(xí)題2.8 2
六、教學(xué)反思
在課堂教學(xué)過程中,注重以學(xué)生的自主探究為主,從提出問題到解決問題,說明知識來源于生活,而又服務(wù)于生活,體現(xiàn)了理論聯(lián)系實際的教學(xué)原則。通過本節(jié)學(xué)習(xí),學(xué)生不但從實際問題中理解數(shù)學(xué)知識,體會數(shù)學(xué)的樂趣,而且從能力上、思想上都達到一個新的境界。
通過本節(jié)課的教學(xué)看到學(xué)生在計算上還存在很大問題,在這方面要注意培養(yǎng)學(xué)生的準確計算能力,同時還看到學(xué)生的潛力很大,作為教師要充分發(fā)揮學(xué)生的主觀能動性,為學(xué)生的發(fā)展提供足夠的時間和空間。
函數(shù)課件 篇2
《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務(wù)教育課程標準實驗教科書。根據(jù)新課標的理念,對于本節(jié)課,以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個方面加以說明。
一、教材的地位和作用
1、教材分析
本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ),也是高中進一步研究三角函數(shù)、反三角函數(shù)的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從學(xué)生的年齡特征和認知特征來看:
九年級學(xué)生的思維活躍,接受能力較強,具備了一定的數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。
從學(xué)生已具備的知識和技能來看:
九年級學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)。
從心理特征來看:九年級學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學(xué)生有待于提高的知識和技能來看:
學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進一步體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明了,深入淺出的剖析。
3、教學(xué)重點、難點
根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標對本節(jié)課的要求,我認為本節(jié)課的重點為:理解正弦函數(shù)意義,并會求銳角的正弦值。
難點為:根據(jù)銳角的正弦值及一邊,求直角三角形的其它邊長。
二、教學(xué)目標分析:
新課標指出,教學(xué)目標應(yīng)從知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應(yīng)是緊密聯(lián)系的一個完整的整體,學(xué)生學(xué)知識技能的過程同時成為學(xué)會學(xué)習(xí),形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,將四個目標進行整合,確定本節(jié)課的教學(xué)目標為:
1. 理解銳角正弦的意義,并會求銳角的正弦值;
2 掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其它邊長的方法;
3 經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生 觀察分析、類比歸納的探究問題的能力;
4 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的合理性和嚴謹性,使學(xué)生養(yǎng)成積極思考,獨立思考的好習(xí)慣,并且同時培養(yǎng)學(xué)生的團隊合作精神。
三、教學(xué)方法和學(xué)法分析
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
本節(jié)課的教法采用的是情境引導(dǎo)和自學(xué)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評價,不斷激發(fā)學(xué)生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運用數(shù)學(xué)知識解決實際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。
本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。
四、教學(xué)過程
新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課主要安排以下教學(xué)環(huán)節(jié):
(一)自學(xué)提綱
1、 已知:在Rt△ABC中,∠C=900,∠A=30°,BC=10m,求AB
已知:在Rt△ABC中,∠C=900,∠A=30°,AB=20m,求BC
設(shè)計意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
2、 創(chuàng)設(shè)情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望。
通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)。
(二)合作交流
1、閱讀課本P74問題與思考 (要求學(xué)生獨立思考后小組內(nèi)合作探究)
結(jié)論:直角三角形中,30°角的對邊與斜邊的比值 。
2、閱讀課本P75思考,并求值
結(jié)論:直角三角形中,45°角的對邊與斜邊的比值 。
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流 等活動,引導(dǎo)學(xué)生歸納。
3、閱讀課本P75探究 。
問:銳角A度數(shù)一定時,不管直角三角形的大小如何,它的對邊與斜邊的比有什么關(guān)系?你能解釋嗎?
4、正弦函數(shù)定義:在Rt△ABC中,∠C=900,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=BC/AB
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正弦習(xí)慣上省略“∠”的符號.
2、本章我們只研究銳角的正弦。
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓(xùn)練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=90°,根據(jù)圖中數(shù)據(jù)
求sinA和sinB
2、課本77頁練習(xí)
3、判斷對錯(學(xué)生口答)
(1)若銳角∠A=∠B,則sinA=sinB ( )
(2)sin60°=30°+sin30° ( )
4、將Rt△ABC各邊擴大100倍,則sinA的值( )
A.擴大100倍 B.縮小100倍 C.不變 D.不確定
5、平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。
6、在Rt△ABC中,∠C=90°,BC=6,sinA=3/5,求:AB, AC的長。
設(shè)計意圖:例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。
(四)自主評價(小結(jié)歸納,拓展深化)
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:
① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;
③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
(五)自主拓展(提高升華)
1、課本習(xí)題28.1第1、2、題。(只做與正弦函數(shù)有關(guān)的部分);
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=1/3,周長為60,求:斜邊AB的長.
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的.一個延伸??偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設(shè)計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin45°和sin30°的大小。
設(shè)計要求:(1)先學(xué)生獨立思考后小組內(nèi)探究
(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價.
設(shè)計意圖:
(1)有一定難度需要學(xué)生進行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣.
(2)學(xué)生通過互評自評,可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長和進步,同時促進學(xué)生對學(xué)習(xí)及時進行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進教學(xué),實施因材施教提供重要依據(jù)。
教學(xué)反思
1.本教學(xué)設(shè)計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗知識間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。
2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
函數(shù)課件 篇3
一、課前準備:
【自主梳理】
1.若函數(shù)f(x)在點x0的附近恒有 (或 ),則稱函數(shù)f(x)在點x0處取得極大值(或極小值),稱點x0為極大值點(或極小值點).
2.求可導(dǎo)函數(shù)極值的步驟:
①求導(dǎo)數(shù) ;
②求方程 的根;
③檢驗 在方程 根的左右的符號,如果左正右負,那么函數(shù)y=f(x)在這個根處取得極 值;如果左負右正,那么函數(shù)y=f(x)在這個根處取得極 值.
3.求可導(dǎo)函數(shù)最大值與最小值的步驟:
①求y=f(x)在[a,b]內(nèi)的極值;
②將y=f(x)在各極值點的極值與f(a)、f(b)比較,其中最大的一個為最大值,最小的一個是最小值。
【自我檢測】
1.函數(shù) 的極大值為 .
2.函數(shù) 在 上的最大值為 .
3.若函數(shù) 既有極大值又有極小值,則 的取值范圍為 .
4.已知函數(shù) ,若對任意 都有 ,則 的取值范圍是 .
(說明:以上內(nèi)容學(xué)生自主完成,原則上教師課堂不講)
二、課堂活動:
【例1】填空題:
(1)函數(shù) 的極小值是__________.
(2)函數(shù) 在區(qū)間 上的最小值是________ ;最大值是__________.
(3)若函數(shù) 在 處取極值,則實數(shù) = _.
(4)已知函數(shù) 在 時有極值0,則 = _.
【例2】設(shè)函數(shù) .
(Ⅰ)求 的最小值 ;
(Ⅱ)若 對 恒成立,求實數(shù) 的取值范圍.
【例3】如圖6所示,等腰 的底邊 ,高 ,點 是線段 上異于點 的動點,點 在 邊上,且 ,現(xiàn)沿 將 折起到 的位置,使 ,記 , 表示四棱錐 的體積.
(1)求 的表達式;
(2)當 為何值時, 取得最大值?
三、課后作業(yè)
1.若 沒有極值,則 的取值范圍為 .?
2.如圖是 導(dǎo)數(shù)的圖象,對于下列四個判斷:?
① 在[-2,-1]上是增函數(shù);?
② 是 的極小值點;?
③ 在[-1,2]上是增函數(shù),在[2,4]上是減函數(shù);?
④ 是 的極小值點.?
其中判斷正確的是 .?
3.若函數(shù) 在(0,1)內(nèi)有極小值,則 的取值范圍為 .
4.函數(shù) ,在x=1時有極值10,則 的值為 .
5.下列關(guān)于函數(shù) 的判斷正確的是 .
①f(x)0的解集是{x|0
②f(- )是極小值,f( )是極大值;?
③f(x)沒有最小值,也沒有最大值.?
6.設(shè)函數(shù) 在 處取得極值,則 的值為 .
7.已知函數(shù) ( 為常數(shù)且 )有極值9,則 的值為 .
8.若函數(shù) 在 上的最大值為 ,則 的值為 .
9.設(shè)函數(shù) 在 及 時取得極值.
(Ⅰ)求a、b的值;
(Ⅱ)若對于任意的 ,都有 成立,求c的取值范圍.
10.已知函數(shù) ,求函數(shù)在[1,2]上的最大值.
函數(shù)課件 篇4
一、教學(xué)目的
1.使學(xué)生初步理解二次函數(shù)的概念。
2.使學(xué)生會用描點法畫二次函數(shù)y=ax 2的圖象。
3.使學(xué)生結(jié)合y=ax 2的圖象初步理解拋物線及其有關(guān)的概念。
二、教學(xué)重點、難點
重點:對二次函數(shù)概念的初步理解。
難點:會用描點法畫二次函數(shù)y=ax 2的圖象。
三、教學(xué)過程
復(fù)習(xí)提問
1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?
(1)y=x/4;(2)y=4/x;(3)y=2x-5;(4)y=x 2 - 2。
2.什么是一無二次方程?
3.怎樣用找點法畫函數(shù)的圖象?
新課
1.由具體問題引出二次函數(shù)的定義。
(1)已知圓的面積是scm 2,圓的半徑是rcm,寫出空上圓的面積s與半徑r之間的函數(shù)關(guān)系式。
(2)已知一個矩形的周長是60m,一邊長是lm,寫出這個矩形的面積s(m 2)與這個矩形的一邊長l之間的函數(shù)關(guān)系式。
(3)農(nóng)機廠第一個月水泵的產(chǎn)量為50臺,第三個月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關(guān)系如何表示?
解:(1)函數(shù)解析式是s=πr 2;
(2)函數(shù)析式是s=30l—l 2;
(3)函數(shù)解析式是y=50(1+x)2,即
y=50x 2 +100x+50。
由以上三例啟發(fā)學(xué)生歸納出:
(1)函數(shù)解析式均為整式;
(2)處變量的最高次數(shù)是2。
我們說三個式子都表示的是二次函數(shù)。
一般地,如果y=ax 2 +bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。
2.畫二次函數(shù)y=x 2的圖象。
按照描點法分三步畫圖:
(1)列表∵ x可取任意實數(shù),∴以0為中心選取x值,以1為間距取值,且取整數(shù)值,便于計算,又x取相反數(shù)時,相應(yīng)的y值相同;
(2)描點按照表中所列出的函數(shù)對應(yīng)值,在平面直角坐標系中描出相應(yīng)的7個點;
(3)邊線用平滑曲線順次連接各點,即得所求y=x 2的圖象。
注意兩點:
(1)由于我們只描出了7個點,但自礦業(yè)量取值范圍是實數(shù),故我們只畫出了實際圖象的一部分,即畫出了在原點附近、自變量在-3到3這個區(qū)間的一部分。而圖象在x>3或x
(2)所畫的圖象是近似的。
3.在原點附近較精確地研究二次函數(shù)y=x 2的圖象形狀到底如何?——我們–1與1之間每隔0.2的間距取x值表和圖13-14。按課本p 118內(nèi)容講解。
4.引入拋物線的概念。
關(guān)于拋物線的頂點應(yīng)從兩方面分析:一是從圖象上看,y=x 2的圖象的頂點是最低點;一是從解析式y(tǒng)=x 2看,當x=0時,y=x 2取得最小值0,故拋物線y=x 2的頂點是(0,0)。
小結(jié)
1.二次函數(shù)的定義。
(1)函數(shù)解析式關(guān)于自變量是整式;(2)函數(shù)自變量的最高次數(shù)是2。
2.二次函數(shù)y=x 2的圖象。
(1)其圖象叫拋物線;(2)拋物線y=x 2的對稱軸是y軸,開口向上,頂點是原點。
補充例題
下列函數(shù)中,哪些是二次函數(shù)?哪些不是二次函數(shù)?若是二次函數(shù),指出a,b,c?
(1)y=2-3x 2;(2)y=x (x-4);
(3)y=1/2x 2 -3x-1;(4)y=1/4x 2 +3x-8;
(5)y=7x(1-x)+4x 2;(6)y=(x-6)(6+x)。
作業(yè):p 122中a組1,2,3。
四、教學(xué)注意問題
1.注意滲透局部和全體、有限和無限、近似和精確等矛盾對立統(tǒng)一的觀點。
2.注意培養(yǎng)學(xué)生觀察分析問題的能力。比如,結(jié)合所畫二次函數(shù)y=x 2的圖象,要求學(xué)生思考:
(1)y=x 2的圖象的圖象有什么特點。(答:具有對稱性。)
(2)如何判斷y=x 2的圖象有上面所說的特點?(答:由觀察圖象看出來;或由列表求值得出來;或由解析式y(tǒng)=x 2看出來。)
函數(shù)課件 篇5
冪函數(shù)是數(shù)學(xué)中非常重要的一類函數(shù),它在解決各種問題中起著關(guān)鍵作用。為了更好地幫助學(xué)生理解冪函數(shù)的基本概念和性質(zhì),我們設(shè)計了一堂以冪函數(shù)為主題的小班教學(xué)活動。
我們將介紹冪函數(shù)的定義和表示方法。冪函數(shù)是指以自變量的指數(shù)為冪的代數(shù)函數(shù),通常表示為$f(x) = ax^n$,其中$a$為系數(shù),$n$為指數(shù)。我們將通過舉例解釋冪函數(shù)的基本形式,并讓學(xué)生熟悉冪函數(shù)的圖像特征。
接著,我們將討論冪函數(shù)的性質(zhì)。冪函數(shù)的性質(zhì)包括定義域、值域、奇偶性、增減性等。我們將通過數(shù)學(xué)推導(dǎo)和圖像展示的方式,幫助學(xué)生理解這些性質(zhì)之間的關(guān)系,并引導(dǎo)他們發(fā)現(xiàn)冪函數(shù)的特點。
在教學(xué)過程中,我們將引導(dǎo)學(xué)生進行實際問題的求解。通過實際問題的討論,學(xué)生將更深入地理解冪函數(shù)的應(yīng)用范圍和重要性。我們將設(shè)置一些實際問題,如物體的增長速度、投影距離等,讓學(xué)生運用所學(xué)知識進行求解,并引導(dǎo)他們觀察問題的變化規(guī)律。
并且,我們將設(shè)計一些小組討論和合作活動,讓學(xué)生在交流中相互學(xué)習(xí),共同解決問題。通過小組合作,學(xué)生可以更好地理解冪函數(shù)的概念和性質(zhì),并培養(yǎng)團隊合作的能力。
我們將進行課堂總結(jié)和反思,讓學(xué)生復(fù)習(xí)所學(xué)內(nèi)容并提出問題。在總結(jié)中,我們將強調(diào)冪函數(shù)的重要性和應(yīng)用價值,并鼓勵學(xué)生在日常生活中運用所學(xué)知識。通過反思,學(xué)生將更全面地理解冪函數(shù)的概念和性質(zhì),為進一步學(xué)習(xí)打下堅實基礎(chǔ)。
通過這堂以冪函數(shù)為主題的小班教學(xué)活動,我們希望能夠激發(fā)學(xué)生對數(shù)學(xué)的興趣和熱情,培養(yǎng)他們的數(shù)學(xué)思維和解決問題的能力。我們相信,在這樣一個生動有趣的教學(xué)環(huán)境中,學(xué)生們會更加深入地理解冪函數(shù),并在未來的學(xué)習(xí)中取得更大的成就。
函數(shù)課件 篇6
教學(xué)設(shè)計思路:新課程標準倡導(dǎo)積極主動、勇于探索的學(xué)習(xí)方式把學(xué)習(xí)的主動權(quán)還給學(xué)生。以此為宗旨,我采用自主學(xué)習(xí)、合作探究方法引導(dǎo)學(xué)生自主學(xué)習(xí)、探究學(xué)習(xí),努力做到教法、學(xué)法的最優(yōu)組合,并體現(xiàn)以下幾個特點
(1)蘇霍姆林斯基說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,那就是希望自己是一個發(fā)現(xiàn)者和探索者”本節(jié)課正是抓住學(xué)生的這心理需求,充分利用互動工具,讓學(xué)生動手實踐、思考探索,合作交流真正意義上做到尊重學(xué)生的創(chuàng)造性,挖掘?qū)W生的潛力,讓他們對整個學(xué)習(xí)過程充滿激情,快樂學(xué)數(shù)學(xué)。
(2)注重信息反饋,堅持師生間的多向交流。當學(xué)生接觸新知一周期性、單調(diào)性、值域等性質(zhì)時以及利用性質(zhì)畫出圖象時,要引導(dǎo)學(xué)生多思多說、多練,要充分暴露他們所遇到的知識障礙,并在師生之間的多向交流中,不斷的得到解決,伸知識深化。
本節(jié)課是在學(xué)生掌握了單位圓中的正弦函數(shù)線和誘導(dǎo)公式的基礎(chǔ)上進行的,不僅是對前面所學(xué)知識應(yīng)用的考察,也是后續(xù)學(xué)習(xí)正余弦函數(shù)性質(zhì)的基礎(chǔ):對函數(shù)圖像清晰而誰確的掌握也為學(xué)生在解題實踐中提供了有力的工具,本小節(jié)內(nèi)容是三角函數(shù)的圖象與性質(zhì),是本章知識的重點。
有看求前啟后的作用美國華盛頓一所大學(xué)有句名言:“我聽見了,就忘記了我看見了,就記我做過了,就理解了”要想讓學(xué)生深刻理解三角函數(shù)性質(zhì)和圖像,就生主動去探素,大膽去實踐,親身體驗知識的發(fā)生和發(fā)展過程學(xué)生情況分析:知識上,通過高一對函數(shù)的學(xué)習(xí),學(xué)生已經(jīng)具繪圖技能,能夠類比推理畫出圖像,并通過觀察圖像,總結(jié)性質(zhì),心具備了一定的分語言表達能力,初步形成了辯證的思想。
函數(shù)課件 篇7
今天我說課的課題是《銳角三角函數(shù)》(第一課時),所選用的教材為人教版義務(wù)教育課程標準實驗教科書。
根據(jù)新課標的理念,對于本節(jié)課,我將以教什么,怎樣教,為什么這樣教為思路,從教材分析,教學(xué)目標分析,教學(xué)方法和學(xué)法分析,教學(xué)過程分析四個方面加以說明。
一、教材的地位和作用
本節(jié)教材是人教版初中數(shù)學(xué)新教材九年級下第28章第一節(jié)內(nèi)容,是初中數(shù)學(xué)的重要內(nèi)容之一。一方面,這是在學(xué)習(xí)了直角三角形兩銳角關(guān)系、勾股定理等知識的基礎(chǔ)上,對直角三角形邊角關(guān)系的進一步深入和拓展;另一方面,又為解直角三角形等知識奠定了基礎(chǔ),也是高中進一步研究三角函數(shù)、反三角函數(shù)、三角方程的工具性內(nèi)容。鑒于這種認識,我認為,本節(jié)課不僅有著廣泛的實際應(yīng)用,而且起著承前啟后的作用。
2、學(xué)情分析
從學(xué)生的年齡特征和認知特征來看:
九年級學(xué)生的思維活躍,接受能力較強,具備了一定的數(shù)學(xué)探究活動經(jīng)歷和應(yīng)用數(shù)學(xué)的意識。
從學(xué)生已具備的知識和技能來看:
九年級學(xué)生已經(jīng)掌握直角三角形中各邊和各角的關(guān)系,能靈活運用相似圖形的性質(zhì)及判定方法解決問題,有較強的推理證明能力,這為順利完成本節(jié)課的教學(xué)任務(wù)打下了基礎(chǔ)
從心理特征來看:初三學(xué)生邏輯思維從經(jīng)驗型逐步向理論型發(fā)展,觀察能力,記憶能力和想象能力也隨著迅速發(fā)展。
從學(xué)生有待于提高的知識和技能來看:
學(xué)生要得出直角三角形中邊與角之間的關(guān)系,需要觀察、思考、交流,進一步體會數(shù)學(xué)知識之間的聯(lián)系,感受數(shù)形結(jié)合的思想,體會銳角三角函數(shù)的意義,提高應(yīng)用數(shù)學(xué)和合作交流的能力。學(xué)生可能會產(chǎn)生一定的困難,所以教學(xué)中應(yīng)予以簡單明了,深入淺出的剖析。
3、教學(xué)重、難點
根據(jù)以上對教材的地位和作用,以及學(xué)情分析,結(jié)合新課標對本節(jié)課的要求,我將本節(jié)課的重點確定為:理解正弦函數(shù)意義,并會求銳角的正弦值。
難點確定為:根據(jù)銳角的正弦值及一邊,求直角三角形的其他邊長。
二、教學(xué)目標分析
新課標指出,教學(xué)目標應(yīng)從知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度等四個方面闡述,而這四維目標又應(yīng)是緊密聯(lián)系的一個完整的整體,學(xué)生學(xué)知識技能的過程同時成為學(xué)會學(xué)習(xí),形成正確價值觀的過程,這告訴我們,在教學(xué)中應(yīng)以知識技能為主線,滲透情感態(tài)度,并把前面兩者通過數(shù)學(xué)思考充分體現(xiàn)在問題解決中。借此結(jié)合以上教材分析,我將四個目標進行整合,確定本節(jié)課的教學(xué)目標為:
1. 理解銳角正弦的意義,并會求銳角的正弦值;
2. 初步了解銳角正弦取值范圍及增減性;
3. 掌握根據(jù)銳角的正弦值及直角三角形的一邊,求直角三角形的其他邊長的方法;
4. 經(jīng)歷銳角正弦的意義探索的過程,培養(yǎng)學(xué)生 觀察分析、類比歸納的探究問題的能力;
5. 通過主動探究,合作交流,感受探索的樂趣和成功的體驗,體會數(shù)學(xué)的合理性和嚴謹性,使學(xué)生養(yǎng)成積極思考,獨立思考的好習(xí)慣,并且同時培養(yǎng)學(xué)生的團隊合作精神。
三、教學(xué)方法和學(xué)法分析
現(xiàn)代教學(xué)理論認為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者,教學(xué)的一切活動都必須以強調(diào)學(xué)生的主動性、積極性為出發(fā)點。根據(jù)這一教學(xué)理念,結(jié)合本節(jié)課的內(nèi)容特點和學(xué)生的學(xué)情情況,本節(jié)課我采用“三動五自主”的教學(xué)模式,以問題的提出、問題的解決為主線,始終在學(xué)生知識的“最近發(fā)展區(qū)”設(shè)置問題,倡導(dǎo)學(xué)生主動參與教學(xué)實踐活動,以獨立思考和合作交流的形式,在教師的指道下發(fā)現(xiàn)、分析和解決問題,在引導(dǎo)分析時,給學(xué)生流出足夠的思考時間和空間,讓學(xué)生去聯(lián)想、探索,從真正意義上完成對知識的自我建構(gòu)。
另外,在教學(xué)過程中,我采用多媒體輔助教學(xué),以直觀呈現(xiàn)教學(xué)素材,從而更好地激發(fā)學(xué)生的學(xué)習(xí)興趣,增大教學(xué)容量,提高教學(xué)效率。
本節(jié)課的教法采用的是情境引導(dǎo)和探究發(fā)現(xiàn)教學(xué)法,在教學(xué)過程中,通過適宜的問題情境引發(fā)新的認知沖突;建立知識間的聯(lián)系。教師通過引導(dǎo)、指導(dǎo)、反饋、評價,不斷激發(fā)學(xué)生對問題的好奇心,使其在積極的自主活動中主動參與概念的建構(gòu)過程,并運用數(shù)學(xué)知識解決實際問題,享受數(shù)學(xué)學(xué)習(xí)帶來的樂趣。
本節(jié)課的學(xué)習(xí)方法采用自主探究法與合作交流法相結(jié)合。本節(jié)課數(shù)學(xué)活動貫穿始終,既有學(xué)生自主探究的,也有小組合作交流的,旨在讓學(xué)生從自主探究中發(fā)展,從合作交流中提高。
四、教學(xué)過程
新課標指出,數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進行教學(xué),本節(jié)課我主要安排以下教學(xué)環(huán)節(jié):
(一) 自主探究
1、 復(fù)習(xí)舊知,溫故知新
1、 已知:在Rt△ABC中,∠C=900,∠A=350,則∠B= 0
2、已知:在Rt△ABC中,∠C=900,AB=5,AC=3,則BC=
設(shè)計意圖:建構(gòu)注意主張教學(xué)應(yīng)從學(xué)生已有的知識體系出發(fā),相似的三角形性質(zhì)是本節(jié)課深入研究銳角正弦的認知基礎(chǔ),這樣設(shè)計有利于引導(dǎo)學(xué)生順利地進入學(xué)習(xí)情境。
2、 創(chuàng)設(shè)情境,提出問題
利用多媒體播放意大利比薩斜塔圖片,然后老師問:比薩斜塔中條件和要探究的問題:“你能根據(jù)問題背景畫出直角三角形并且利用邊求出斜塔的傾斜角嗎?”這就是今天我們要學(xué)習(xí)銳角三角函數(shù)(板書課題)
設(shè)計意圖:以問題串的形式創(chuàng)設(shè)情境,引起學(xué)生的認知沖突,使學(xué)生對舊知識產(chǎn)生設(shè)疑,從而激發(fā)學(xué)生的學(xué)習(xí)興趣和求知欲望‘
通過情境創(chuàng)設(shè),學(xué)生已激發(fā)了強烈的求知欲望,產(chǎn)生了強勁的學(xué)習(xí)動力,此時我把學(xué)生帶入下一環(huán)節(jié)———
(二)自主合作
1、 發(fā)現(xiàn)問題,探求新知(要求學(xué)生獨立思考后小組內(nèi)合作探究)
1、(播放綠化荒山的視頻)課本P74問題與思考,求的值
2、課本P75思考:求的值
設(shè)計意圖:現(xiàn)代數(shù)學(xué)教學(xué)論指出,數(shù)學(xué)知識的教學(xué)必須在學(xué)生自主探索,經(jīng)驗歸納的基礎(chǔ)上獲得,教學(xué)中必須展現(xiàn)思維的過程性,在這里,通過觀察分析、獨立思考、小組交流 等活動,引導(dǎo)學(xué)生歸納 。
2、分析思考,加深理解
1、課本P75探索 ,
問:與有什么關(guān)系?你能解釋嗎?
2、正弦函數(shù)定義:在Rt△ABC中,∠C=900,,把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,即sinA=
對定義的幾點說明:
1、sinA是一個完整的符號,表示∠A的正切習(xí)慣上省略“∠”的符號.
2、本章我們只研究銳角∠A的正弦.
3、sinA的范圍:0
設(shè)計意圖:數(shù)學(xué)教學(xué)論指出, 數(shù)學(xué)概念要明確其內(nèi)涵和外延(條件、結(jié)論、應(yīng)用范圍等) ,通過對銳角正弦定義闡述,使學(xué)生的認知結(jié)構(gòu)得到優(yōu)化,知識體系得到完善,使學(xué)生的數(shù)學(xué)理解又一次突破思維的難點。
通過前面的學(xué)習(xí),學(xué)生已基本把握了本節(jié)課所要學(xué)習(xí)的內(nèi)容,此時,他們急于尋找一塊用武之地,以展示自我,體驗成功,于是我把學(xué)生引入到下一環(huán)節(jié)。
(三)自主展示(強化訓(xùn)練,鞏固雙基)
1、(例1課本P76)已知:在Rt△ABC中,∠C=900,根據(jù)圖中數(shù)據(jù)
求sinA和sinB
2、判斷對錯(學(xué)生口答)
(1)若銳角∠A=∠B,則sinA=sinB ( )
(2)sin600=sin300+sin300 ( )
3、如圖,將Rt△ABC各邊擴大100倍,則tanA的值( )
A.擴大100倍 B.縮小100倍 C.不變 D.不確定
4、如圖,平面直角坐標系中點P(3,- 4),OP與x軸的夾角為∠1,求sin∠1的值。
設(shè)計意圖:幾道例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,其中例1……例2……,體現(xiàn)新課標提出的讓不同的學(xué)生在數(shù)學(xué)上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。
(四)自主拓展(提高升華)
1、課本習(xí)題28.1第1、2、題;
2、選做題:已知:在Rt△ABC中,∠C=900,sinA=,周長為60,求:斜邊AB的長?
以作業(yè)的鞏固性和發(fā)展性為出發(fā)點,我設(shè)計了必做題和選做題,必做題是對本節(jié)課內(nèi)容的一個反饋,選做題是對本節(jié)課知識的一個延伸??偟脑O(shè)計意圖是反饋教學(xué),鞏固提高。
(五)自主評價(小結(jié)歸納,拓展深化)
我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:
① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;
② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;
③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)數(shù)學(xué)的方法?
以上幾個環(huán)節(jié)環(huán)環(huán)相扣,層層深入,并充分體現(xiàn)教師與學(xué)生的交流互動,在教師的整體調(diào)控下,學(xué)生通過動腦思考、層層遞進,對知識的理解逐步深入,為了使課堂效益達到最佳狀態(tài),我設(shè)計以下問題加以追問:
1、sinA能為負嗎?
2、比較sin450和sin300的大小?
設(shè)計要求:(1)先學(xué)生獨立思考后小組內(nèi)探究
(2)各組交流展示探究結(jié)果,并且組內(nèi)或各組之間自主評價.
設(shè)計意圖:
(1)有一定難度需要學(xué)生進行合作探究,有利于培養(yǎng)學(xué)生善于反思的好習(xí)慣.
(2)學(xué)生通過互評自評,可以使學(xué)生全面了解自己的學(xué)習(xí)過程,感受自己的成長和進步,同時促進學(xué)生對學(xué)習(xí)及時進行反思,為教師全面了解學(xué)生的學(xué)習(xí)狀況,改進教學(xué),實施因材施教提供重要依據(jù)。我的說課到此結(jié)束,敬請各位老師批評、指正,謝謝!
教學(xué)反思
1.本教學(xué)設(shè)計以直角三角形為主線,力求體現(xiàn)生活化課堂的理念,讓學(xué)生在經(jīng)歷“問題情境——形成概念——應(yīng)用拓展——反思提高”的基本過程中,體驗知識間的內(nèi)在聯(lián)系,讓學(xué)生感受探究的樂趣,使學(xué)生在學(xué)中思,在思中學(xué)。
2.在教學(xué)過程中,重視過程,深化理解,通過學(xué)生的主動探究來體現(xiàn)他們的主體地位,教師是通過對學(xué)生參與學(xué)習(xí)的啟發(fā)、調(diào)整、激勵來體現(xiàn)自己的引導(dǎo)作用,對學(xué)生的主體意識和合作交流的能力起著積極作用。
3.正弦是生活中應(yīng)用較廣泛的三角函數(shù)。因而在本節(jié)課的設(shè)計中力求貼近生活。又從意大利比薩斜塔提煉出了數(shù)學(xué)問題,讓學(xué)生體會學(xué)數(shù)學(xué)、用數(shù)學(xué)的樂趣。
函數(shù)課件 篇8
教學(xué)目標:
一、 知識與技能
分析函數(shù)圖像信息.
2、體會數(shù)形結(jié)合思想,并利用它解決問題,提高解決問題的能力.
二、過程與方法
分析函數(shù)圖像信息的能力.
2、體會數(shù)形結(jié)合思想,并利用它解決問題,提高解決問題的能力.
三、情感態(tài)度與價值觀
1、體會數(shù)學(xué)方法的多樣性,提高學(xué)習(xí)興趣.
2、認識數(shù)學(xué)在解決問題中的重要作用,從而加深對數(shù)學(xué)的認識.
教學(xué)重點:
觀察分析圖像信息.
教學(xué)難點:
分析概括圖像中的信息.
教學(xué)方法:
整節(jié)課應(yīng)以“開放、合作、探究”為基本特征,給學(xué)生思考的空間和表現(xiàn)的機會,讓學(xué)生在一個較為輕松的環(huán)境中去體驗數(shù)學(xué)學(xué)習(xí)帶來的樂趣,構(gòu)建充滿活力的課堂氛圍。
教具準備:
多媒體演示.
教學(xué)過程:
1、提出問題,創(chuàng)設(shè)情境
我們在前面學(xué)習(xí)了函數(shù)意義,并掌握了函數(shù)關(guān)系式的確立.但有些函數(shù)問題很難用函數(shù)關(guān)系式表達出來,然而可以通過圖來直觀反映。例如用心電圖表示心臟生物電流與時間的關(guān)系.
即使對于能列式表示的函數(shù)關(guān)系,如果也能畫圖表示則會使函數(shù)關(guān)系更清晰.
我們這節(jié)課就來解決如何畫函數(shù)圖像的問題及如何解讀函數(shù)圖像信息.
2、 導(dǎo)入新課
我們先來看這樣一個問題:
正方形的邊長x與面積s的函數(shù)關(guān)系是什么?其中自變量x的取值范圍是什么?計算并填寫下表:
生:函數(shù)關(guān)系式為s=x2,因為x代表正方形的邊長,所以自變量x>0,將每個x的值代入函數(shù)式即可求出對應(yīng)的s值.
師:好!如果我們在直角坐標系中,將你所填表格中的自變量x及對應(yīng)的函數(shù)值s當作一個點的橫坐標與縱坐標,即可在坐標系中得到一些點.
大家思考一下,表示s與x的對應(yīng)關(guān)系的點有多少個?如果全在坐標中指出的話是什么樣子?可以討論一下,然后發(fā)表你們的看法,建議大家不妨動手畫畫看.
生:這樣的點有無數(shù)多個,如果全描出來太麻煩,也不可能.我們只能描出其中一部分,然后想象出其他點的位置,用光滑曲線連接起來.
師:很好!這樣我們就得到了一幅表示s與x關(guān)系的圖。圖中每個點都代表s的值與x的值的一種對應(yīng)關(guān)系。如點(表示x=
一般地,對于一個函數(shù),如果把自變量與函數(shù)的每對對應(yīng)值分別作為點的橫、縱坐標,那么坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖像。上圖中的曲線即為函數(shù)s=x的圖像.
函數(shù)圖像可以數(shù)形結(jié)合地研究函數(shù),給我們帶來便利.
[活動一]
活動內(nèi)容設(shè)計:
下圖是自動測溫儀記錄的圖像,它反映阿城的春季某天氣溫T如何隨時間t的變化而變化。你從圖像中得到了哪些信息?
活動設(shè)計意圖:
1、 通過圖像進一步認識函數(shù)意義.
優(yōu)越性.
認識水平.
4、 掌握函數(shù)變化規(guī)律.
教師活動:
引導(dǎo)學(xué)生從兩個變量的對應(yīng)關(guān)系上認識函數(shù),體會函數(shù)意義;可以指導(dǎo)學(xué)生找出一天內(nèi)最高、最低氣溫及對應(yīng)時間,在某些時間段的變化趨勢,認識圖像的直觀性及優(yōu)缺點,總結(jié)變化規(guī)律……
學(xué)生活動:
在教師引導(dǎo)下,合作探究,歸納總結(jié).
活動結(jié)論:
1、一天中每時刻t都有唯一的氣溫T與之對應(yīng).可以認為,氣溫T是時間t的函數(shù).
2、這天中凌晨4時氣溫最低為—3℃,14時氣溫最高為8℃.
3、從0時至4時氣溫呈下降狀態(tài),即溫度隨時間的增加而下降。從4時至14時氣溫呈上升狀態(tài),從14時至24時氣溫又呈下降狀態(tài).
4、 這天最高氣溫與最低氣溫之差為11℃。
5、我們可以從圖像中很直觀地看出一天中氣溫變化情況及任一時刻的氣溫大約是多少.
[活動二]
活動內(nèi)容設(shè)計:
下圖反映的過程是小明從家去菜地澆水,又去玉米地鋤草,然后回家。 其中x表示時間,y表示小明離他家的距離,小明家、菜地、玉米地在同一條直線上。
觀察下面的圖像,你能發(fā)現(xiàn)哪些結(jié)論?
活動設(shè)計意圖:
書中例題是以5個問題的形式給出的,這里以開放式出現(xiàn),這樣的設(shè)計可以充分調(diào)動學(xué)生的熱情和興趣,鞏固知識的同時彰顯了學(xué)生的個性,并給學(xué)生設(shè)置了充分發(fā)揮的空間,在兼顧全體學(xué)生的同時,分散了難點。
教師活動:
引導(dǎo)學(xué)生分析圖像、尋找圖像信息,特別是圖像中兩段平行于x軸的線段的意義.
學(xué)生活動:
在教師引導(dǎo)下,積極思考、大膽參與、歸納總結(jié).
活動結(jié)論:
1千米A,小明走到菜地用了15分鐘.
2、 小明給菜地澆水用了10分鐘.
3、 菜地離玉米地0。9千米。 小明從菜地到玉米地用了12分鐘.
4、 小明給玉米地鋤草用了18分鐘.
.
師:我們通過兩個活動已學(xué)會了如何觀察和分析圖像信息,那么在觀察圖像時應(yīng)該注意什么問題呢?
生:弄清橫、縱坐標表示的意義,自變量的取值范圍,圖像中函數(shù)隨著自變量變化的規(guī)律,抓住一些特殊點。
[活動三]
活動內(nèi)容設(shè)計:
出示相關(guān)的各類函數(shù)圖像問題。
活動設(shè)計意圖:
通過各類圖像習(xí)題的訓(xùn)練,讓學(xué)生進一步體會圖像的直觀性,并熟練地找到圖像中重要的信息。
例 .
例 .
A。李林先到達終點
B。弟弟的速度是8米/秒
C。弟弟先跑了10米
D。弟弟的速度是10米/秒
例3:下圖表示一輛汽車的速度隨時間變化的情況:
①汽車行駛了多長時間?它的最高時速是多少?
②汽車在哪些時間段保持勻速行駛?時速分別是多少?
③出發(fā)后8分鐘到10分鐘之間可能發(fā)生了什么情況?
④用自己的語言大致描述這輛汽車的行駛情況。
例與時間(分)的函數(shù)圖像中,符合小明騎車行駛情況的圖像大致是( )。
例5:龜兔賽跑的故事,領(lǐng)先的兔子看著緩慢爬行的烏龜,驕傲起來,睡了一覺,當它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但已經(jīng)來不及了,烏龜先到達了終點……現(xiàn)在用直線和折線分別表示二者所走的路程,t為時間,則下列圖像中:
① 哪個表示兔子,哪個表示烏龜?
② 兔子休息了多長時間?
③ 從中你能悟出什么人生道理?
④將龜兔賽跑的故事改編并畫出相應(yīng)的圖像。
3。 課時小結(jié)
本節(jié)通過兩個活動,學(xué)會了分析圖像信息,解答有關(guān)問題.這樣我們又一次利用了數(shù)形結(jié)合的思想.
4、 課后作業(yè)
P3。
Yjs21.Com更多幼師資料擴展閱讀
函數(shù)課件
在教學(xué)過程中,教案課件起著至關(guān)重要的作用,并且每位老師都需要每天撰寫自己的教案課件。教案課件是提高學(xué)生思維能力的有效途徑。為了幫助大家更好地工作和學(xué)習(xí),幼兒教師教育網(wǎng)今天為大家準備了一篇精選文章,講述的是“函數(shù)課件”。希望這篇文章能夠?qū)δ趯嶋H工作和學(xué)習(xí)中提供一些參考。如果您需要具體的實現(xiàn)方案,請與專業(yè)人士進行聯(lián)系!
函數(shù)課件【篇1】
本節(jié)課是在學(xué)生學(xué)習(xí)了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學(xué)習(xí)函數(shù)與方程的第一課時,本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點的概念,從而進一步探索函數(shù)零點存在性的判定,這些活動就是想讓學(xué)生在了解初等函數(shù)的基礎(chǔ)上,利用計算機描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進一步的認識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準備.
從教材編寫的順序來看,《方程的根與函數(shù)的零點》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學(xué)生學(xué)會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解,是在建立和運用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解中均蘊涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運用函數(shù)模型中蘊含的“數(shù)學(xué)建模思想”,是本章滲透的主要數(shù)學(xué)思想.
從知識的應(yīng)用價值來看,通過在函數(shù)與方程的聯(lián)系中體驗數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價值,體驗函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學(xué)模型,體會符號化、模型化的思想,體驗從系統(tǒng)的角度去思考局部問題的思想.
基于上述分析,確定本節(jié)的教學(xué)重點是:了解函數(shù)零點的概念,體會方程的根與函數(shù)零點之間的聯(lián)系,掌握函數(shù)零點存在性的判斷.
1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
3.通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系.掌握函數(shù)零點存在性的判斷.
4.在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認識,體會函數(shù)知識的核心作用.
1.零點概念的認識.零點的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個形象的概念,學(xué)生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點,但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點的障礙.
2.零點存在性的判斷.正因為f(a)·f(b)<0且圖象在區(qū)間上連續(xù)不斷,是函數(shù)f(x)在區(qū)間上有零點的充分而非必要條件,容易引起思維的混亂就是很自然的事了.
3.零點(或零點個數(shù))的確定.學(xué)生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點)就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點問題.這樣就在零點(或零點個數(shù))的確定上給學(xué)生帶來一定的困難.
基于上述分析,確定本節(jié)課的教學(xué)難點是:準確認識零點的概念,在合情推理中讓學(xué)生體會到判定定理的充分非必要性,能利用適當?shù)姆椒ㄅ袛嗔泓c的存在或確定零點.
考慮到學(xué)生的知識水平和理解能力,教師可借助計算機工具和構(gòu)建現(xiàn)實生活中的模型,從激勵學(xué)生探究入手,講練結(jié)合,直觀演示能使教學(xué)更富趣味性和生動性.
通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認識,體會函數(shù)知識的核心作用.
變式:解方程3x5+6x-1=0的實數(shù)根. (一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標。
問題1 求方程x2-2x-3=0的實數(shù)根,并畫出函數(shù)y=x2-2x-3的圖象;
方程x2-2x-3=0的實數(shù)根為-1、3。函數(shù)y=x2-2x-3的圖象如圖所示。
問題2 觀察形式上函數(shù)y=x2-2x-3與相應(yīng)方程x2-2x-3=0的聯(lián)系。
函數(shù)y=0時的表達式就是方程x2-2x-3=0。
問題3 由于形式上的聯(lián)系,則方程x2-2x-3=0的實數(shù)根在函數(shù)y=x2-2x-3的圖象中如何體現(xiàn)?
y=0即為x軸,所以方程x2-2x-3=0的實數(shù)根就是y=x2-2x-3的圖象與x軸的交點橫坐標。
設(shè)計意圖:以學(xué)生熟悉二次函數(shù)圖象和二次方程為平臺,觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實數(shù)根與函數(shù)圖象之間的關(guān)系。理解零點是連接函數(shù)與方程的結(jié)點。
初步提出零點的概念:-1、3既是方程x2-2x-3=0的根,又是函數(shù)y=x2-2x-3在y=0時x的值,也是函數(shù)圖象與x軸交點的橫坐標。-1、3在方程中稱為實數(shù)根,在函數(shù)中稱為零點。
問題4 函數(shù)y=x2-2x+1和函數(shù)y=x2-2x+3零點分別是什么?
函數(shù)y=x2-2x+1的零點是-1。函數(shù)y=x2-2x+3不存在零點。
提出零點的定義:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點.(zero point)
2、函數(shù)零點的判定:
研究方程的實數(shù)根也就是研究相應(yīng)函數(shù)的零點,也就是研究函數(shù)的圖象與x軸的交點情況。 (Ⅰ)
問題5 如果把函數(shù)比作一部電影,那么函數(shù)的零點就像是電影的一個瞬間,一個鏡頭。有時我們會忽略一些鏡頭,但是我們?nèi)匀荒芡茰y出被忽略的片斷?,F(xiàn)在我有兩組鏡頭(如圖),哪一組能說明他的行程一定曾渡過河?(Ⅱ)
第Ⅰ組能說明他的行程中一定曾渡過河,而第Ⅱ組中他的行程就不一定曾渡過河。
設(shè)計意圖:從現(xiàn)實生活中的問題,讓學(xué)生體會動與靜的關(guān)系,系統(tǒng)與局部的關(guān)系。
問題6 將河流抽象成x軸,將前后的兩個位置視為A、B兩點。請問當A、B與x軸怎樣的位置關(guān)系時,AB間的一段連續(xù)不斷的函數(shù)圖象與x軸一定會有交點?
A、B兩點在x軸的兩側(cè)。
設(shè)計意圖:將現(xiàn)實生活中的問題抽象成數(shù)學(xué)模型,進行合情推理,將原來學(xué)生只認為靜態(tài)的函數(shù)圖象,理解為一種動態(tài)的過程。
問題7 A、B與x軸的位置關(guān)系,如何用數(shù)學(xué)符號(式子)來表示?
A、B兩點在x軸的兩側(cè)??梢杂胒(a)·f(b)
設(shè)計意圖:由原來的圖象語言轉(zhuǎn)化為數(shù)學(xué)語言。培養(yǎng)學(xué)生的觀察能力和提取有效信息的能力。體驗語言轉(zhuǎn)化的過程。
問題8 滿足條件的函數(shù)圖象與x軸的交點一定在(a,b)內(nèi)嗎?即函數(shù)的零點一定在(a,b)內(nèi)嗎?
一定在區(qū)間(a,b)上。若交點不在(a,b)上,則它不是函數(shù)圖象。
設(shè)計意圖:讓學(xué)生體驗從現(xiàn)實生活中抽象成數(shù)學(xué)模型時,需要一定修正。加強學(xué)生對函數(shù)動態(tài)的感受,對函數(shù)的定義有進一步的理解。
通過上述探究,讓學(xué)生自己概括出零點存在性定理:
一般地,我們有:
如果函數(shù)y=f(x)在區(qū)間上的圖象是連續(xù)不斷的一條曲線并且有f(a)·f(b)
例題1 觀察下表,分析函數(shù)在定義域內(nèi)是否存在零點?
分析:函數(shù)圖象是連續(xù)不斷的,又因為,所以在區(qū)間(0,1)上必存在零點。我們也可以通過計算機作圖(如圖)幫助了解零點大致的情況。
設(shè)計意圖:初步應(yīng)用零點的存在性定理來判斷函數(shù)零點的存在性問題。并引導(dǎo)學(xué)生探索判斷函數(shù)零點的方法,通過作出x,的對應(yīng)值表,來尋找函數(shù)值異號的區(qū)間,還可以借助計算機來作函數(shù)的圖象分析零點問題。而且對函數(shù)有一個零點形成直觀認識.
例題2 求函數(shù)的零點個數(shù).
分析:用計算器或計算機作出x,的對應(yīng)值表和圖象。
由表可知,f (2)0,則,這說明函數(shù)在區(qū)間(2,3)內(nèi)有零點。結(jié)合函數(shù)的單調(diào)性,進而說明零點是只有唯一一個.
設(shè)計意圖:學(xué)生應(yīng)用例題1方法來解決例題2的零點存在性問題,并結(jié)合函數(shù)的單調(diào)性,從圖象的直觀上去判斷零點的個數(shù)問題。
練習(xí):判斷下列函數(shù)是否存在零點,指出零點所在的大致區(qū)間?
① f(x)=2xln(x-2)-3;
②f(x)= 2x+2x-6.
通過引導(dǎo)讓學(xué)生回顧零點概念、意義與求法,以及零點存在性判斷,鼓勵學(xué)生積極回答,然后老師再從數(shù)學(xué)思想方面進行總結(jié).
必作題:
1.教材P92習(xí)題3.1(A組)第2題;
2.求下列函數(shù)的零點:
3.求下列函數(shù)的零點,圖象頂點的坐標,畫出各自的簡圖,并指出函數(shù)值在哪些區(qū)間上大于零,哪些區(qū)間上小于零:
(1) (2).
4.已知.
(1)為何值時,函數(shù)的圖象與軸有兩個零點;
(2)如果函數(shù)至少有一個零點在原點右側(cè),求的值.
(1)利用計算機探求和時函數(shù)的零點個數(shù);
(2)當時,函數(shù)的零點是怎樣分布的?
數(shù)學(xué)的學(xué)習(xí),學(xué)生需要費很大的心思。畢竟數(shù)學(xué)并不是一門只要會背或者會說或者會寫就可以學(xué)好的學(xué)科,它靈活度比較高。通常學(xué)生在學(xué)習(xí)數(shù)學(xué)花的時間比較多,但又毫無效果是什么原因呢?是方法不對?還是思路不對?
在數(shù)學(xué)學(xué)習(xí)過程中,常常出現(xiàn)這種現(xiàn)象,學(xué)生在課堂上聽懂了,但課后解題特別是遇到新題型時便無所適從。這就說明上課聽懂是一回事,而達到能應(yīng)用知識解決問題是另一回事。
有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設(shè)計問題。但是考查的知識點和數(shù)學(xué)思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點和思想方法的角度分別對所解題目進行歸類,總結(jié)解題經(jīng)驗的同時,確認自己是否真正掌握并確認復(fù)習(xí)的重點。
首先有一條定律:高次將次,多元消元,常數(shù)分離,變元集中。圍繞這句話能夠拓展出許多方法:比如解不等式恒成立題中的“常數(shù)分離法”、“換元法”。還有一句很重要的話就是:解題其實就是轉(zhuǎn)化,將所求與題設(shè)條件靠攏的過程,根據(jù)求證找到題設(shè)條件與之的關(guān)系,進而尋找證明方法。
其次便是題型與方法。方法分為數(shù)學(xué)思想與常用解題技巧,這個可以去書店里找找相關(guān)的書,應(yīng)該很容易就能找到。題型則是分為解析幾何、立體幾何、三角函數(shù)等等,這些多做試卷就能掌握相關(guān)規(guī)律,每道題重要的是看它背后的方法,例如函數(shù)求和題,可以裂項相消,也可以倒序求和,題目是用來鞏固已學(xué)的數(shù)學(xué)知識,當某種方法已經(jīng)掌握透了之后,就能去找別的類型的題練習(xí),直到掌握所有方法。
同一道題,不同的學(xué)生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論是推導(dǎo)、還是硬性套用、憑借經(jīng)驗做題,都是思路的一種。有的同學(xué)由開始思路不清漸漸轉(zhuǎn)變?yōu)榍宄?,有的同學(xué)根本沒有思路,這就形成了做題的上的差距。
數(shù)學(xué)解題思想其實只要掌握一種即可,即必要性思維。什么是必要性思維?必要性思維就是通過所求結(jié)論或者某一限定條件尋求前提的思想。幾乎所有數(shù)學(xué)命題都可以用這一思想進行破解。
縱觀近幾年高考數(shù)學(xué)試題,可以看出試題加強了對知識點靈活應(yīng)用的考察。這就對考生的思維能力要求大大加強。
例如:課本在講絕對值和不等式時,根據(jù)a-b≤a+b推出a-b≤a-c+b-c,這里運用了插值法a-b=(a-c)-(b-c)≤a-c+b-c這一思維方法,我們要弄清之所以這樣想,之所以得到這個解法的全部醞釀過程。
以上就是為大家提供的“數(shù)學(xué)解題方法技巧:如何更快答題”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。
高一新生學(xué)習(xí)數(shù)學(xué)該注意什么?
【編者按】數(shù)學(xué)是一個人的學(xué)習(xí)生涯中所占比重最大的學(xué)科,也是高考科目中最能夠拉開分數(shù)層次的.學(xué)科,因此學(xué)好數(shù)學(xué),無論是對高考,還是對以后學(xué)習(xí)工作都起著重要作用。那么高一新生在學(xué)習(xí)上剛剛踏入新階段,如何去除初中時養(yǎng)成的不適宜高中學(xué)習(xí)的習(xí)慣,又如何掌握正確的學(xué)習(xí)方法呢?我們應(yīng)注意以下三點:
(1)注意和初中數(shù)學(xué)知識的銜接。這是一個十分困難的問題,初中數(shù)學(xué)與高中數(shù)學(xué)的差別非常大,從原本的實際思維轉(zhuǎn)入抽象思維,需要一個大幅度轉(zhuǎn)變。這就需要重新整理初中數(shù)學(xué)知識,形成良好的知識基礎(chǔ),在此基礎(chǔ)上,再根據(jù)高中知識特點,較快的吸收新的知識,形成新的知識結(jié)構(gòu)。
(2)認真理解,反復(fù)推敲思考高中各知識點的涵義,各種表示方法。容易混淆的知識,仔細辨識、區(qū)別,達到熟練掌握,逐步建立與高中數(shù)學(xué)結(jié)構(gòu)相適應(yīng)的理論本質(zhì)與思考方法,切忌急于求成。
(3)通過學(xué)習(xí),要努力培養(yǎng)自己觀察,比較抽象,概括能力初步形成運用知識準確地表達數(shù)學(xué)問題和實際問題的意識和能力;培養(yǎng)科學(xué)的、嚴謹?shù)膶W(xué)習(xí)態(tài)度,為樹立辯證唯物主義科學(xué)的世界觀認識世界打下基礎(chǔ)。
我們應(yīng)試時,時常發(fā)現(xiàn)厭試心理,有時會有些緊張,這是很正常的。但過分緊張也會導(dǎo)致考不好,所以平時應(yīng)把練習(xí)當作考試,但考試時則平視為練習(xí),心態(tài)好了,成績自己就上去了。
如何減少解題失誤,這是一個考高分的關(guān)鍵。失誤少了,分數(shù)就會濺漲。這需要學(xué)生的仔細觀察與認真閱讀題目,抓住題目重點、題心,并圍繞重點、題心考慮其他條件與答案。其次,考慮要周全,避免出現(xiàn)遺漏情況,各個方面都要考慮到,這需要平日思考事物的長期積累。
考試考得不好,這是常遇到的問題,心情沮喪是正常心理,但不能持久下去。要將答案聽徹底,記下,并與自己的解題思路相比較,發(fā)現(xiàn)不同之處,或不要之處并記于心里,這樣對于下次考試則很有好處。
(2) 元素的互異性,
(3) 元素的無序性,
3.集合的表示:{ … } 如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1) 用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR x-3>2} ,{x x-3>2}
注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A
實例:設(shè) A={xx2-1=0} B={-1,1} “元素相同則兩集合相等”
②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)
規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={xx A,且x B}.
由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={xx A,或x B}).
設(shè)S是一個集合,A是S的一個子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補集(或余集)
A (CuA)= Φ.
在過程中,掌握科學(xué)的,是提高成績的重要條件。以下我分別從、上課、作業(yè)、、、課外學(xué)習(xí)、實驗課等七個方面,談一下的常規(guī)問題。應(yīng)當說明的是,我這里所談的是各科學(xué)習(xí)的一般規(guī)律,不涉及具體學(xué)科。
一、預(yù)習(xí)。預(yù)習(xí)一般是指在講課以前,自己先獨立地閱讀新課內(nèi)容,做到初步理解,做好上課的準備。所以,預(yù)習(xí)就是自學(xué)。預(yù)習(xí)要做到下列四點:
1、通覽教材,初步理解教材的基本內(nèi)容和思路。
2、預(yù)習(xí)時如發(fā)現(xiàn)與新課相聯(lián)系的舊掌握得不好,則查閱和補習(xí)舊,給學(xué)習(xí)新打好牢固的基礎(chǔ)。
3、在閱讀新教材過程中,要注意發(fā)現(xiàn)自己難以掌握和理解的地方,以便在時特別注意。
4、做好預(yù)習(xí)筆記。預(yù)習(xí)的結(jié)果要認真記在預(yù)習(xí)筆記上,預(yù)習(xí)筆記一般應(yīng)記載教材的主要內(nèi)容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。
二、上課。教學(xué)是教學(xué)過程中最基本的環(huán)節(jié),不言而喻,上課也應(yīng)是同學(xué)們學(xué)好功課、掌握知識、發(fā)展的決定性一環(huán)。上課要做到:
1、課前準備好上課所需的課本、筆記本和其他文具,并抓緊時間簡要回憶和復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容。
2、要帶著強烈的求知欲上課,希望在課上能向老師學(xué)到新知識,解決新問題。
3、上課時要集中精力聽講,上課鈴一響,就應(yīng)立即進入積極的學(xué)習(xí)狀態(tài),有意識地排除分散注意力的各種因素。
4、聽課要抬頭,眼睛盯著老師的一舉一動,專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。
5、如果遇到某一個問題或某個問題的一個環(huán)節(jié)沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。
6、要努力當課堂的主人。要認真思考老師提出的每一個問題,認真觀察老師的每一個演示實驗,大膽舉手發(fā)表自己的看法,積極參加課堂討論。
7、要特別注意老師講課的開頭和結(jié)尾。老師的“開場白”往往是概括上節(jié)內(nèi)容,引出本節(jié)的新課題,并提出本節(jié)課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結(jié),往往是一節(jié)課的精要提煉和復(fù)習(xí)提示,是本節(jié)課的高度概括和總結(jié)。
8、要養(yǎng)成記筆記的好習(xí)慣。最好是一邊聽一邊記,當聽與記發(fā)生矛盾時,要以聽為主,下課后再補上筆記。記筆記要有重點,要把老師板書的知識提綱、補充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,高二,供課后復(fù)習(xí)時參考。
三、作業(yè)。作業(yè)是學(xué)習(xí)過程中一個重要環(huán)節(jié)。通過作業(yè)不僅可以及時鞏固當天所學(xué)知識,加深對知識的理解,更重要的是把學(xué)過的知識加以運用,以形成技能技巧,從而發(fā)展自己的,培養(yǎng)自己的能力。作業(yè)必須做到:
1、先看書后作業(yè),看書和作業(yè)相結(jié)合。只有先弄懂課本的基本原理和法則,才能順利地完成作業(yè),減少作業(yè)中的錯誤,也可以達到鞏固知識的目的。
2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應(yīng)用所學(xué)的知識,找到解決問題的途徑和方法。
3、態(tài)度要認真,推理要嚴謹,養(yǎng)成“言必有據(jù)”的習(xí)慣。準確運用所學(xué)過的定律、定理、公式、概念等。作業(yè)之后,認真檢查驗算,避免不應(yīng)有的錯誤發(fā)生。
4、作業(yè)要獨立完成。只有經(jīng)過自己動腦思考動手操作,才能促進自己對知識的消化和理解,才能培養(yǎng)鍛煉自己的能力;同時也能檢驗自己掌握的知識是否準確,從而克服學(xué)習(xí)上的薄弱環(huán)節(jié),逐步形成扎實的基礎(chǔ)。
5、認真更正錯誤。作業(yè)經(jīng)老師批改后,要仔細看一遍,對于作業(yè)中出現(xiàn)的錯誤,要認真改正。要懂得,出錯的地方,正是暴露自己的知識和能力弱點的地方。經(jīng)過更正,就可以及時彌補自己知識上的缺陷。
6、作業(yè)要規(guī)范。解題時不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業(yè)涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業(yè)時,各科都有各自的格式,要按照各學(xué)科的作業(yè)規(guī)范去做。
7、作業(yè)要保存好,定期將作業(yè)分門別類進行整理,復(fù)習(xí)時,可隨時拿來參考。
四、復(fù)習(xí)。復(fù)習(xí)的主要任務(wù)是達到對知識的深入理解和掌握,在理解和掌握的過程中提高運用知識的技能技巧,使知識融匯貫通。同時還要通過歸納、整理,使知識系統(tǒng)化,真正成為自己知識鏈條的一個有機組成部分。復(fù)習(xí)要做到:
1、當天的功課當天復(fù)習(xí),并且要同時復(fù)習(xí)頭一天學(xué)習(xí)和復(fù)習(xí)過的內(nèi)容,使新舊知識聯(lián)系起來。對老師講授的主要內(nèi)容,在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點和關(guān)鍵,特別是聽課中存在的疑難問題更應(yīng)徹底解決。重點內(nèi)容要熟讀牢記,對基本要領(lǐng)和定律等能準確闡述,并能真正理解它的意義;對基本公式應(yīng)會自行推導(dǎo),曉得它的來龍去脈;同時要搞清楚知識前后之間的聯(lián)系,注意總結(jié)知識的規(guī)律性。
2、單元復(fù)習(xí)。在課程進行完一個單元以后,要把全單元的知識要點進行一次全面復(fù)習(xí),重點領(lǐng)會各知識要點之間的聯(lián)系,使知識系統(tǒng)化和結(jié)構(gòu)化。有些需要的知識,要在理解的基礎(chǔ)上熟練地。
3、期中復(fù)習(xí)。期試前,要把上半學(xué)期學(xué)過的內(nèi)容進行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時,在全面復(fù)習(xí)的前提下,特別應(yīng)著重弄清各單元知識之間的聯(lián)系。
4、期末復(fù)習(xí)。期末考試前,要對本學(xué)期學(xué)過的內(nèi)容進行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時力求達到“透徹理解、牢固掌握、靈活運用”的目的。
5、假期復(fù)習(xí)。每年的和,除完成各科作業(yè)外,要把以前所學(xué)過的內(nèi)容進行全面復(fù)習(xí),重點復(fù)習(xí)自己掌握得不太好的部分。這樣可以避免邊學(xué)邊忘,造成總復(fù)習(xí)時負擔過重的現(xiàn)象。
6、在達到上面要求的基礎(chǔ)上,學(xué)有余力的同學(xué),可在老師的指導(dǎo)下,適當閱讀一些課外參考書或做一些習(xí)題,加深對有關(guān)知識的理解和記憶。
五、考試??荚囀菍W(xué)習(xí)過程的重要環(huán)節(jié)。通過考試可以了解自己的學(xué)習(xí)狀況,以便總結(jié)經(jīng)驗教訓(xùn),改進學(xué)習(xí)方法,為以后的學(xué)習(xí)明確努力方向。考試時應(yīng)做到:
1、要正確對待考試。考試是檢查學(xué)習(xí)效果的一種方法,考得好,可以促進自己進一步努力學(xué)習(xí),考得不好,也可以促使自己認真分析原因,找出存在的問題,以便今后更有針對性地學(xué)習(xí)。所以,考試并不可怕,絕不應(yīng)當產(chǎn)生畏考,造成情緒緊張,影響水平的正常發(fā)揮。
2、做好考試前的準備。首先是對各科功課進行系統(tǒng)認真的復(fù)習(xí),這是考出好成績的基礎(chǔ)。另外,考試前和考試期間要注意勞逸結(jié)合,保證充足的睡眠和休息,保持充沛的精力,這是取得優(yōu)異成績的必要條件。
3、答卷時應(yīng)注意的主要問題是: ①認真審題。拿到后,對每一個題目要認真閱讀,看清題目的要求,找出已知條件和要求的結(jié)論,然后再動手答題。②一時不會做的題目可以先放一放,等把會做的題目做完了,再去解決遺留問題。③仔細檢查,更正錯誤。答完以后,如果還有時間,就要抓緊時間進行檢查和驗證。先檢查容易的、省時間的、錯誤率高的題目,后檢查難的、費時間的、錯誤率低的題目。④卷面要整潔,書寫要工整,答題步驟要完整。
4、重視考后分析。拿到老師批閱的試卷后,不僅要看成績,而且要對進行逐一分析。首先要把錯題改正過來,把錯處鮮明地標示出來,引起自己的注意,以便復(fù)習(xí)時查對。然后分析丟分的原因,并進行分類統(tǒng)計??纯匆?qū)忣}、運算、表達、原理、思路、馬虎等因素各扣了多少分;經(jīng)過分析統(tǒng)計,找出自己學(xué)習(xí)上存在的問題。對做對了的題目也要進行分析,檢查自己對題目的表達是否嚴密,解題方法是否簡便等。
5、各科試卷要分類保存,以便復(fù)習(xí)時參考。
6、杜絕各種作弊現(xiàn)象。
六、課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補充和擴展,二者是相互聯(lián)系、相互滲透的整體。在搞好課內(nèi)學(xué)習(xí)的基礎(chǔ)上,適當進行課外學(xué)習(xí),可以開闊自己的知識領(lǐng)域,發(fā)展個人的、愛好和特長,同時對課內(nèi)學(xué)習(xí)也會起到有效的促進作用。課外學(xué)習(xí)應(yīng)注意:
1、可根據(jù)自己的學(xué)習(xí)情況,有目的地選擇學(xué)習(xí)內(nèi)容,原則是有利于鞏固基礎(chǔ)知識,彌補自己的學(xué)習(xí)弱點。
2、可以根據(jù)自己的特長和愛好,選擇一些有關(guān)學(xué)科的課外讀物學(xué)習(xí)。
3、課外閱讀一定要從自己的實際出發(fā),量力而行,寧可少而精,也不多而濫,切忌好高鶩遠、貪多求全。
七、實驗課。實驗是理論聯(lián)系實際的重要手段,實驗的目的是加深對理論的理解和有效地擴大知識領(lǐng)域,培養(yǎng)觀察能力、判斷能力、形象和動手操作的技能技巧,培養(yǎng)嚴肅認真的科學(xué)態(tài)度。實驗課要做到:
1、實驗前做好預(yù)習(xí),明確實驗的目的要求、實驗原理及實驗方法、步驟等。
2、注意熟悉實驗用儀器設(shè)備的名稱、功能和操作方法。
3、實驗要自己動手操作,仔細觀察實驗現(xiàn)象,認真測定數(shù)據(jù),做好記錄。同時要分析出現(xiàn)誤差的原因。嚴格遵守操作規(guī)程,愛護儀器設(shè)備,注意安全。
“充要條件”是數(shù)學(xué)中極其重要的一個概念。
(1)先看“充分條件和必要條件”
當命題“若p則q”為真時,可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。
但為什么說q是p的必要條件呢?
事實上,與“p=>q”等價的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。
(2)再看“充要條件”
若有p=>q,同時q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作pq
數(shù)學(xué)中,只有A是B的充要條件時,才用A去定義B,因此每個定義中都包含一個充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。
顯然,一個定理如果有逆定理,那么定理、逆定理合在一起,可以用一個含有充要條件的語句來表示。
“充要條件”有時還可以改用“當且僅當”來表示,其中“當”表示“充分”?!皟H當”表示“必要”。
(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。
以上就是為大家提供的“高中數(shù)學(xué)學(xué)習(xí)方法:理解“充要條件”具體概念”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。
中總有那么一兩道問題難度系數(shù)很低的,問題難,以拉開來不同考生的差距。遇到難題一時想不出來,可以考慮換一種,換一種思路,如果仍然沒有頭緒,不妨先放一放,記下題號,等后面的解答完了再回來看看,你可能會獲得新的解題。最后如果仍然沒有想出來的也不能放棄,是選擇題就要猜測答案了,填空題也不能空著,猜測答案往上寫,是大題,就要分步寫,只要與問題有關(guān),能寫多少寫多少。
遇到了難題,我該怎么辦?
會做的題目要力求做對、做全、得,而更多的問題是對不能完整完成的題目如何分段得分。下面有兩種常用方法。
一、面對一個疑難問題,一時間想不出方法時,可以將它劃分為幾個子問題,然后在解決會解決的部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步。如從最初的把文字語言譯成符號語言,把條件和目標譯成表達式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動點坐標,依題意正確畫出圖形等,都能得分。而且可望在上述處理中,可能一時獲得,因而獲得解題方法。
二。有些問題好幾問,每問都很難,比如前面的小問你解答不出,但后面的小問如果根基前面的結(jié)論你能夠解答出來,這時候不妨先解答后面的,此時可以引用前面的結(jié)論,這樣仍然可以得分。如果稍后想出了前面的解答方法,可以補上:“事實上,第一問可以如下證明”。
從題目的條件出發(fā),通過正確的運算或推理,直接求得結(jié)論,再與選擇支對照來確定選擇支。
在幾個選擇支中,排除不符合要求的選擇支,以確定符合要求的選擇支。
就是取滿足條件的特例(包括取特殊值、特殊點、以特殊圖形代替一般圖形等),并將得出的結(jié)論與四個選項進行比較,若出現(xiàn)矛盾,則否定,可能會否定三個選項;若結(jié)論與某一選項相符,則肯定,可能會一次,這種方法可以彌補其它方法的不足。
函數(shù)課件【篇2】
解析:設(shè)f(x)=lg x +x-2,則f(1.75)=f74=lg 74-140,f(2)=lg 20.
2.函數(shù)f(x)=x2+2x-3,x0,-2+lnx,x0的零點個數(shù)為()
解析::x0時由x2+2x-3=0x=-3;x0時由-2+lnx=0x=e2.
解析:因為f(0)=-10,f(1)=e-10,所以零點在區(qū)間(0,1)上,選C.
解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.
6.函數(shù)f(x)=(x-1)(x2-3x+1)的零點是__________.
7.若函數(shù)y=x2-ax+2有一個零點為1,則a等于__________.
8.已知函數(shù)f(x)=logax+x-b(a0且a1),當234時,函數(shù)f(x)的零點為x0(n,n+1)(nN*),則n=________.
解析:根據(jù)f(2)=loga2+2-blogaa+2-3=0,
f(3)=loga3+3-blogaa+3-4=0,
則f(x)在區(qū)間(-,+)上的圖象是一條連續(xù)不斷的曲線.
當x=0時,f(x)=-10.當x=1時,f(x)=10.
f(0)f(1)0,故在(0,1)內(nèi)至少有一個x0,當x=x0時,f(x)=0.即至少有一個x0,滿足01,且f(x0)=0,故方程x2x=1至少有一個小于1的正根.
函數(shù)課件【篇3】
教學(xué)目標:
(一)教學(xué)知識點:1.對數(shù)函數(shù)的概念;2.對數(shù)函數(shù)的圖象和性質(zhì).
(二)能力訓(xùn)練要求:1.理解對數(shù)函數(shù)的概念;2.掌握對數(shù)函數(shù)的圖象和性質(zhì).
(三)德育滲透目標:1.用聯(lián)系的觀點分析問題;2.認識事物之間的互相轉(zhuǎn)化.
由學(xué)生的預(yù)習(xí),可以直接回答“對數(shù)函數(shù)的概念”
由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的'概念,我們進行類比,可否猜想有:
2.求指數(shù)函數(shù)的反函數(shù).
①;
所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).
這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).
因為對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對稱.
因此,我們只要畫出和圖象關(guān)于直線對稱的曲線,就可以得到的圖象.
研究指數(shù)函數(shù)時,我們分別研究了底數(shù)和兩種情形.
那么我們可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.
還可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.
請同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?
3.圖象的加深理解:
與圖象關(guān)于X軸對稱;與圖象關(guān)于X軸對稱.
一般地,與圖象關(guān)于X軸對稱.
(2)時,函數(shù)為減函數(shù),
4.練習(xí):
(1)如圖:曲線分別為函數(shù),,,,的圖像,試問的大小關(guān)系如何?
這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).
函數(shù)課件【篇4】
二次函數(shù)復(fù)習(xí)課件
二次函數(shù)是我們在數(shù)學(xué)學(xué)習(xí)中經(jīng)常會遇到的一個重要概念。它在解決實際問題中有著廣泛的應(yīng)用,并且在數(shù)學(xué)建模中也扮演著重要的角色。本文將詳細介紹二次函數(shù)的定義、特征以及應(yīng)用等方面的內(nèi)容,以幫助讀者更好地理解和掌握二次函數(shù)的知識。
首先,我們來了解二次函數(shù)的定義。二次函數(shù)是指具有以下形式的函數(shù):f(x) = ax^2 + bx + c,其中a、b、c為實數(shù)且a ≠ 0。這里的a決定了二次函數(shù)的開口方向,當a > 0時,二次函數(shù)開口向上;當a
其次,我們來探討二次函數(shù)的特征。二次函數(shù)最重要的特征之一就是頂點坐標。對于一般形式的二次函數(shù)f(x) = ax^2 + bx + c,它的頂點坐標為(-b/2a, f(-b/2a))。頂點坐標有著很重要的幾何意義,它代表了二次函數(shù)的最值點,也就是函數(shù)圖像的最高點或最低點。
此外,二次函數(shù)還有著其他一些重要的性質(zhì)。例如,二次函數(shù)的零點是指函數(shù)圖像與x軸相交的點,求解二次函數(shù)的零點可以使用因式分解、配方法、求根公式等方法。另外,二次函數(shù)還可以通過平移、伸縮、翻轉(zhuǎn)等變換來產(chǎn)生不同的函數(shù)圖像,這些變換對應(yīng)著二次函數(shù)的參數(shù)a、b、c的取值。通過靈活運用這些性質(zhì),我們可以更好地理解和分析二次函數(shù)的圖像。
最后,我們來了解一下二次函數(shù)在實際問題中的應(yīng)用。二次函數(shù)的應(yīng)用非常廣泛,尤其在物理、經(jīng)濟、生物等領(lǐng)域,有著重要的作用。例如,拋物線的運動軌跡可以用二次函數(shù)來描述;經(jīng)濟學(xué)中的成本、收益等問題也可以用二次函數(shù)來建模;生物學(xué)中的種群增長、病毒傳播等問題也可以采用二次函數(shù)來描述。因此,掌握二次函數(shù)的知識可以幫助我們更好地理解和解決實際問題。
總結(jié)起來,二次函數(shù)是數(shù)學(xué)學(xué)習(xí)中一個重要的概念,具有廣泛的應(yīng)用價值。它的定義、特征以及應(yīng)用等方面的內(nèi)容我們都進行了詳細的介紹。通過學(xué)習(xí)和掌握二次函數(shù)的知識,我們可以更好地理解和解決實際問題,也能在數(shù)學(xué)建模中運用二次函數(shù)來描述和分析各種問題。希望本文對讀者的學(xué)習(xí)和理解有所幫助。
函數(shù)課件【篇5】
今天我的說課題目是人教A版必修1第一章第二節(jié)《函數(shù)及其表示》。
對于這節(jié)課,我將以“教什么,怎么教,為什么這么教”為思路,從教材分析、目標分析、教學(xué)法分析、教學(xué)過程 分析和評價五個方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)設(shè)計,敬請各位專家、評委批評指正。
函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一,函數(shù)的學(xué)習(xí)大致可分為三個階段。第一階段在以為教育階段,學(xué)習(xí)了函數(shù)的描述性概念,接觸了正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)等,本章學(xué)習(xí)的函數(shù)的概念、基本性質(zhì)與后續(xù)將要學(xué)習(xí)的基本初等函數(shù)(i)和(ii)是函數(shù)學(xué)習(xí)的第二階段,是對函數(shù)概念的再認識階段;第三階段在選修系列導(dǎo)數(shù)及其應(yīng)用的學(xué)習(xí),使函數(shù)學(xué)習(xí)的進一步深化和提高。因此函數(shù)及其表述這一節(jié)在高中數(shù)學(xué)中,起著承上啟下的作用,函數(shù)的思想貫穿高中數(shù)學(xué)的始終,學(xué)好這章不僅在知識方面,更重要的是在函數(shù)思想、方法方面,將會讓學(xué)生在今后的學(xué)習(xí)、工作和生活中受益無窮。
本小結(jié)介紹了函數(shù)概念,及其表示方法。我將本小節(jié)分為兩課時,第一課時完成函數(shù)概念的教學(xué),第二課時完成函數(shù)圖象的教學(xué)。這里我主要談?wù)労瘮?shù)概念的教學(xué)。
函數(shù)概念部分分用三個實際例子設(shè)計教學(xué)情境,讓學(xué)生探尋變量和變量對應(yīng)關(guān)系,結(jié)合初中學(xué)習(xí)的函數(shù)理論,在集合論的基礎(chǔ)上,促使學(xué)生建構(gòu)出函數(shù)概念,體驗結(jié)合舊知識,探索新知識、研究新問題的快樂。
(1) 在初中,學(xué)生已經(jīng)學(xué)習(xí)過函數(shù)的概念,并且知道韓式是變量間的相互依賴關(guān)系
(2) 學(xué)生思維活躍,積極性高,已經(jīng)步入對數(shù)學(xué)問題的合作探究能力
根據(jù)《函數(shù)的概念》在教材中的地位與作用,結(jié)合學(xué)情分析,本節(jié)教學(xué)應(yīng)實現(xiàn)如下教學(xué)目標:
進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用
了解構(gòu)成函數(shù)的要素,理解函數(shù)定義域和值域的概念,并會求一些簡單函數(shù)的'定義域。
引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)函數(shù)概念,體驗舊知識探索新知識,研究新問題的快樂
通過對函數(shù)概念形成的探究過程培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)
重點:體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,正確理解函數(shù)的概念。難點:函數(shù)概念及符號y=f(x)的理解
函數(shù)課件【篇6】
本次說課主要從五個部分進行,分別是教材分析、學(xué)情分析、教學(xué)目標分析、教學(xué)重難點分析和教學(xué)設(shè)計。
首先是教材分析:
我所使用的教材選自人教20xx年版的《全日制普通高級中學(xué)教科書數(shù)學(xué)第一冊(上)》,《反函數(shù)》函數(shù)部分的一個重難點,也是研究兩個函數(shù)相互關(guān)系的重要內(nèi)容,而反函數(shù)的概念又是其中的抽象難理解部分,因此反函數(shù)概念的學(xué)習(xí)有助于學(xué)生進一步加深對函數(shù)的認識和理解。
接著是學(xué)情分析:
高一的學(xué)生在學(xué)習(xí)反函數(shù)之前,已經(jīng)對函數(shù)的概念、表示法,映射等內(nèi)容有了一定的認識和了解,那么有了這些儲備知識,學(xué)生在本節(jié)課的學(xué)習(xí)中可以在教師的引導(dǎo)下進行思考和理解,從而能較好地完成對本節(jié)課的學(xué)習(xí)。
接下來的教學(xué)目標分析是從知識與技能、過程與方法、情感與態(tài)度入手的:
知識與技能:讓學(xué)生學(xué)生了解反函數(shù)的概念;通過本節(jié)課的學(xué)習(xí)會求一些簡單函數(shù)的反函數(shù)過程與方法:教學(xué)上使用引導(dǎo)、發(fā)現(xiàn)法,這主要通過從具體到抽象、從特殊到一般的過渡方式來實現(xiàn)。
情感與態(tài)度(也就是德育目標):通過本節(jié)課的學(xué)習(xí),能使學(xué)生發(fā)現(xiàn)函數(shù)內(nèi)部因素相互聯(lián)系,從而培養(yǎng)他們善于發(fā)現(xiàn)分析的能力,使他們學(xué)會以發(fā)現(xiàn)分析的目光去關(guān)注數(shù)學(xué),以聯(lián)系發(fā)展的態(tài)度去學(xué)習(xí)數(shù)學(xué)。
第四部分是教學(xué)重難點分析
本節(jié)課的教學(xué)重點放在反函數(shù)的概念、反函數(shù)的求法上,而由于反函數(shù)的概念相對抽象難理解,所以教學(xué)難點自然落在了反函數(shù)的概念理解。
下面我對第五部分的教學(xué)設(shè)計進行詳細展開:我的整個教學(xué)過程分成五個環(huán)節(jié)
一、新課引入
由于反函數(shù)的概念比較抽象難理解,在概念講解前先以具體例子入手逐步引導(dǎo),這樣比較符合學(xué)生的接受規(guī)律。
聯(lián)系函數(shù)的三要素,通過給出的兩對函數(shù)之間三要素變化的比較,讓學(xué)生對反函數(shù)首先有了一個大概的認識,然后再對反函數(shù)下嚴格的定義并進行詳細的講解。
二、概念講解
由于教材中給出的反函數(shù)的概念較長且較抽象,會給學(xué)生在理解上產(chǎn)生一定的難度,故引導(dǎo)學(xué)生從另外的角度分三步完成對反函數(shù)概念的理解,這樣較易于學(xué)生接受和理解。
1.由函數(shù)式y(tǒng)f(x) xA yC,得到式子x(y)
2.根據(jù)函數(shù)的概念去說明x(y)是一個函數(shù),其中定義域為C,值域為A.
3.下結(jié)論說明函數(shù)x(y)是函數(shù)yf(x)的反函數(shù),并記作xf1(y),一般互換x和y,寫作yf1(x).
三、通過問題的討論加深學(xué)生對反函數(shù)的認識和理解
1.所有函數(shù)都有反函數(shù)嗎?
通過兩個具體的函數(shù)(在講課的課件中有詳細給出)的異同,引導(dǎo)分析發(fā)現(xiàn)并不是所有的函數(shù)都有反函數(shù)。
2.互為反函數(shù)的函數(shù)有什么關(guān)系?
通過引入部分例子分析,結(jié)合反函數(shù)的概念,引導(dǎo)學(xué)生從從函數(shù)的三要素出發(fā)去描述互為反函數(shù)的兩函數(shù)之間的關(guān)系:
(1)對應(yīng)法則互逆(2)定義域與值域互換3.yf1(x)的反函數(shù)是什么?
1在回答了第二個問題的基礎(chǔ)上,引導(dǎo)學(xué)生利用以上結(jié)論發(fā)現(xiàn)yf(x)的反函數(shù)恰好是yf(x),即有yf(x)與yf1(x)互為反函數(shù)。
四、例題、聯(lián)系相結(jié)合,歸納求反函數(shù)的方法
首先分析講解例題中的(1)、(2),再讓學(xué)生結(jié)合反函數(shù)概念的分步理解思考歸納,嘗試從解題過程中總結(jié)出求已知函數(shù)反函數(shù)的一般方法。
1.找原函數(shù)的值域;
2.由原函數(shù)式解出x(y);
3.互換x和y的位置;
4.標注反函數(shù)的定義域。
簡化為一句話:一找、二解、三換、四標。
本次課堂不再安排別的練習(xí)題,而讓學(xué)生對照求法步驟,自行完成(3)、(4)的求解作為課堂練習(xí)。
五、課堂小結(jié)、布置作業(yè)
本節(jié)課所布置的作業(yè)是求已知函數(shù)的反函數(shù),主要為了鞏固學(xué)生對本節(jié)課知識的學(xué)習(xí)并加強對反函數(shù)求法的使用。
本節(jié)課的整個課堂設(shè)計,希望能從從新課引入到概念講解、從概念學(xué)習(xí)到深入學(xué)習(xí)理解,實現(xiàn)從從具體到抽象、從特殊到一般的過渡方式。我覺得這樣的設(shè)計,符合學(xué)生學(xué)習(xí)的循序漸進的接受規(guī)律,在教學(xué)過程中可以貫穿著教師引導(dǎo)學(xué)生討論學(xué)習(xí)的主線,體現(xiàn)了教師教學(xué)的輔助作用與學(xué)生學(xué)習(xí)的主體地位。
函數(shù)課件【篇7】
各位專家、各位老師:
大家好!
今天我說課的題目是《函數(shù)的概念》,本課題是人教A版必修1中1、2的內(nèi)容,計劃安排兩個課時,本課時的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價、教學(xué)過程設(shè)計、板書設(shè)計等幾個方面對本節(jié)課的教學(xué)加以說明。
一、教學(xué)目標
1、課程標準
課節(jié)內(nèi)容的課標要求是:
(1)通過豐富實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。
(2)在實際情景中,會根據(jù)不同的需要選擇恰當?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。
(3)通過具體實例,了解簡單的分段函數(shù),并能簡單應(yīng)用。
(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(小)值及其幾何意義;結(jié)合具體函數(shù),了解奇偶性的含義。
(5)學(xué)會運用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。
2、課標解讀
關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:
(1)把函數(shù)作為刻畫現(xiàn)實世界中一類重要變化規(guī)律的模型來學(xué)習(xí),是一種通過某一事物的變化信息可推知另一事物信息的對應(yīng)關(guān)系的數(shù)學(xué)模型;
(2)強調(diào)對函數(shù)本質(zhì)的認識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;
(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;
(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;
(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根;
(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認識和理解函數(shù)及其性質(zhì)。
【依據(jù)意圖】
(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。
(2)希望通過方程根與函數(shù)零點的內(nèi)在聯(lián)系,加強對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點之間的聯(lián)系具體化。
(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個二”解決根的分布問題。
(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達到目的的一種手段,一種快速計算的工具。
3、教材分析
(1)地位作用
函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個方面:
1、函數(shù)是高中數(shù)學(xué)七大主干知識之一,又是溝通代數(shù)﹑方程﹑不等式﹑數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時也是今后進一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ);
2、函數(shù)的學(xué)習(xí)過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力;
3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。
(2)內(nèi)容與課時劃分
本課題是高中數(shù)學(xué)人教A版必修1中1、2節(jié),計劃教學(xué)2個課時,第一課時內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。
4、學(xué)情分析
(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。
(2)本班級學(xué)生個體差異較明顯。
5、教學(xué)目標
【依據(jù)意圖】:教學(xué)目標的設(shè)計,要簡潔明了,具有較強的可操作性,容易檢測目標的達成度,同時也要體現(xiàn)出新課標下對素質(zhì)教育的要求。基于以上分析作為依據(jù),課時目標分解如下:
【課時分解目標】
1、能夠列舉生活中具有函數(shù)關(guān)系的實例;
2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;
3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;
4、能夠從函數(shù)的三要素的角度去判定兩個函數(shù)是否是同一個函數(shù)。
二、教學(xué)重難點
重點:讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。
難點:引導(dǎo)學(xué)生從具體實例抽象出函數(shù)概念。
[意圖依據(jù)]:本課時是概念課,重在概念的理解和形成,但教師應(yīng)把重點放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點、生長新知。為此通過教學(xué)目標和難重點的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標去學(xué)習(xí),才能達到事半功倍的效果。
三、教法
問題式教學(xué)法(實例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)
由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。
[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個方面:
(1)把集合作為一種語言;
(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;
(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個平臺,通過展示實例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達成教學(xué)目標。
四、學(xué)法
自主探究、合作交流、展示互評
我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強,學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時間長,需要更多的經(jīng)驗積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實際背景的前提下對所給出實例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動參與的機會,增強了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計本課題的整體思路。
[意圖依據(jù)]:本課時是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實例的剖析、了解、歸納而形成概念。在這個過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。
五、教學(xué)過程設(shè)計
本節(jié)內(nèi)容的教學(xué)過程我設(shè)計為以下逐層推進六個步驟:
1、課前預(yù)習(xí)、生成問題
2、創(chuàng)境設(shè)問、引入課題
3、觀察分析、探索新知
4、思考辨析、深刻理解
5、提煉總結(jié)、分享收獲
6、布置作業(yè)、拓展延伸
函數(shù)課件【篇8】
本節(jié)課是在學(xué)生學(xué)習(xí)了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學(xué)習(xí)函數(shù)與方程的第一課時,本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點的概念,從而進一步探索函數(shù)零點存在性的判定,這些活動就是想讓學(xué)生在了解初等函數(shù)的基礎(chǔ)上,利用計算機描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進一步的認識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準備.
從教材編寫的順序來看,《方程的根與函數(shù)的零點》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學(xué)生學(xué)會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解,是在建立和運用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點的關(guān)系、用二分法求方程的近似解中均蘊涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運用函數(shù)模型中蘊含的“數(shù)學(xué)建模思想”,是本章滲透的主要數(shù)學(xué)思想.
從知識的應(yīng)用價值來看,通過在函數(shù)與方程的聯(lián)系中體驗數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價值,體驗函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學(xué)模型,體會符號化、模型化的思想,體驗從系統(tǒng)的角度去思考局部問題的思想.
基于上述分析,確定本節(jié)的教學(xué)重點是:了解函數(shù)零點的概念,體會方程的根與函數(shù)零點之間的聯(lián)系,掌握函數(shù)零點存在性的判斷.
1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點與相應(yīng)方程實數(shù)根之間的關(guān)系,
2.零點知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個概念。而是理解提出零點概念的作用,溝通函數(shù)與方程的關(guān)系。
3.通過對現(xiàn)實問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動與靜的辨證關(guān)系.掌握函數(shù)零點存在性的判斷.
4.在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認識,體會函數(shù)知識的核心作用.
1.零點概念的認識.零點的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個形象的概念,學(xué)生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點,但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點的障礙.
2.零點存在性的判斷.正因為f(a)·f(b)<0且圖象在區(qū)間上連續(xù)不斷,是函數(shù)f(x)在區(qū)間上有零點的充分而非必要條件,容易引起思維的混亂就是很自然的事了.
3.零點(或零點個數(shù))的確定.學(xué)生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點)就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點問題.這樣就在零點(或零點個數(shù))的確定上給學(xué)生帶來一定的.困難.
基于上述分析,確定本節(jié)課的教學(xué)難點是:準確認識零點的概念,在合情推理中讓學(xué)生體會到判定定理的充分非必要性,能利用適當?shù)姆椒ㄅ袛嗔泓c的存在或確定零點.
考慮到學(xué)生的知識水平和理解能力,教師可借助計算機工具和構(gòu)建現(xiàn)實生活中的模型,從激勵學(xué)生探究入手,講練結(jié)合,直觀演示能使教學(xué)更富趣味性和生動性.
通過讓學(xué)生觀察、討論、辨析、畫圖,親身實踐,在函數(shù)與方程的聯(lián)系中體驗數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價值,發(fā)展學(xué)生對變量數(shù)學(xué)的認識,體會函數(shù)知識的核心作用.
變式:解方程3x5+6x-1=0的實數(shù)根. (一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運算,乘方與開方等運算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個方程的問題。)
設(shè)計意圖:從學(xué)生的認知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動問題進一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點明本節(jié)課的目標。
函數(shù)課件【篇9】
一、教學(xué)目標
1.知識與技能
(1)能夠借助三角函數(shù)的定義及單位圓中的三角函數(shù)線推導(dǎo)三角函數(shù)的誘導(dǎo)公式。
(2)能夠運用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角三角函數(shù)的化簡、求值問題。
2.過程與方法
(1)經(jīng)歷由幾何直觀探討數(shù)量關(guān)系式的過程,培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)能力和概括能力。
(2)通過對誘導(dǎo)公式的探求和運用,培養(yǎng)化歸能力,提高學(xué)生分析問題和解決問題的能力。
3.情感、態(tài)度、價值觀
(1)通過對誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度。
(2)在誘導(dǎo)公式的探求過程中,運用合作學(xué)習(xí)的方式進行,培養(yǎng)學(xué)生團結(jié)協(xié)作的精神。
二、教學(xué)重點與難點
教學(xué)重點:探求π-a的誘導(dǎo)公式。π+a與-a的誘導(dǎo)公式在小結(jié)π-a的誘導(dǎo)公式發(fā)現(xiàn)過程的基礎(chǔ)上,教師引導(dǎo)學(xué)生推出。
教學(xué)難點:π+a,-a與角a終邊位置的幾何關(guān)系,發(fā)現(xiàn)由終邊位置關(guān)系導(dǎo)致(與單位圓交點)的坐標關(guān)系,運用任意角三角函數(shù)的定義導(dǎo)出誘導(dǎo)公式的“研究路線圖”。
三、教學(xué)方法與教學(xué)手段
問題教學(xué)法、合作學(xué)習(xí)法,結(jié)合多媒體課件
四、教學(xué)過程
角的概念已經(jīng)由銳角擴充到了任意角,前面已經(jīng)學(xué)習(xí)過任意角的`三角函數(shù),那么任意角的三角函數(shù)值怎么求呢?先看一個具體的問題。
(一)問題提出
如何將任意角三角函數(shù)求值問題轉(zhuǎn)化為0°~360°角三角函數(shù)求值問題。
【問題1】求390°角的正弦、余弦值、一般地,由三角函數(shù)的定義可以知道,終邊相同的角的同一三角函數(shù)值相等,三角函數(shù)看重的就是終邊位置關(guān)系。即有:sin(a+k·360°)=sinα,
cos(a+k·360°)=cosα,(k∈Z)tan(a+k·360°)=tanα。
這組公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈Z)(公式如何利用對稱推導(dǎo)出角π-a與角a的三角函數(shù)之間的關(guān)系。
由上一組公式,我們知道,終邊相同的角的同一三角函數(shù)值一定相等。反過來呢?如果兩個角的三角函數(shù)值相等,它們的終邊一定相同嗎?比如說:
【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?
角π-a與角a的終邊關(guān)于y軸對稱,有sin(π-a)=sina,
cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。
〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?因為與角a終邊關(guān)于y軸對稱是角π-a,,利用這種對稱關(guān)系,得到它們的終邊與單位圓的交點的縱坐標相等,橫坐標互為相反數(shù)。于是,我們就得到了角π-a與角a的三角函數(shù)值之間的關(guān)系:正弦值相等,余弦值互為相反數(shù),進而,就得到我們研究三角函數(shù)誘導(dǎo)公式的路線圖:角間關(guān)系→對稱關(guān)系→坐標關(guān)系→三角函數(shù)值間關(guān)系。
(三)自主探究
如何利用對稱推導(dǎo)出π+a,-a與a的三角函數(shù)值之間的關(guān)系。
剛才我們利用單位圓,得到了終邊關(guān)于y軸對稱的角π-a與角a的三角函數(shù)值之間的關(guān)系,下面我們還可以研究什么呢?
【問題3】兩個角的終邊關(guān)于x軸對稱,你有什么結(jié)論?兩個角的終邊關(guān)于原點對稱呢?
角-a與角a的終邊關(guān)于x軸對稱,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。
角π+a與角a終邊關(guān)于原點O對稱,有:sin(π+a)=-sina,
cos(π+a)=-cosa,(公式四)tan(π+a)=tana。
上面的公式一~四都稱為三角函數(shù)的誘導(dǎo)公式。
(四)簡單應(yīng)用
例求下列各三角函數(shù)值:
(1)sinp;(2)cos(-60°);(3)tan(-855°)(五)回顧反思
【問題4】回顧一下,我們是怎樣獲得誘導(dǎo)公式的?研究的過程中,你有哪些體會?知識上,學(xué)會了四組誘導(dǎo)公式;思想方法層面:誘導(dǎo)公式體現(xiàn)了由未知轉(zhuǎn)化為已知的化歸思想;誘導(dǎo)公式所揭示的是終邊具有某種對稱關(guān)系的兩個角三角函數(shù)之間的關(guān)系。主要體現(xiàn)了化歸和數(shù)形結(jié)合的數(shù)學(xué)思想。具體可以表示如下:
(六)分層作業(yè)
1、閱讀課本,體會三角函數(shù)誘導(dǎo)公式推導(dǎo)過程中的思想方法;2、必做題課本23頁133、選做題
(1)你能由公式二、三、四中的任意兩組公式推導(dǎo)到另外一組公式嗎?
(2)角α和角β的終邊還有哪些特殊的位置關(guān)系,你能探究出它們的三角函數(shù)值之間的關(guān)系嗎?
函數(shù)課件【篇10】
一、教材分析
1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時,它體現(xiàn)的數(shù)學(xué)思想方法在整個中學(xué)學(xué)習(xí)中起重要作用。
2、教學(xué)目標的確定及依據(jù)
A、知識與技能目標:通過觀察猜想出兩個公式,運用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個方面的應(yīng)用:
1)已知一個角的一個三角函數(shù)值能求這個角的其他三角函數(shù)值;
2)證明簡單的三角恒等式。
B、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動手能力、分析問題解決問題的能力以及其知識遷移能力。
C、情感、態(tài)度與價值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點和難點
重點:同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用。
難點:同角三角函數(shù)函數(shù)基本關(guān)系在解題中的靈活選取及使用公式時由函數(shù)值正、負號的選取而導(dǎo)致的角的范圍的討論。
二、學(xué)情分析:
學(xué)生剛開始接觸三角函數(shù)的內(nèi)容,學(xué)習(xí)了任意角的三角函數(shù),對這一方面的內(nèi)容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學(xué)習(xí)熱情高漲。
三、教法分析與學(xué)法分析:
1、教法分析:采取誘思探究性教學(xué)方法,在教學(xué)中提出問題,創(chuàng)設(shè)情景引導(dǎo)學(xué)生主動觀察、思考、類比、討論、總結(jié)、證明,讓學(xué)生做學(xué)習(xí)的主人,在主動探究中汲取知識,提高能力。
2、學(xué)法分析:從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下,通過合作交流,共同探索,逐步解決問題.數(shù)學(xué)學(xué)習(xí)必須注重概念、原理、公式、法則的形成過程,突出數(shù)學(xué)本質(zhì)。
四、教學(xué)過程設(shè)計
例1、設(shè)計意圖:已知一個角的某一個三角函數(shù)值,便可運用基本關(guān)系式求出其它三角函數(shù)值。在求值中,確定角的終邊位置是關(guān)鍵和必要的。有時,由于角的終邊位置的不確定,因此解的情況不止一種。本題主要利用的數(shù)學(xué)解題思想是:分類討論
例2、設(shè)計意圖:
(1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以 ,將分子、分母轉(zhuǎn)化為 的代數(shù)式;還可以利用商數(shù)關(guān)系解決。
(2)“化1法”,可利用平方關(guān)系 ,將分子、分母都變?yōu)槎锡R次式,再利用商數(shù)關(guān)系化歸為 的分式求值;
五、教學(xué)反思:
如此設(shè)計教學(xué)過程,既復(fù)習(xí)了上一節(jié)的內(nèi)容,又充分利用舊知識帶出新知識,讓學(xué)生明白到數(shù)學(xué)的知識是相互聯(lián)系的,所以每一節(jié)內(nèi)容都應(yīng)該把它牢固掌握;在公式的推導(dǎo)中,教師是用創(chuàng)設(shè)問題的形式引導(dǎo)學(xué)生去發(fā)現(xiàn)關(guān)系式,多讓學(xué)生動手去計算,體現(xiàn)了&qut;教師為引導(dǎo),學(xué)生為主體,體驗為紅線,探索得材料,研究獲本質(zhì),思維促發(fā)展&qut;的教學(xué)思想。通過兩種不同的例題的對比,讓學(xué)生能夠明白到關(guān)系式中的開方,是需要考慮正負號,而正負號是與角的象限有關(guān),角的象限題目可以直接給出來,但有時是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學(xué)難點解決了。
由于課堂在完成例題及變式時要給予學(xué)生充分的時間思考與嘗試,故對學(xué)生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學(xué)生對本節(jié)課內(nèi)容掌握的情況,能否靈活運用知識進行合理的遷移,可以發(fā)現(xiàn)學(xué)生在解題中存在的問題,下節(jié)課教師再根據(jù)學(xué)生完成的情況加以評講,并設(shè)計相應(yīng)的訓(xùn)練題,使學(xué)生的認識再上一個臺階。
函數(shù)課件【篇11】
教學(xué)目標:
1.在初中學(xué)習(xí)一次函數(shù)、二次函數(shù)的性質(zhì)的基礎(chǔ)上,進一步感知函數(shù)的單調(diào)性,并能結(jié)合圖形,認識函數(shù)的單調(diào)性;
2.通過函數(shù)的單調(diào)性的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,并對學(xué)生進行初步的辯證唯物論的教育;
3.通過函數(shù)的單調(diào)性的教學(xué),讓學(xué)生學(xué)會理性地認識與描述生活中的增長、遞減等現(xiàn)象.
教學(xué)重點:
用圖象直觀地認識函數(shù)的單調(diào)性,并利用函數(shù)的單調(diào)性求函數(shù)的值域.
教學(xué)過程:
一、問題情境
如圖(課本37頁圖2-2-1),是氣溫關(guān)于時間t的函數(shù),記為=f (t),觀察這個函數(shù)的圖象,說出氣溫在哪些時間段內(nèi)是逐漸升高的或是下降的?
問題:怎樣用數(shù)學(xué)語言刻畫上述時間段內(nèi)“隨時間的增大氣溫逐漸升高”這一特征?
二、學(xué)生活動
1.結(jié)合圖2―2―1,說出該市一天氣溫的變化情況;
2.回憶初中所學(xué)的有關(guān)函數(shù)的性質(zhì),并畫圖予以說明;
3.結(jié)合右側(cè)四幅圖,解釋函數(shù)的單調(diào)性.
三、數(shù)學(xué)建構(gòu)
1.增函數(shù)與減函數(shù):
一般地,設(shè)函數(shù)=f(x)的定義域為A,區(qū)間IA.
如果對于區(qū)間I內(nèi)的任意兩個值x1,x2,當x1<x2時,都有f(x1)<f(x2),那么就說=f(x)在區(qū)間I是單調(diào)增函數(shù),區(qū)間I稱為=f(x)的`單調(diào)增區(qū)間.
如果對于區(qū)間I內(nèi)的任意兩個值x1,x2,當x1<x2時,都有f(x1)>f(x2),那么就說=f(x)在區(qū)間I是單調(diào)減函數(shù),區(qū)間I稱為=f(x)的單調(diào)減區(qū)間.
2.函數(shù)的單調(diào)性與單調(diào)區(qū)間:
如果函數(shù)=f(x)在區(qū)間I是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說函數(shù)=f(x)在區(qū)間I上具有單調(diào)性.
單調(diào)增區(qū)間與單調(diào)減區(qū)間統(tǒng)稱為單調(diào)區(qū)間.
注:一般所說的函數(shù)的單調(diào)性,就是要指出函數(shù)的單調(diào)區(qū)間,并說明在區(qū)間上是單調(diào)增函數(shù)還是單調(diào)減函數(shù).
四、數(shù)學(xué)運用
例1 畫出下列函數(shù)的圖象,結(jié)合圖象說出函數(shù)的單調(diào)性.
1.=x2+2x-12.=2x
例2 求證:函數(shù)f(x)=-1x-1在區(qū)間(-∞,0)上是單調(diào)增函數(shù).
練習(xí):說出下列函數(shù)的單調(diào)性并證明.
1.=-x2+22.=2x+1
五、回顧小結(jié)
利用圖形,感知函數(shù)的單調(diào)性→給出單調(diào)性的嚴格意義上的定義→證明一個函數(shù)的單調(diào)性.
六、作業(yè)
課堂作業(yè):課本44頁1,3兩題.
函數(shù)課件【篇12】
正比例函數(shù)是本章的重點內(nèi)容,是學(xué)生在初中階段第一次接觸的函數(shù),這部分內(nèi)容的學(xué)習(xí)是在學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)的概念及圖像的基礎(chǔ)之上進行的。它是對前面所學(xué)知識的應(yīng)用,又為后面學(xué)習(xí)做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。
學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)等知識。在描點法的學(xué)習(xí)中初步感受了通過描點法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學(xué)習(xí)做好準備,所以本節(jié)課的學(xué)習(xí)問題不大。
知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個變量是否構(gòu)成正比例函數(shù)關(guān)系。
數(shù)學(xué)思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學(xué)習(xí)和探究,感知數(shù)行結(jié)合思想。
解決問題:1、能夠要求運用“列表法”和“兩點法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學(xué)問題。
情感態(tài)度:1、結(jié)合描點作圖,培養(yǎng)學(xué)生認真、細心、嚴謹?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。2、通過正比率函數(shù)概念的引入,使學(xué)生進一步認識數(shù)學(xué)是由于人們需要而產(chǎn)生的,與現(xiàn)實世界密切相關(guān)。同時滲透熱愛自然和生活的教育。
八年級函數(shù)課件熱門
教案課件在老師少不了一項工作事項,寫教案課件是每個老師每天都在從事的事情。編寫完整的教案是提高教師教育教學(xué)能力的關(guān)鍵。本文是幼兒教師教育網(wǎng)精心收集的有關(guān)“八年級函數(shù)課件”的信息,如果您覺得這個網(wǎng)站有用請動手將其收藏下來留作日后使用!
八年級函數(shù)課件【篇1】
八年級下數(shù)學(xué)教案-變量與函數(shù)(2)
一、教學(xué)目的
1.使學(xué)生理解自變量的取值范圍和函數(shù)值的意義。
2.使學(xué)生理解求自變量的取值范圍的兩個依據(jù)。
3.使學(xué)生掌握關(guān)于解析式為只含有一個自變量的簡單的整式、分式、二次根式的函數(shù)的自變量取值范圍的求法,并會求其函數(shù)值。
4.通過求函數(shù)中自變量的取值范圍使學(xué)生進一步理解函數(shù)概念。
二、教學(xué)重點、難點
重點:函數(shù)自變量取值的求法。
難點:函靈敏處變量取值的確定。
三、教學(xué)過程
復(fù)習(xí)提問
1.函數(shù)的定義是什么?函數(shù)概念包含哪三個方面的內(nèi)容?
2.什么叫分式?當x取什么數(shù)時,分式x+2/2x+3有意義?
(答:分母里含有字母的有理式叫分式,分母≠0,即x≠3/2。)
3.什么叫二次根式?使二次根式成立的條件是什么?
(答:根指數(shù)是2的根式叫二次根式,使二次根式成立的條件是被開方數(shù)≥0。)
4.舉出一個函數(shù)的實例,并指出式中的變量與常量、自變量與函數(shù)。
新課
1.結(jié)合同學(xué)舉出的實例說明解析法的意義:用教學(xué)式子表示函數(shù)方法叫解析法。并指出,函數(shù)表示法除了解析法外,還有圖象法和列表法。
2.結(jié)合同學(xué)舉出的實例,說明函數(shù)的自變量取值范圍有時要受到限制這就可以引出自變量取值范圍的意義,并說明求自變量的取值范圍的兩個依據(jù)是:
(1)自變量取值范圍是使函數(shù)解析式(即是函數(shù)表達式)有意義。
(2)自變量取值范圍要使實際問題有意義。
3.講解P93中例2。并指出例2四個小題代表三類題型:(1),(2)題給出的是只含有一個自變量的整式;(3)題給出的是只含有一個自變量的分式;(4)題給出的是只含有一個自變量的二次根式。
推廣與聯(lián)想:請同學(xué)按上述三類題型自編3個題,并寫出解答,同桌互對答案,老師評講。
4.講解P93中例3。結(jié)合例3引出函數(shù)值的意義。并指出兩點:
(1)例3中的4個小題歸納起來仍是三類題型。
(2)求函數(shù)值的問題實際是求代數(shù)式值的問題。
補充例題
求下列函數(shù)當x=3時的函數(shù)值:
(1)y=6x-4; (2)y=--5x2; (3)y=3/7x-1; (4)。
(答:(1)y=14;(2)y=-45;(3)y=3/20;(4)y=0。)
小結(jié)
1.解析法的意義:用數(shù)學(xué)式子表示函數(shù)的方法叫解析法。
2.求函數(shù)自變量取值范圍的兩個方法(依據(jù)):
(1)要使函數(shù)的解析式有意義。
①函數(shù)的解析式是整式時,自變量可取全體實數(shù);
②函數(shù)的解析式是分式時,自變量的取值應(yīng)使分母≠0;
③函數(shù)的解析式是二次根式時,自變量的取值應(yīng)使被開方數(shù)≥0。
(2)對于反映實際問題的函數(shù)關(guān)系,應(yīng)使實際問題有意義。
3.求函數(shù)值的方法:把所給出的自變量的值代入函數(shù)解析式中,即可求出相慶原函數(shù)值。
練習(xí):P94中1,2,3。
作業(yè):P95~P96中A組3,4,5,6,7。B組1,2。
四、教學(xué)注意問題
1.注意滲透與訓(xùn)練學(xué)生的歸納思維。比如例2、例3中各是4個小題,對每一個例題均可歸納為三類題型。而對于例2、例3這兩道例題,雖然要求各異,但題目結(jié)構(gòu)仍是三類題型:整式、分式、二次根式。
2.注意訓(xùn)練與培養(yǎng)學(xué)生的優(yōu)質(zhì)聯(lián)想能力。要求學(xué)生仿照例題自編題目是有效手段。
3.注意培養(yǎng)學(xué)生對于“具體問題要具體分析”的良好學(xué)習(xí)方法。比如對于有實際意義來確定,由于實際問題千差萬別,所以我們就要具體分析,靈活處置。
八年級函數(shù)課件【篇2】
一般地,如果兩個變量x、y之間的關(guān)系可以表示成y=k/x (k為常數(shù),k≠0)的形式,那么稱y是x的反比例函數(shù)。 因為y=k/x是一個分式,所以自變量X的取值范圍是X≠0。而y=k/x有時也被寫成xy=k或y=k·x^(-1)。
反比例函數(shù)的圖像為雙曲線。
1.當 k >0時,反比例函數(shù)圖像經(jīng)過一,三象限,每一象限內(nèi),從左往右,y隨x的增大而減小。
2.當k
反比例函數(shù)圖像是中心對稱圖形,對稱中心是原點;反比例函數(shù)的圖像也是軸對稱圖形,其對稱軸為y=x和y=-x;反比例函數(shù)圖像上的點關(guān)于坐標原點對稱。
1.過反比例函數(shù)圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為| k |。
2.對于雙曲線y= k/x,若在分母上加減任意一個實數(shù)m (即 y=k/x(x±m(xù))m為常數(shù)),就相當于將雙曲線圖象向左或右平移m個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)
八年級函數(shù)課件【篇3】
知識點2總體、個體、樣本
調(diào)查中,所要考察對象的全體稱為總體,而組成總體的每一個考察對象稱為個體。
例如,某班10名女生的考試成績是總體,每一名女生的考試成績是個體。
從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體中抽取的一部分個體叫做總體的一個樣本。
例如,要調(diào)查全縣農(nóng)村中學(xué)生學(xué)生平均每周每人的零花錢數(shù),由于人數(shù)較多(一般涉及幾萬人),我們從中抽取500名學(xué)生進行調(diào)查,就是抽樣調(diào)查,這500名學(xué)生平均每周每人的零花錢數(shù),就是總體的一個樣本。
知識點3中位數(shù)的概念
將一組數(shù)據(jù)按照由小到大(或由大到?。┑捻樞蚺帕?,如果數(shù)據(jù)的個數(shù)是奇數(shù),則處于中間位置的數(shù)稱為這組數(shù)據(jù)的中位數(shù);如果數(shù)據(jù)的個數(shù)是偶數(shù),則中間兩個數(shù)據(jù)的平均數(shù)稱為這組數(shù)據(jù)的中位數(shù)。
知識點4眾數(shù)的概念
一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)就是這組數(shù)據(jù)的眾數(shù)。
例如:求一組數(shù)據(jù)3,2,3,5,3,1的眾數(shù)。
解:這組數(shù)據(jù)中3出現(xiàn)3次,2,5,1均出現(xiàn)1次。所以3是這組數(shù)據(jù)的眾數(shù)。
又如:求一組數(shù)據(jù)2,3,5,2,3,6的眾數(shù)。
解:這組數(shù)據(jù)中2出現(xiàn)2次,3出現(xiàn)2次,5,6各出現(xiàn)1次。
所以這組數(shù)據(jù)的眾數(shù)是2和3。
【規(guī)律方法小結(jié)】
(1)平均數(shù)、中位數(shù)、眾數(shù)都是描述一組數(shù)據(jù)集中趨勢的量。
(2)平均數(shù)反映一組數(shù)據(jù)的平均水平,與這組數(shù)據(jù)中的每個數(shù)據(jù)都有關(guān),是最為重要的量。
(3)中位數(shù)不受個別偏大或偏小數(shù)據(jù)的影響,當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,一般用它來描述集中趨勢。
(4)眾數(shù)只與數(shù)據(jù)出現(xiàn)的頻數(shù)有關(guān),不受個別數(shù)據(jù)影響,有時是我們最為關(guān)心的統(tǒng)計數(shù)據(jù)。
探究交流
1、一組數(shù)據(jù)的中位數(shù)一定是這組數(shù)據(jù)中的一個,這句話對嗎?為什么?
解析:不對,一組數(shù)據(jù)的中位數(shù)不一定是這組數(shù)據(jù)中的一個,當這組數(shù)據(jù)有偶數(shù)個時,中位數(shù)由中間兩個數(shù)的平均數(shù)決定,若中間兩數(shù)相等,則這組數(shù)據(jù)的中位數(shù)在這組數(shù)據(jù)之中,反之,中位數(shù)不在這組數(shù)據(jù)之中。
總結(jié):
(1)中位數(shù)在一組數(shù)據(jù)中是唯一的,可能是這組數(shù)據(jù)中的一個,也可能不是這組數(shù)據(jù)中的數(shù)據(jù)。
(2)求中位數(shù)時,先將數(shù)據(jù)按由小到大的順序排列(或按由大到小的順序排列)。若這組數(shù)據(jù)是奇數(shù)個,則最中間的數(shù)據(jù)是中位數(shù);若這組數(shù)據(jù)是偶數(shù)個,則最中間的'兩個數(shù)據(jù)的平均數(shù)是中位數(shù)。
(3)中位數(shù)的單位與數(shù)據(jù)的單位相同。
(4)中位數(shù)與數(shù)據(jù)排序有關(guān)。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用中位數(shù)來描述這組數(shù)據(jù)的集中趨勢。
課堂檢測
基本概念題
1、填空題。
(1)數(shù)據(jù)15,23,17,18,22的平均數(shù)是;
(2)在某班的40名學(xué)生中,14歲的有5人,15歲的有30人,16歲的有4人,17歲的有1人,則這個班學(xué)生的平均年齡約是_________;
(3)某一學(xué)生5門學(xué)科考試成績的平均分為86分,已知其中兩門學(xué)科的總分為193分,則另外3門學(xué)科的分為________;
(4)為了考察某公園一年中每天進園的人數(shù),在其中的30天里,對進園的人數(shù)進行了統(tǒng)計,這個問題中的總體是________,樣本是________,個體是________。
基礎(chǔ)知識應(yīng)用題
2、某公交線路總站設(shè)在一居民小區(qū)附近,為了了解高峰時段從總站乘車出行的人數(shù),隨機抽查了10個班次的乘車人數(shù),結(jié)果如下:20,23,26,25,29,28,30,25,21,23。
(1)計算這10個班次乘車人數(shù)的平均數(shù);
(2)如果在高峰時段從總站共發(fā)車60個班次,根據(jù)前面的計算結(jié)果,估計在高峰時段從總站乘該路車出行的乘客共有多少。
八年級函數(shù)課件【篇4】
一、創(chuàng)設(shè)情境
1.一次函數(shù)的圖象是什么,如何簡便地畫出一次函數(shù)的圖象?
(一次函數(shù)y=kx+b(k≠0)的圖象是一條直線,畫一次函數(shù)圖象時,取兩點即可畫出函數(shù)的圖象).
2.正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過哪一點的直線?
(正比例函數(shù)y=kx(k≠0)的圖象是經(jīng)過原點(0,0)的一條直線).
3.平面直角坐標系中,x軸、y軸上的點的坐標有什么特征?
4.在平面直角坐標系中,畫出函數(shù)的圖象.我們畫一次函數(shù)時,所選取的兩個點有什么特征,通過觀察圖象,你發(fā)現(xiàn)這兩個點在坐標系的什么地方?
二、探究歸納
1.在畫函數(shù)的圖象時,通過列表,可知我們選取的點是(0,-1)和(2,0),這兩點都在坐標軸上,其中點(0,-1)在y軸上,點(2,0)在x軸上,我們把這兩個點依次叫做直線與y軸與x軸的交點.
2.求直線y=-2x-3與x軸和y軸的交點,并畫出這條直線.
分析x軸上點的縱坐標是0,y軸上點的橫坐標0.由此可求x軸上點的橫坐標值和y軸上點的縱坐標值.
解因為x軸上點的縱坐標是0,y軸上點的橫坐標0,所以當y=0時,x=-1.5,點(-1.5,0)就是直線與x軸的交點;當x=0時,y=-3,點(0,-3)就是直線與y軸的交點.
過點(-1.5,0)和(0,-3)所作的直線就是直線y=-2x-3.
所以一次函數(shù)y=kx+b,當x=0時,y=b;當y=0時,.所以直線y=kx+b與y軸的交點坐標是(0,b),與x軸的交點坐標是.
三、實踐應(yīng)用
例1若直線y=-kx+b與直線y=-x平行,且與y軸交點的縱坐標為-2;求直線的表達式.
分析直線y=-kx+b與直線y=-x平行,可求出k的值,與y軸交點的縱坐標為-2,可求出b的值.
解因為直線y=-kx+b與直線y=-x平行,所以k=-1,又因為直線與y軸交點的縱坐標為-2,所以b=-2,因此所求的直線的表達式為y=-x-2.
例2求函數(shù)與x軸、y軸的交點坐標,并求這條直線與兩坐標軸圍成的三角形的面積.
分析求直線與x軸、y軸的交點坐標,根據(jù)x軸、y軸上點的縱坐標和橫坐標分別為0,可求出相應(yīng)的橫坐標和縱坐標?
八年級函數(shù)課件【篇5】
一、教材分析:
反比例函數(shù)的圖象與性質(zhì)是對正比例函數(shù)圖象與性質(zhì)的復(fù)習(xí)和對比,也是以后學(xué)習(xí)二次函數(shù)的基礎(chǔ),本課時的學(xué)習(xí)是學(xué)生對函數(shù)的圖象與性質(zhì)一個再知的過程,由于初二學(xué)生是首次接觸雙曲線這種函數(shù)圖象,所以教學(xué)時應(yīng)注意引導(dǎo)學(xué)生抓住反比例函數(shù)圖象的特征,讓學(xué)生對反比例函數(shù)有一個形象和直觀的認識。
根據(jù)二期課改“以學(xué)生為主體,激活課堂氣氛,充分調(diào)動起學(xué)生參與教學(xué)過程”的精神。在教學(xué)設(shè)計上,我設(shè)想通過使用多媒體課件創(chuàng)設(shè)情境,在掌握反比例函數(shù)相關(guān)知識的同時激發(fā)學(xué)生的學(xué)習(xí)興趣和探究欲望,引導(dǎo)學(xué)生積極參與和主動探索。
因此把教學(xué)目標確定為:1.掌握反比例函數(shù)的概念,能夠根據(jù)已知條件求出反比例函數(shù)的解析式;學(xué)會用描點法畫出反比例函數(shù)的圖象;掌握圖象的特征以及由函數(shù)圖象得到的函數(shù)性質(zhì)。2.在教學(xué)過程中引導(dǎo)學(xué)生自主探索、思考及想象,從而培養(yǎng)學(xué)生觀察、分析、歸納的綜合能力。3.通過學(xué)習(xí)培養(yǎng)學(xué)生積極參與和勇于探索的精神。
本堂課的重點是掌握反比例函數(shù)的定義、圖象特征以及函數(shù)的性質(zhì);
難點則是如何抓住特征準確畫出反比例函數(shù)的圖象。
為了突出重點、突破難點。我設(shè)計并制作了能動態(tài)演示函數(shù)圖象的多媒體課件。讓學(xué)生親手操作,積極參與并主動探索函數(shù)性質(zhì),幫助學(xué)生直觀地理解反比例函數(shù)的`性質(zhì)。
鑒于教材特點及初二學(xué)生的年齡特點、心理特征和認知水平,設(shè)想采用問題教學(xué)法
和對比教學(xué)法,用層層推進的提問啟發(fā)學(xué)生深入思考,主動探究,主動獲取知識。同時注意與學(xué)生已有知識的聯(lián)系,減少學(xué)生對新概念接受的困難,給學(xué)生充分的自主探索時間。通過教師的引導(dǎo),啟發(fā)調(diào)動學(xué)生的積極性,讓學(xué)生在課堂上多活動、多觀察,主動參與到整個教學(xué)活動中來,組織學(xué)生參與“探究——討論——交流——總結(jié)” 的學(xué)習(xí)活動過程,同時在教學(xué)中,還充分利用多媒體教學(xué),通過演示,操作,觀察,練習(xí)等師生的共同活動中啟發(fā)學(xué)生,讓每個學(xué)生動手、動口、動眼、動腦,培養(yǎng)學(xué)生直覺思維能力,
本堂課立足于學(xué)生的“學(xué)”,要求學(xué)生多動手,多觀察,從而可以幫助學(xué)生形成分析、
對比、歸納的思想方法。在對比和討論中讓學(xué)生在“做中學(xué)”,提高學(xué)生利用已學(xué)知識去主動獲取新知識的能力。因此在課堂上要采用積極引導(dǎo)學(xué)生主動參與,合作交流的方法組織教學(xué),使學(xué)生真正成為教學(xué)的主體,體會參與的樂趣,成功的喜悅,感知數(shù)學(xué)的奇妙。
(2) 運動會的田徑比賽中,運動員小王的平均速度是8米/秒,他所跑過的路程s和所用時間t之間的關(guān)系
(4) 王師傅要生產(chǎn)100個零件,他的工作效率x和工作時間t之間的關(guān)系
問題1:請大家判斷一下,在我們寫出來的這些關(guān)系式中哪些是正比例函數(shù)?
問題1主要是復(fù)習(xí)正比例函數(shù)的定義,為后面學(xué)生運用對比的方法給出反比例函數(shù)的定義打下基礎(chǔ)。
問題2:那么請大家再仔細觀察一下,其余兩個函數(shù)關(guān)系式有什么共同點嗎?
通過問題2來引出反比例函數(shù)的解析式 ,請學(xué)生對比正比例函數(shù)的定
義來給出反比例函數(shù)的定義,這不僅有助于對舊知識的復(fù)習(xí)和鞏固,同時還可以培養(yǎng)學(xué)生的對比和探究能力。
八年級函數(shù)課件【篇6】
一、教學(xué)目標
1.使學(xué)生理解并掌握反比例函數(shù)的概念
2.能判斷一個給定的函數(shù)是否為反比例函數(shù),并會用待定系數(shù)法求函數(shù)解析式
3.能根據(jù)實際問題中的條件確定反比例函數(shù)的解析式,體會函數(shù)的模型思想
二、重、難點
1.重點:理解反比例函數(shù)的概念,能根據(jù)已知條件寫出函數(shù)解析式
2.難點:理解反比例函數(shù)的概念
3.難點的突破方法:
(1)在引入反比例函數(shù)的概念時,可適當復(fù)習(xí)一下第11章的正比例函數(shù)、一次函數(shù)等相關(guān)知識,這樣以舊帶新,相互對比,能加深對反比例函數(shù)概念的理解
(2)注意引導(dǎo)學(xué)生對反比例函數(shù)概念的理解,看形式,等號左邊是函數(shù)y,等號右邊是一個分式,自變量x在分母上,且x的指數(shù)是1,分子是不為0的常數(shù)k;看自變量x的取值范圍,由于x在分母上,故取x≠0的一切實數(shù);看函數(shù)y的取值范圍,因為k≠0,且x≠0,所以函數(shù)值y也不可能為0。講解時可對照正比例函數(shù)y=kx(k≠0),比較二者解析式的相同點和不同點。
(3)(k≠0)還可以寫成(k≠0)或xy=k(k≠0)的形式
三、例題的意圖分析
教材第46頁的思考題是為引入反比例函數(shù)的概念而設(shè)置的,目的是讓學(xué)生從實際問題出發(fā),探索其中的數(shù)量關(guān)系和變化規(guī)律,通過觀察、討論、歸納,最后得出反比例函數(shù)的概念,體會函數(shù)的模型思想。
教材第47頁的例1是一道用待定系數(shù)法求反比例函數(shù)解析式的題,此題的目的一是要加深學(xué)生對反比例函數(shù)概念的理解,掌握求函數(shù)解析式的方法;二是讓學(xué)生進一步體會函數(shù)所蘊含的“變化與對應(yīng)”的思想,特別是函數(shù)與自變量之間的單值對應(yīng)關(guān)系。
補充例1、例2都是常見的題型,能幫助學(xué)生更好地理解反比例函數(shù)的概念。補充例3是一道綜合題,此題是用待定系數(shù)法確定由兩個函數(shù)組合而成的新的函數(shù)關(guān)系式,有一定難度,但能提高學(xué)生分析、解決問題的能力。
四、課堂引入
1.回憶一下什么是正比例函數(shù)、一次函數(shù)?它們的一般形式是怎樣的?
2.體育課上,老師測試了百米賽跑,那么,時間與平均速度的關(guān)系是怎樣的?
五、例習(xí)題分析
例1.見教材P47
分析:因為y是x的反比例函數(shù),所以先設(shè),再把x=2和y=6代入上式求出常數(shù)k,即利用了待定系數(shù)法確定函數(shù)解析式。
例1.(補充)下列等式中,哪些是反比例函數(shù)
(1)(2)(3)xy=21(4)(5)(6)(7)y=x-4
分析:根據(jù)反比例函數(shù)的定義,關(guān)鍵看上面各式能否改寫成(k為常數(shù),k≠0)的形式,這里(1)、(7)是整式,(4)的分母不是只單獨含x,(6)改寫后是,分子不是常數(shù),只有(2)、(3)、(5)能寫成定義的形式
例2.(補充)當m取什么值時,函數(shù)是反比例函數(shù)?
分析:反比例函數(shù)(k≠0)的另一種表達式是(k≠0),后一種寫法中x的次數(shù)是-1,因此m的取值必須滿足兩個條件,即m-2≠0且3-m2=-1,特別注意不要遺漏k≠0這一條件,也要防止出現(xiàn)3-m2=1的錯誤
八年級函數(shù)課件【篇7】
《實際問題與反比例函數(shù)(第三課時)》是新人教版八年級下冊第十七章第二節(jié)的課題,是在前面學(xué)習(xí)了反比例函數(shù)、反比例函數(shù)的圖象和性質(zhì)的基礎(chǔ)上的一節(jié)應(yīng)用課。體現(xiàn)反比例函數(shù)是解決實際問題有效的數(shù)學(xué)模型,經(jīng)歷“找出常量和變量,建立并表示函數(shù)模型,討論函數(shù)模型,解決實際問題“的過程。
(1)通過對“杠桿原理”等實際問題與反比例函數(shù)關(guān)系的探究,使學(xué)生能夠從函數(shù)的觀點來解決一些實際問題;
(2)通過對實際問題中變量之間關(guān)系的分析,建立函數(shù)模型,運用已學(xué)過的反比例函數(shù)知識加以解決,體會數(shù)學(xué)建模思想和學(xué)以致用的數(shù)學(xué)理念。
分析實際問題中變量之間的關(guān)系,建立反比例函數(shù)模型解決問題,進一步運用函數(shù)的圖像、性質(zhì)挖掘杠桿原理中蘊涵的道理。
3、情感、態(tài)度與價值觀目標:
(1)利用函數(shù)探索古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定律”,使學(xué)生的求知欲望得到激發(fā),再通過自己所學(xué)知識解決了身邊的問題,大大提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
(2)訓(xùn)練學(xué)生能把思考的結(jié)果用語言很好地表達出來,同時要讓學(xué)生很好地交流和合作。
在17、1學(xué)習(xí)了反比例函數(shù)的概念及函數(shù)的圖像和性質(zhì)基礎(chǔ)上,《實際問題與反比例函數(shù)》這一節(jié)重點介紹反比例函數(shù)在現(xiàn)實生活中的廣泛性,以及如何應(yīng)用反比例函數(shù)的知識解決現(xiàn)實生活中的實際問題。
本節(jié)課的探究的例題和練習(xí)題都是現(xiàn)實生活中的常見問題,反映了數(shù)學(xué)與實際的關(guān)系,即數(shù)學(xué)理論來源于實際又發(fā)過來服務(wù)實際,這樣有助于提高學(xué)生把抽象的數(shù)學(xué)概念應(yīng)用于實際問題的能力。在數(shù)學(xué)課上涉及了物理學(xué)力學(xué)的實際問題,運用到古希臘科學(xué)家阿基米德發(fā)現(xiàn)的“杠桿定理”,其本質(zhì)體現(xiàn)的是力與力臂兩個量的發(fā)比例關(guān)系,最后落實到運用數(shù)學(xué)來解決。通過學(xué)習(xí),讓學(xué)生進一步加深對反比例函數(shù)的運用和理解,更深層次體會建立反比例模型解決實際問題的思想,鞏固和提高所學(xué)知識,鼓勵學(xué)生將所學(xué)知識應(yīng)用到生活中去。
本節(jié)課容易了解的地方是:杠桿是我們在生活中常常遇到的物理模型,利用杠桿定理容易建立函數(shù)關(guān)系式。
而我認為本節(jié)課有兩個問題學(xué)生比較難理解:(1)是注意在實際問題中函數(shù)自變量的取值范圍,用數(shù)學(xué)知識去解決實際問題。在講課時注意提醒學(xué)生關(guān)注實際問題的意義;(2)從函數(shù)的角度深層次挖掘變量的關(guān)系,在這一過程中學(xué)生逐漸建立運用運動變化的觀點解釋一些現(xiàn)象,實現(xiàn)從靜到動的轉(zhuǎn)變。授課時教師要按照學(xué)生的認知規(guī)律有層次、有步驟地引導(dǎo)學(xué)生分析解決問題。學(xué)生可以在我設(shè)計的問題的提示下來進行探究,學(xué)生若能發(fā)現(xiàn)其他的規(guī)律,教師應(yīng)表揚,并讓同學(xué)自己來講解。
教法特點:
1、在研究性學(xué)習(xí)中應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動。教學(xué)過程中 ,教師不應(yīng)把現(xiàn)成的結(jié)論和方法直接告訴學(xué)生,應(yīng)以問題情境和學(xué)習(xí)任務(wù)為驅(qū)動,激發(fā)學(xué)生的探索精神和求知欲望。同時,又要營造一種寬松、和諧、積極民主的學(xué)習(xí)氛圍,使每位學(xué)生都成為問題的探索者、研究中的發(fā)現(xiàn)者。
2、注重觀察能力的培養(yǎng)。教學(xué)過程中應(yīng)注重對學(xué)生觀察的目的性、敏銳性和思辨性結(jié)合的培養(yǎng) ,優(yōu)化觀察的對象,透過現(xiàn)象看本質(zhì),迅速從繁雜無序問題中捕捉最有價值的信息。此能力是發(fā)現(xiàn)問題和解決問題的關(guān)鍵。
3、合作意識和合作能力的培養(yǎng)。合作意識和合作能力是現(xiàn)代人才必備的基本素質(zhì)之一?,F(xiàn)代社會中,幾乎任何一項工作都要許多人通力合作才能完成(如上述眾多結(jié)論的獲得) ,是否具有協(xié)作精神,能否與他人合作,已成為決定一個人能否成功的重要因素。教師要創(chuàng)設(shè)一切為學(xué)生合作的情境和機會,使學(xué)生學(xué)會與他人合作。
4、數(shù)學(xué)應(yīng)用意識的培養(yǎng)。作為數(shù)學(xué)教師 ,我們的主要任務(wù)是,培養(yǎng)學(xué)生用數(shù)學(xué)的眼光去觀察和分析實際問題,提高對數(shù)學(xué)的興趣,增強學(xué)好數(shù)學(xué)的信心,達到培養(yǎng)創(chuàng)新精神和能力的目的。以上問題的解決過程,實際上就是要求學(xué)生作為主體去面對解決的問題,主動去探索、討論,尋找問題解決的途徑,用數(shù)學(xué)的方法和技術(shù)來處理實際模型,最終得出結(jié)論。
5、數(shù)學(xué)審美能力的培養(yǎng)。數(shù)學(xué)是“真”的典范 ,同時又是“美”的科學(xué)。教師應(yīng)引導(dǎo)學(xué)生去發(fā)現(xiàn)美、體驗美、感受美和創(chuàng)造美,這樣能夠使學(xué)生的思維得到鍛煉、智力得到開發(fā)、情操得到陶冶和創(chuàng)新能力得到提高。它是鼓舞學(xué)生奮發(fā)向上,引導(dǎo)學(xué)生積極創(chuàng)造的重要因素。
本節(jié)的難點在于“把實際問題利用反比例函數(shù)轉(zhuǎn)化為數(shù)學(xué)問題加以解決”,課前預(yù)設(shè)通過“師生共分析——分析錯處——再獨立解題”的三個環(huán)節(jié),以達到學(xué)生逐步掌握轉(zhuǎn)化的方法。
在探索實際問題與反比例函數(shù)時,教學(xué)活動設(shè)計了學(xué)生通過“現(xiàn)觀察——后歸納——再比較——后小結(jié)”的循環(huán)上升的思維進程進行引導(dǎo),在實際教學(xué)活動中學(xué)生通過自主探索能發(fā)現(xiàn)并歸納,使學(xué)生所學(xué)知識進一步內(nèi)化和系統(tǒng)化。
總之 ,學(xué)生是具有學(xué)習(xí)的自主性、探索性、協(xié)作性和實踐性。本節(jié)課是學(xué)生對科學(xué)探索與研究的初步嘗試,但是它對學(xué)生今后的學(xué)習(xí)和15、1分式的意義說課稿
八年級函數(shù)課件【篇8】
一、學(xué)情分析
認知基礎(chǔ):學(xué)生在七年級下冊第四章已學(xué)習(xí)了《變量之間的關(guān)系》,對變量間互相依存的關(guān)系有了一定的認識,但對于變量間的變化規(guī)律尚不明確,理解的很膚淺,也缺乏理論高度,另外本章在認知方式和思維深度上對學(xué)生有較高的要求,學(xué)生在理解和運用時會有一定的難度。
活動經(jīng)驗基礎(chǔ):在七年級下冊《變量之間的關(guān)系》一章中,學(xué)生接觸了大量的生活實例額,體會了變量之間相互依賴關(guān)系的普遍性,感受到了學(xué)習(xí)變量關(guān)系的必要性,初步具備了一定的識圖能力和主動參與、合作的意識和初步的觀察、分析、抽象概括的能力。
二、教學(xué)目標:
知識與技能目標:
(1)初步掌握函數(shù)概念,能判斷兩個變量之間的關(guān)系是否可以看作函數(shù)。
(2)根據(jù)兩個變量之間的關(guān)系式,給定其中一個變量的值相應(yīng)的會求出另一個變量的值。
(3)會對一個具體實例進行概括抽象成為函數(shù)問題。
過程與方法目標:
(1)通過函數(shù)概念初步形成利用函數(shù)的觀點認識現(xiàn)實世界的意識和能力。
(2)經(jīng)歷具體實例的抽象概括過程,進一步發(fā)展學(xué)生的抽象思維能力。
情感態(tài)度與價值觀目標:
(1)經(jīng)歷函數(shù)概念的抽象概括過程,體會函數(shù)的模型思想。
(2)能主動從事觀察、操作、交流、歸納等探索活動,形成自己對數(shù)學(xué)知識的理解和有效的學(xué)習(xí)模式。
八年級函數(shù)課件【篇9】
教學(xué)目標
1.知識與技能
能應(yīng)用所學(xué)的函數(shù)知識解決現(xiàn)實生活中的問題,會建構(gòu)函數(shù)“模型”.
2.過程與方法
經(jīng)歷探索一次函數(shù)的應(yīng)用問題,發(fā)展抽象思維.
3.情感、態(tài)度與價值觀
培養(yǎng)變量與對應(yīng)的,形成良好的函數(shù)觀點,體會一次函數(shù)的應(yīng)用價值.
重、難點與關(guān)鍵
1.重點:一次函數(shù)的應(yīng)用.
2.難點:一次函數(shù)的應(yīng)用.
3.關(guān)鍵:從數(shù)形結(jié)合分析思路入手,提升應(yīng)用思維.
教學(xué)方法
采用“講練結(jié)合”的教學(xué)方法,讓學(xué)生逐步地熟悉一次函數(shù)的應(yīng)用.
教學(xué)過程
一、范例點擊,應(yīng)用所學(xué)
例5小芳以米/分的速度起跑后,先勻加速跑5分,每分提高速度20米/分,又勻速跑10分,試寫出這段時間里她的跑步速度y(單位:米/分)隨跑步時間x(單位:分)變化的函數(shù)關(guān)系式,并畫出函數(shù)圖象.
y=
例6A城有肥料噸,B城有肥料300噸,現(xiàn)要把這些肥料全部運往C、D兩鄉(xiāng).從A城往C、D兩鄉(xiāng)運肥料的費用分別為每噸20元和25元;從B城往C、D兩鄉(xiāng)運肥料的費用分別為每噸15元和24元,現(xiàn)C鄉(xiāng)需要肥料240噸,D鄉(xiāng)需要肥料260噸,怎樣調(diào)運總運費最少?
解:設(shè)總運費為y元,A城往運C鄉(xiāng)的肥料量為x噸,則運往D鄉(xiāng)的肥料量為(-x)噸.B城運往C、D鄉(xiāng)的肥料量分別為(240-x)噸與(60+x)噸.y與x的關(guān)系式為:y=20x+25(-x)+15(240-x)+24(60+x),即y=4x+10040(0≤x≤).
由圖象可看出:當x=0時,y有最小值10040,因此,從A城運往C鄉(xiāng)0噸,運往D鄉(xiāng)噸;從B城運往C鄉(xiāng)240噸,運往D鄉(xiāng)60噸,此時總運費最少,總運費最小值為10040元.
拓展:若A城有肥料300噸,B城有肥料噸,其他條件不變,又應(yīng)怎樣調(diào)運?
二、隨堂練習(xí),鞏固深化
課本P119練習(xí).
三、課堂,發(fā)展?jié)撃?/strong>
由學(xué)生自我本節(jié)課的表現(xiàn).
四、布置作業(yè),專題突破
課本P120習(xí)題14.2第9,10,11題.
板書設(shè)計
14.2.2一次函數(shù)(4)
1、一次函數(shù)的應(yīng)用例:
練習(xí):
八年級函數(shù)課件【篇10】
一、 說教學(xué)內(nèi)容:
(一)、本課時的內(nèi)容、地位及作用:
本課內(nèi)容是華東師大版八年級(下)數(shù)學(xué)第十八章《函數(shù)及其圖象》第四節(jié)《反比例函數(shù)》的第一課時,是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù)-—反比例函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,而又為以后更高層次函數(shù)的學(xué)習(xí),函數(shù)、方程、不等式間關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù),因此,本節(jié)內(nèi)容有著舉足輕重的地位。
(二) 、本課題的教學(xué)目標:
教學(xué)目標是教學(xué)的出發(fā)點和歸宿。因此,我根據(jù)新課標的知識、能力和德育目標的要求,以學(xué)生的認知點,心理特點和本課的特點來制定教學(xué)目標:
(1)、通過對實際問題的探究,理解反比例函數(shù)的意義。
(2)、體會反比例函數(shù)的不同表示法。
(1)、通過兩個實際問題,培養(yǎng)學(xué)生勤于思考和分析歸納的能力。
(2)、在思考、歸納等過程中,發(fā)展學(xué)生的合情說理能力。
(1)、通過已有的知識經(jīng)驗探索的過程,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)、理論聯(lián)系實際,讓學(xué)生有學(xué)有所用的感性認識。
二、 說教學(xué)方法:
本課將采用探究式教學(xué),讓學(xué)生主動去探索,并分層教學(xué)將顧及到全體學(xué)生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果。同時在教學(xué)中將理論聯(lián)系實際,讓學(xué)生用所學(xué)的知識去解決身邊的實際問題。
由于學(xué)生才第一次接觸函數(shù),對一次函數(shù)盡管已經(jīng)學(xué)習(xí)了,但對函數(shù)這部分內(nèi)容不是十分熟練。因此,在教這節(jié)課時,要注意和一次函數(shù),尤其是正比例函數(shù)與反比例函數(shù)的類比。引導(dǎo)學(xué)生從函數(shù)的意義、自變量的取值范圍等方面辨明相應(yīng)的差別,在學(xué)生探索過程中,讓學(xué)生體會到在探索的途徑和方法上與一次函數(shù)相似。
對于所設(shè)置的兩個問題為學(xué)生所熟悉,盡量貼近學(xué)生生活,或者進入學(xué)生生活的圈子里,讓學(xué)生感受到親切、自然,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生思考問題的積極主動性和解決問題的能力,從而培養(yǎng)對數(shù)學(xué)學(xué)科的.濃厚興趣,使部分學(xué)生由不愛學(xué)變得愛學(xué)。讓學(xué)生真正體會到:生活處處皆數(shù)學(xué),生活處處有函數(shù)。
三、 說學(xué)法指導(dǎo):
課堂,只有寶貴的四十五分鐘,有相當一部分學(xué)生很難駕馭,身不由已,注意力不能集中。針對這種情況,故意設(shè)置兩個貼近生活的實例,讓學(xué)生展開想象的翅膀,主動思考,相互探討,學(xué)生互動,師生互動。在想象與探討的互動中,迸發(fā)出思想的火花,尋求問題的答案――反比例函數(shù)的意義。
為了讓學(xué)生對反比例函數(shù)的意義牢牢掌握和深刻理解,啟發(fā)學(xué)生回憶正比例函數(shù)并與之相類比,從內(nèi)容到形式,學(xué)生自主地體會出反比例函數(shù)的真正內(nèi)涵。
在本課時的教學(xué)雙邊活動過程中,抓住初中學(xué)生的心理生理特點,盡量運用生動的語言,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
教師要善于捕捉學(xué)生的反饋信息,并能立即反饋給學(xué)生,矯正學(xué)生的學(xué)法和知識錯誤。力求體現(xiàn)以學(xué)生為主體,教師為主導(dǎo)的原則,在輕松愉快的氛圍中,順利地“消化”本節(jié)課的內(nèi)容。同時,讓學(xué)生體會到“理論來自于實踐,而理論又反過來指導(dǎo)實踐”的哲學(xué)思想。從而培養(yǎng)和提高學(xué)生分析問題和解決問題的能力.
師生共同回憶前一階段所學(xué)知識,再次強調(diào)函數(shù)的重要性,同時啟開新的課題——反比例函數(shù)(教師板書),(若作業(yè)中存在普遍問題,應(yīng)先糾正)。
2、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的學(xué)習(xí)熱情,培養(yǎng)學(xué)生遵紀守法的意識:
教師陳述本班小王發(fā)生的一個故事(問題1),故事的經(jīng)過是這樣的:
昨天下午3時許,小王的爸爸騎摩托車帶著小王去了離家24公里的縣城,因摩托車沒有注冊入戶,被交警將車扣留,6點鐘小王父子坐了小四輪按原路返回。
(2)、兩種交通工具的正常行駛速度一樣嗎?來去的路程一樣嗎?時間呢?(生答:不一樣、一樣、不一樣)
師生共同探究,時間的變化是由速度的變化所引起,設(shè)時間為t,速度為v,則有 t=24/v
問題2、我校車棚工程已經(jīng)啟動,規(guī)劃地基為36平方米的矩形,設(shè)一邊長為x(米),則另一邊長y(米)與x(米)的函數(shù)關(guān)系式。
3、 歸納得出結(jié)論:
一般地,形如y=k/x (k是常數(shù),k不為0)的函數(shù)叫做反比例函數(shù)。
在此教師對該函數(shù)做些說明。
4、 例題講解:
例1、下列函數(shù)關(guān)系中,哪些是反比例函數(shù)?
(1)、平行四邊形面積是12平方厘米,它的一邊是a厘米,這邊上的高是h厘米,a與h的函數(shù)關(guān)系。
函數(shù)的課件
居安思危,思則有備,有備無患。當幼兒園教師的教學(xué)任務(wù)遇到困難時,往往都需要參考一下我們提前準備參考資料。資料所覆蓋的面比較廣,可以指學(xué)習(xí)資料。參考資料我們接下來的學(xué)習(xí)工作才會更加好!你是否收藏了一些有用的幼師資料內(nèi)容呢?于是,小編為你收集整理了函數(shù)的課件。歡迎閱讀,希望你能閱讀并收藏。
函數(shù)的課件【篇1】
函數(shù)是數(shù)學(xué)中最重要的基本概念之一,它揭示了現(xiàn)實世界中數(shù)量關(guān)系之間相互依存和變化的實質(zhì),是刻畫和研究現(xiàn)實世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學(xué)思想之花。
《集合與函數(shù)概念》一章在高中數(shù)學(xué)中起著承上啟下的作用。本課學(xué)習(xí)的函數(shù)概念及其反映出來的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個領(lǐng)域,是進一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)。函數(shù)的思想方法貫穿了高中數(shù)學(xué)課程的始終。
本小節(jié)是繼學(xué)習(xí)集合語言之后,運用集合與對應(yīng)語言,在初中學(xué)習(xí)的基礎(chǔ)上,進一步刻畫函數(shù)概念,目的是讓學(xué)生認識到它們優(yōu)越性,從根本上揭示函數(shù)的本質(zhì)。因此本課的教學(xué)重點是:學(xué)會用集合與對應(yīng)語言刻畫函數(shù)概念,進一步認識函數(shù)是描述客觀世界中變量間依賴關(guān)系的數(shù)學(xué)模型。
1.正確理解函數(shù)的概念,會用集合與對應(yīng)語言刻畫函數(shù)。通過實例分析,體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;強化數(shù)學(xué)的應(yīng)用與建模意識;培養(yǎng)學(xué)生的學(xué)習(xí)興趣。
2.理解函數(shù)三要素,會求簡單函數(shù)的定義域。通過例題教學(xué)與練習(xí),培養(yǎng)歸納概括能力。
3.理解符號y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會函數(shù)思想,代換思想,提高思維品質(zhì)。
本堂課作為一堂公開課,我曾在多個班級試教。主要問題有:
首先,由三個實例歸納共性會遇到困難。原因是由具體實例到抽象的數(shù)學(xué)語言,要求學(xué)生具備較強的歸納概括能力;而對高一學(xué)生抽象思維能力相對較弱。
其次,學(xué)生不容易認識到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對應(yīng)關(guān)系,甚至認為函數(shù)就是函數(shù)值。
第三,函數(shù)符號y=f(x)比較抽象,學(xué)生難以理解。
因此本課的教學(xué)難點是:1、從主觀知識抽象成為客觀概念。2、函數(shù)符號y=f(x)的理解。
在初中學(xué)生已學(xué)習(xí)了變量觀點下的函數(shù)定義,具體研究了幾類最簡單的函數(shù),對函數(shù)并不陌生;學(xué)生已經(jīng)會把函數(shù)看成變量之間的依賴關(guān)系;同時,雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學(xué)生周圍,學(xué)生能列舉出函數(shù)的實例,已具備初步的數(shù)學(xué)建模能力。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?我們目前所教的學(xué)生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達能力強,有較強的獨立解決問題的能力。在平時的學(xué)習(xí)過程中,他們更喜歡教師創(chuàng)造疑問,然后自己想辦法解決問題,通過教師的啟發(fā)點撥,學(xué)生以自己的努力找到解決問題的方法。學(xué)生作為教學(xué)主體隨時對所學(xué)知識產(chǎn)生有意注意,努力思索解決疑問的方式,使自己的能力通過教師的點撥得到發(fā)揮。
針對學(xué)生這一學(xué)習(xí)方式,我們在教學(xué)過程中從學(xué)生已有的知識經(jīng)驗出發(fā),讓學(xué)生明白新問題產(chǎn)生的背景,引導(dǎo)學(xué)生對三個實例進行分析,然后歸納共性,抽象出用集合與對應(yīng)語言刻畫的函數(shù)概念。其間采用了多媒體動畫演示、教師引導(dǎo)、學(xué)生探究、討論、交流一系列活動,讓學(xué)生感到“概念的.得出是水到渠成的,自然的而不是強加于人的”。
對函數(shù)概念的整體性的理解,通過設(shè)計“想一想”、“練一練”、“試一試”等問題情景激發(fā)學(xué)生積極參與,在問題解決的過程中鞏固函數(shù)概念。而對函數(shù)符號y=f(x),則讓學(xué)生分析實例和動手操作,來認識和理解符號的內(nèi)涵;并進一步滲透函數(shù)思想、代換思想。如三個實例用統(tǒng)一的符號表示、例4中計算當自變量是數(shù)字、字母不同情況時的函數(shù)值。讓學(xué)生在做數(shù)學(xué)中領(lǐng)會含義,學(xué)會解題方法,提高解決問題的能力。
《標準》提倡運用信息技術(shù)呈現(xiàn)以往教學(xué)難以呈現(xiàn)的課程內(nèi)容,數(shù)學(xué)的理解需要直觀的觀察、視覺的感知,特別是幾何圖形的性質(zhì),復(fù)雜的計算過程,函數(shù)的動態(tài)變化過程、幾何直觀背景等,若能利用信息技術(shù)來直觀呈現(xiàn)使其可視化將會有助于學(xué)生的理解。本節(jié)課將充分利用信息技術(shù)支持課堂教學(xué)。
1、? ?多媒體動畫演示炮彈發(fā)射。在形象生動的情景中感受高度h隨時間t的變化而變化的運動規(guī)律。
2、? ?用幾何畫板畫出h=130t-5t2的圖象。在圖象上任取一點P(t,h),然后拖動點P的位置,觀察點P的橫坐標t與縱坐標h的變化規(guī)律。
3、? ?制作幻燈片展示問題情景。
函數(shù)的課件【篇2】
一.內(nèi)容和內(nèi)容解析
【內(nèi)容】變量與函數(shù)的概念
【內(nèi)容解析】
“14.1變量與函數(shù)”是人教版義務(wù)教育課程標準實驗教科書八年級上冊第十四章第一單元,本設(shè)計是第1課時,引導(dǎo)學(xué)生從生活實例中抽象出常量、變量與函數(shù)等概念,其中函數(shù)的概念是本節(jié)核心內(nèi)容.函數(shù)概念的核心是兩個變量間的特殊對應(yīng)關(guān)系:(1)由哪一個變量確定另一個變量;(2)唯一對應(yīng)關(guān)系.如果直接研究某個量y有一定困難,我們可以去研究另一個與之有關(guān)的量x,從而達到研究的目的.這也是一種化繁為簡的轉(zhuǎn)化思想.
本節(jié)課是函數(shù)入門課,首先必須準確認識變量與常量的特征,初步感受到現(xiàn)實世界各種變量之間聯(lián)系的復(fù)雜性,同時感受到研究主要從化繁就簡入手,在初中階段主要研究兩個變量之間的特殊對應(yīng)關(guān)系.本設(shè)計把重點放在認識“兩個變量間的特殊對應(yīng)關(guān)系:由哪一個變量確定另一變量;唯一確定的含義.” 而函數(shù)圖象較為直觀形象,有助于學(xué)生理解函數(shù)的概念,因此把函數(shù)圖象中的部分內(nèi)容提前到本課時學(xué)習(xí).
二.目標和目標解析
【目標】理解常量、變量與函數(shù)的概念.
【目標解析】
(1)借助簡單實例,學(xué)生初步感知用常量與變量來刻畫一些簡單的數(shù)學(xué)問題,能指出具體問題中的常量、變量.初步理解存在一類變量可以用函數(shù)方式來刻畫,能舉出涉及兩個變量的實例,并指出由哪一個變量確定另一個變量,這兩個變量是否具有函數(shù)關(guān)系.初步理解對應(yīng)的思想,體會函數(shù)概念的核心是兩個變量之間的特殊對應(yīng)關(guān)系,能判斷兩個變量間是否具有函數(shù)關(guān)系.
(2)借助簡單實例,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體會從生活實例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實世界中變量之間聯(lián)系的復(fù)雜性,數(shù)學(xué)研究從最簡單的情形入手,化繁為簡.
(3)從學(xué)生熟悉、感興趣的實例引入課題,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體驗“發(fā)現(xiàn)、創(chuàng)造”數(shù)學(xué)知識的樂趣.學(xué)生初步感知實際生活蘊藏著豐富的數(shù)學(xué)知識,感知數(shù)學(xué)是有用、有趣的學(xué)科.
三、教學(xué)問題診斷分析
變量與函數(shù)的概念把學(xué)生由常量數(shù)學(xué)的學(xué)習(xí)引入變量數(shù)學(xué)學(xué)習(xí)中.學(xué)生知道代數(shù)式中的字母可以表示數(shù),方程中的未知數(shù)求出來后也是一個“已知數(shù)”,從“靜態(tài)”的角度理解字母所表示的數(shù),另外,學(xué)生在日常生活中也接觸到函數(shù)圖象、兩個變量的關(guān)系等樸素的函數(shù)關(guān)系的生活實例.但是學(xué)生初次接觸函數(shù)的概念,難以理解定義中“唯一確定”的準確含義.
【教學(xué)重點】借助簡單實例,從兩個變量間的特殊對應(yīng)關(guān)系抽象出函數(shù)的概念.
【教學(xué)難點】怎樣理解“唯一對應(yīng)”.
四、教學(xué)過程設(shè)計
(一)導(dǎo)言:
1.《名偵探柯南》中有這樣一個情景:柯南根據(jù)案發(fā)現(xiàn)場的腳印,鎖定疑犯的身高.你知道其中的道理嗎?
2.我們班中同學(xué)A與職業(yè)相撲運動員,誰的飯量大?你能說明理由嗎?
問題1中都涉及兩個量的關(guān)系,腳印確定,對應(yīng)的身高有多個取值;問題2涉及多個量的關(guān)系.這一節(jié)課我們研究兩個量的關(guān)系,研究怎樣由一個量來確定另一個量.
【設(shè)計意圖】從學(xué)生的生活入手,開門見山,在極短的時間(一兩分鐘)內(nèi)指明本節(jié)課的學(xué)習(xí)內(nèi)容.現(xiàn)實世界中各種量之間的聯(lián)系紛繁復(fù)雜,應(yīng)向?qū)W生說明我們數(shù)學(xué)的研究方法是化繁就簡,本節(jié)課只關(guān)注一類簡單的問題.
(二)概念的引入
1.票房收入問題:每張電影票的售價為10元.
(1)若一場售出150張電影票,則該場的票房收入是 元;若售出205張、310張呢?
(2)若一場售出x張電影票,則該場的票房收入y元,則y= .
思考:
(1)票房收入隨售出的電影票變化而變化,即y隨的變化而變化;
(2)當售出票數(shù)x取定一個確定的值時,對應(yīng)的票房收入y的取值是否唯一確定?
2.成績問題:如圖是某班同學(xué)一次數(shù)學(xué)測試中的成績登記表:這一次數(shù)學(xué)測試中,13號的成績?yōu)開_____;15號的成績?yōu)開_____;16號的成績?yōu)開_____;23號的成績?yōu)開_____.
思考:
(1)測試成績隨________的變化而變化;
(2)任意確定一個學(xué)號x,對應(yīng)的成績f的取值是否唯一確定?
3.氣溫問題:圖一是撫順春季某一天的氣溫T隨時間t變化的圖象,看圖回答:
(1)這天的8時的氣溫是 ℃,14時的氣溫是 ℃,最高氣溫是 ℃,最低氣溫是 ℃;
(3)這一天中,在4時~12時,氣溫( ),在16時~24時,氣溫( ).
A.持續(xù)升高 B.持續(xù)降低 C.持續(xù)不變
思考:
(1)天氣溫度隨的變化而變化,即T隨的變化而變化;
(2)當時間t取定一個確定的值時,對應(yīng)的溫度T的取值是否唯一確定?
【設(shè)計意圖】這三個問題中都含有變量之間的單值對應(yīng)關(guān)系,通過研究這些問題引出常量、變量、函數(shù)等概念,通過這種從實際問題出發(fā)開始討論的方式,使學(xué)生體驗從具體到抽象地認識過程.問題的形式有填空、列表、求值、寫解析式、讀圖等,隱含著在函數(shù)關(guān)系中表示兩個變量的對應(yīng)關(guān)系有解析法、列表法、圖象法.
(三)概念的界定
思考:上述三個問題中,分別涉及哪些量的關(guān)系?通過哪一個量可以確定另一個量?
在上面的三個問題中,其中一個量的變化引起另一個量的變化(按照某種規(guī)律變化),變化的量叫做變量;有些量的值始終不變(例如電影票的單價10元……).并且當其中一個變量取定一個值時,另一個變量就隨之確定,且它的對應(yīng)值只有一個.
教師根據(jù)學(xué)生的回答,在黑板上板書:
師生對上述三個問題進行分析,找出它們的共性,歸納出函數(shù)的概念.
【設(shè)計意圖】(1)如何把具體的實例進行抽象,形式化為數(shù)學(xué)知識是本課的關(guān)鍵.這里提出的問題“上述三個問題中,分別涉及哪些量的關(guān)系?通過哪一個量可以確定另一個量?”是一個關(guān)鍵的“腳手架”,借助“腳手架”,學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程,引導(dǎo)學(xué)生認識為什么要引進變量、常量、函數(shù)的概念,逐步了解如何給數(shù)學(xué)概念下定義.(2)此處板書是“腳手架”的重要組成部分,揭示“兩個量的對應(yīng)關(guān)系”.
問題回顧:指出前面三個問題中涉及到的量,并指出其中的變量、常量、自變量與函數(shù).
【設(shè)計意圖】鞏固常量、變量、自變量、函數(shù)的概念.
例1 一個三角形的底邊為5,這一邊上的高h可以任意伸縮.
(1)高h的變化會引起三角形中哪些量發(fā)生變化?這些變量是高h的函數(shù)嗎?
(2)試求面積s隨h變化的關(guān)系式,并指出其中的'常量、變量與自變量。
例2如果用r表示圓的半徑,半徑r的變化會引起圓中哪些量發(fā)生變化?這些變量是半徑r的函數(shù)嗎?
【設(shè)計意圖】例1、例2的引入用幾何畫板做動態(tài)演示.此兩例引導(dǎo)學(xué)生體會幾何問題中兩個變量在動態(tài)變化過程中的依存關(guān)系.
例3 問題1中,售出票數(shù)是票房的函數(shù)嗎?問題2中,學(xué)號x是成績f的函數(shù)嗎?
【設(shè)計意圖】(1)引導(dǎo)學(xué)生從逆向思維的角度進行思考,更全面地理解函數(shù)的概念.(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣.(3)讓學(xué)生對這三個問題留下更深刻的印象,特別是“成績問題,”它將在函數(shù)這一章書的教學(xué)中反復(fù)被引用,幫助學(xué)生深入理解函數(shù)的概念.
(四)概念鞏固
1.購買一些簽字筆,單價3元,總價為y元,簽字筆為x支,根據(jù)題意填表:
(1)y隨x變化的關(guān)系式y(tǒng) = , 是自變量, 是 的函數(shù);
(2)當購買8支簽字筆時,總價為 元.
2.周末,小李8時騎自行車從家里出發(fā),到野外郊游,16時回到家里.他離開家后的距離s(千米)與時間t(時)的關(guān)系如圖所示.
(1)當t=12時,s=________;當t=14時,s=________;
(2)小李從______時開始第一次休息,休息時間為____小時,此時離家______千米.
(3)距離s是時間t的函數(shù)嗎?時間t是距離s的函數(shù)嗎?
函數(shù)的課件【篇3】
§5 簡單的冪函數(shù)(第1課時)
交大二附中
劉正偉
一、課標三維目標:
1.知識技能:了解簡單冪函數(shù)的概念;通過具體實例了解冪函數(shù)的圖象和性質(zhì),并能進行初步的應(yīng)用.2.過程與方法:通過作函數(shù)圖像,讓學(xué)生體會冪函數(shù)圖像的特點,會利用定義證
明簡單函數(shù)的奇偶性,了解利用奇偶性畫函數(shù)圖像和研究函數(shù)的方法。
3.情感、態(tài)度、價值觀:進一步滲透數(shù)形結(jié)合與類比的思想方法;培養(yǎng)從特殊歸
納出一般的意識,體會冪函數(shù)的變化規(guī)律及蘊含其中的對稱性。
二、教學(xué)重點與難點:
重點:冪函數(shù)的概念,函數(shù)奇、偶性的概念。
難點:判斷函數(shù)的奇偶性。
三、學(xué)法指導(dǎo):
通過數(shù)形結(jié)合,類比、觀察、思考、交流、討論,理解冪函數(shù)的概念和函數(shù)的奇偶性。
四、教學(xué)方法:
對奇偶性要求不高,題目不需要過難,盡量用多媒體和計算機畫函數(shù)的圖像,重在從圖上看出圖像關(guān)于誰對稱,著重從對稱的角度應(yīng)用這一性質(zhì),培養(yǎng)學(xué)生自己歸納總結(jié)的能力。
五、教學(xué)過程:
(一)創(chuàng)設(shè)情境(生活實例中抽象出幾個數(shù)學(xué)模型)
1.如果張紅購買每千克1元的蔬菜x千克,那么她需要付的錢數(shù) p=x元,這里p是s的函數(shù).2.如果正方形的邊長為a,那么正方形的面積S=a2,這里S是a的函數(shù).3.如果正方體的邊長為a,那么正方體的體積V=a3,這里V是a的函數(shù)
4.如果正方形場地的面積為S,那么正方形的邊長a=S1/2,這里a是S的函數(shù).5.如果某人t s內(nèi)騎車行進了1km,那么他騎車的平均速度 v=t-1km/s,這里v 是t的函數(shù).【思考】上述函數(shù)解析式有什么形式特征?具有什么共同點?(教師將解析式寫成指數(shù)冪形式,以啟發(fā)學(xué)生歸納,板書課題并歸納冪函數(shù)的定義。)
(二)探究冪函數(shù)的概念、圖象和性質(zhì)
1.冪函數(shù)的定義
如果一個函數(shù),底數(shù)是自變量x,指數(shù)是常量α,即y = x,這樣的函數(shù)稱為冪函數(shù).如
α【練】為了加深對定義的理解,讓學(xué)生判別下列函數(shù)中有幾個冪函數(shù)?
212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.冪函數(shù)的圖象和性質(zhì)
【1】通過幾何畫板演示讓學(xué)生認識到,冪函數(shù)的圖象因a的不同而形狀各異 【2】引導(dǎo)學(xué)生從5個具體冪函數(shù)的圖象入手,研究冪函數(shù)的性質(zhì)
① 畫出y?x,y?x,y?x,y?x,y?x?1的圖象(重點畫y=x3和y=x1/2的圖象----學(xué)生畫,再用幾何畫板演示)
2312
學(xué)生活動:1.學(xué)生自己說出作圖步驟,交流討論單調(diào)性。
學(xué)生活動:2.觀察交流,分析圖像還有那些特點?
3.觀察函數(shù)值和自變量取值有什么特點?
我們還可以看到,f(x)=x3 的圖像關(guān)于原點對稱.并且對任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).
(三)奇函數(shù)、偶函數(shù)的定義
一般地,圖像關(guān)于原點對稱的函數(shù)叫作奇函數(shù),即f(-x)=-f(x);反之,滿足f(-x)=-f(x)的函數(shù)y=f(x)一定是奇函數(shù)。
2學(xué)生通過類比,自己找出偶函數(shù)的定義,可以建議利用y=x的圖像特征?
一定是偶函數(shù)。
當函數(shù)f(x)是奇函數(shù)或偶函數(shù)時,稱函數(shù)具有奇偶性。例1:畫出下列函數(shù)的圖像,判斷奇偶性.(1)f(x)=-3x-1;
(2)f(x)= x2,x∈﹙-3,3〕
(3)f(x)= x2-3
;(4)f(x)= 2(x+1)2+1 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù),即f(-x)=f(x);反之,滿足f(-x)=f(x)的函數(shù)y=f(x)學(xué)生活動:思考討論:
1.總結(jié)奇偶性對函數(shù)定義域的要求.2.總結(jié)利用圖像法判斷函數(shù)奇偶性
(四)根據(jù)定義法判斷奇偶性
例2.判斷f(x)=-2x5 和g(x)= x4 +2的奇偶性.
由于從圖像上進行觀察是一種常用而又較為粗略的方法,嚴格的說,它需要根據(jù)奇偶函數(shù)的定義進行證明。
學(xué)生自己先動手證明,教師一旁指導(dǎo)。要注意書寫規(guī)范,并討論交流定義法證明的步驟。
例3學(xué)生活動:動手實踐
在圖2-28 中,只畫出了函數(shù)圖象的一半,請你畫出它們的另一半,并說出畫法的依據(jù).
結(jié)論:
在研究函數(shù)時,如果知道其圖像具有關(guān)于原點或y軸對稱的特點,那么我們可以先研究它的一半,再利用對稱性了解另一半,從而可以減少工作量.
六.歸納小結(jié):(學(xué)生自己交流總結(jié))
1.本節(jié)課學(xué)習(xí)的主要知識是什么?
2.如何確定函數(shù)的奇偶性,其定義域有何特征?
3.思考討論填寫常用冪函數(shù)規(guī)律表。
七.作業(yè):課本第50頁A組1(2),2,3(1)(2),4
選做:B組、第2題
八.板書設(shè)計:
簡單的冪函數(shù)
α一. 定義:形如y = x,α是常量.二. 奇、偶函數(shù)的定義: 三. 定義證明奇偶性。(教師板演)
八.教學(xué)反思:
函數(shù)的課件【篇4】
反比例函數(shù)是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)基礎(chǔ)之上,而又服務(wù)于以后更高層次函數(shù)的學(xué)習(xí),以及為函數(shù)、方程、不等式間關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù)。具體老師評課如下:
劉霞:通過反比例函數(shù)的應(yīng)用使學(xué)生明確函數(shù)、方程、不等式是解決實際問題的三種重要的數(shù)學(xué)模型,它們之間有著密切聯(lián)系,并在一定的條件下可以互相轉(zhuǎn)化。
在本節(jié)課的復(fù)習(xí)過程中,滲透著建模思想、函數(shù)思想、數(shù)形結(jié)合思想、方程以及方程組的思想,這些思想也為后面學(xué)習(xí)二次函數(shù)的應(yīng)用奠定了基礎(chǔ)。
而利用反比例函數(shù)解決實際問題的基本步驟是通過對例題的解題過程進行歸納總結(jié)而得到的結(jié)論。它遵循了從“具體到抽象再到具體”的認知規(guī)律,蘊含了從“特殊到一般再到特殊”的推理方法。對今后學(xué)習(xí)數(shù)學(xué)有著重要的指導(dǎo)意義。
孫法圣:鞏固反比例函數(shù)的概念,會求反比例函數(shù)表達式并能畫出圖象。 鞏固反比例函數(shù)圖象的變化及性質(zhì)并能運用解決某些實際問題。
李杰:可以說從復(fù)習(xí)課的角度來說這樣安排教學(xué)目標是恰如其分的,使數(shù)學(xué)教學(xué)課標要求當中的了解、掌握、直至應(yīng)用都考慮到了體現(xiàn)。
牛媛:首先通過提問的方式梳理有關(guān)反比例函數(shù)的知識點(如:定義,表示法,圖像性質(zhì)),形成知識體系。爾后給出三道例題,學(xué)生做完后由學(xué)生板演再師生共同分析,最后學(xué)生再完成自我測驗題。(馮老師精心設(shè)計本節(jié)課教學(xué)內(nèi)容并通過印刷試卷給予呈現(xiàn)。)通過這些難度不同的習(xí)題來滲透反比例函數(shù)的相關(guān)知識與性質(zhì)以及數(shù)學(xué)思想方法。使基礎(chǔ)薄弱的學(xué)生能聽得懂做一些,也使學(xué)有余力的學(xué)生學(xué)習(xí)能力得到進一步的提升,面向全體,使每一位學(xué)生都學(xué)有所得,另一方面也符合學(xué)生的認知特點和認知規(guī)律。
梁淑禎:應(yīng)該說馮老師能較好地完成了本節(jié)課的教學(xué)任務(wù),實現(xiàn)了既定的教學(xué)目標,達到了一定的教學(xué)效果,數(shù)學(xué)思想方法都能從例題教學(xué)中得到了體現(xiàn)。總體上落實以教師為主導(dǎo),學(xué)生為主體,練習(xí)為主線的復(fù)習(xí)課教學(xué)模式。
在教學(xué)基本功方面:馮老師深入研讀課標,鉆研教學(xué)大綱,吃透教材,形成自己獨到的見解,把握教材準確、恰當,難易適中,重點空出,緊緊抓住數(shù)形結(jié)合的思想來求解有關(guān)反比例函數(shù)的應(yīng)用問題。
板書工整有示范性,有啟發(fā)性,如在學(xué)生板演出現(xiàn)錯誤時給予及時糾正并用彩色筆加以區(qū)別經(jīng)引起學(xué)生的特別注意。靈活地把黑板分成4大板面,內(nèi)容緊湊
又分明、清晰,主板書和副板書一目了然。個人以為在學(xué)生不能很好地完成書寫過程時,教師不應(yīng)把板演的任務(wù)交給學(xué)生,雖說教師已加以修改和訂正,但看起來已經(jīng)不夠整潔,也不美觀。這樣在一定程度上就降低了板書對示范性和啟發(fā)性要求。
教師上課娓娓道來,循循善誘,聲音柔和,具有校強的語言功底,這有利于學(xué)生靜心思考,與學(xué)生容易形成思維的碰撞,易于與學(xué)生達到心靈上的勾通,交流。不過引起注意是要多注視數(shù)學(xué)語言的生動有趣、簡潔明了、富于啟發(fā)的.特點,特別當學(xué)生情緒處于低落之時,若能制造輕松愉快的課堂氛圍,就更有利于學(xué)生的思考。當學(xué)生在思維處于山重水復(fù)疑無路時,教師應(yīng)適時加以啟發(fā)以讓學(xué)生的思維得到進一步的深入,以期達到柳岸花明又一春的境界,這樣也許更好。
教師具有較強地把握課堂的能力,得心應(yīng)手地實施教學(xué)設(shè)想。
教師從概念入手引發(fā)性質(zhì),步步為營,有利于知識重組,形成知識體系,然后拋出例題由學(xué)生解答,學(xué)以致用。
教師首先提問學(xué)生反比例函數(shù)的定義及性質(zhì)如:圖像的位置、單調(diào)性、函數(shù)表達式的兩種表示方式(少了一種,應(yīng)有三種),由學(xué)生共同回答,當學(xué)生無法回答出反比例函數(shù)當k 的值互為相反數(shù)時圖像的兩支關(guān)于x軸或y軸成軸對稱(最好補充關(guān)于原點成中心對稱)時,老師能給予及時的啟發(fā),讓學(xué)生的思維得以順利地進行(啟發(fā)略嫌生澀)。接著進入典型例題的講解,例題1兩個小題是關(guān)于反比例函數(shù)解析式的求解以及實際的應(yīng)用,其中涉及到解析式兩個解取一個的情況,另一個解是負數(shù)不合實際意義,要舍去。解析式的求法用到了待定系數(shù)法,根據(jù)過函數(shù)反比例函數(shù)圖像上任意一點作x軸或y軸的垂線,以垂足、該點和原點這三個點為頂點的三角形的面積的兩倍就是k絕對值。若設(shè)這一點的坐標為(a,b),則k=ab。教師在講解完該題時若能及時給予歸納就有畫龍點睛的作用了,也更有深入淺出之意境,這樣將大大提高了學(xué)生掌握和應(yīng)用知識的能力。另外教師采用由學(xué)生到黑板析演的方式,而不是先由自己板書再讓學(xué)生做下面第二題時再讓學(xué)生板書,有暴露學(xué)生解題過程之不足之意,此種做法的效率個人以為有待于進一步商榷。
復(fù)習(xí)舊知時由學(xué)生一人主講,讓其他學(xué)生補充的方式。復(fù)習(xí)完舊知時,教師在不改變例題作用和降低例題使用效果的情況把三道例題結(jié)合為一道大例題,這樣能節(jié)省學(xué)生因?qū)忣}而花費的時間,也使題目的從易到難,層層深入,步步為營,同時照顧到了全體學(xué)生,使每個學(xué)生都能學(xué)有所獲,也能讓本節(jié)課不至于太沉悶。爾后,在講解完例題后,還可留出一些時間給學(xué)生歸納反比例函數(shù)解題時所涉及的思想方法,讓數(shù)學(xué)思想方法成為學(xué)生學(xué)習(xí)數(shù)學(xué)的導(dǎo)航器。
函數(shù)的課件【篇5】
人教版 數(shù)學(xué) 八年級 上冊
第十四章
一次函數(shù)
§14.1.2 函數(shù)
教
案 設(shè) 計 說 明
江西省贛州市文清實驗學(xué)校 謝志華
【教學(xué)設(shè)計說明】
這節(jié)課本著以觀察為起點,以問題為主線,以培養(yǎng)能力為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循特殊到一般,具體到抽象,由淺入深,由易到難的認識規(guī)律。整個教學(xué)過程突出以下構(gòu)想:(1).創(chuàng)設(shè)情境,引人入勝
首先根據(jù)學(xué)生的認知基礎(chǔ),播放一組生活中熟悉的體現(xiàn)運動變化的課件視頻與圖片,激發(fā)學(xué)生的求知欲,使學(xué)生感知變量和函數(shù)的存在和意義,體會變量之間的相互依存關(guān)系和變化規(guī)律,為新課的開展創(chuàng)設(shè)良好的教學(xué)氛圍,同時培養(yǎng)學(xué)生從數(shù)學(xué)的角度觀察生活,思考問題的能力。
(2).過程凸現(xiàn),緊扣重點
函數(shù)概念的形成過程是本節(jié)的重點。所以本節(jié)突出概念形成過程的教學(xué)。首先列舉學(xué)生熟悉例子,引導(dǎo)學(xué)生從實例中觀察分析探索變量之間的規(guī)律,抽象出函數(shù)的概念。然后提出注意問題,幫助學(xué)生把握概念的本質(zhì)特征,再通過生活中的函數(shù)舉例進一步理解函數(shù)的概念,最后引導(dǎo)學(xué)生運用概念并及時反饋,同時在概念的形成過程中,著意培養(yǎng)學(xué)生觀察分析抽象概括的能力。引導(dǎo)學(xué)生從運動變化的角度看問題時,向?qū)W生滲透唯物主義觀點的教育。(3).動態(tài)顯現(xiàn),化難為易
本節(jié)課的難點是理解函數(shù)概念。教學(xué)活動中充分利用多媒體有聲有色有動感的畫面,使抽象的問題形象化,靜態(tài)方式的動態(tài)化,直觀深刻地揭示函數(shù)概念的本質(zhì)。不僅叩開學(xué)生的思維之門,也打開他們的心靈之窗,使他們在欣賞享受中,在美的熏陶中主動地輕松愉快地獲得新知。
(4).例子展現(xiàn),多方滲透
為了使抽象的概念具體化,通俗易懂,本節(jié)列舉了大量的生活中的例子和其他學(xué)科中的例子,培養(yǎng)學(xué)生的發(fā)散思維,加強學(xué)科間的滲透,知識間的聯(lián)系,也增強學(xué)生學(xué)數(shù)學(xué)的意識。
函數(shù)的課件【篇6】
函數(shù)的概念教學(xué)設(shè)計說明
一、本質(zhì)、地位、作用分析:
函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課.它上承集合,下引性質(zhì).是派生數(shù)學(xué)概念的強大“固著點”.本節(jié)在復(fù)習(xí)初中函數(shù)概念的基礎(chǔ)上,用集合和對應(yīng)的觀點來研究函數(shù),加深對函數(shù)概念的理解,為高中后續(xù)課程的學(xué)習(xí)打下基礎(chǔ),函數(shù)的概念將貫穿整個高中數(shù)學(xué)的始終,滲透到數(shù)學(xué)的各個領(lǐng)域。
二、教學(xué)目標分析
我們生活的世界時刻都在發(fā)生變化,變化無處不在.這些變化著的現(xiàn)象都可以用數(shù)學(xué)有效地描述它們的變化規(guī)律.函數(shù)正是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型,通過函數(shù)模型可以幫助我們科學(xué)地預(yù)測將發(fā)生什么,進而解決實際問題.因此,學(xué)習(xí)函數(shù)知識對研究客觀世界、掌握事物變化規(guī)律具有重要的意義.教科書采用了從實際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運用函數(shù)模型表述、思考和解決現(xiàn)實世界中蘊涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.本課主要是從兩集合間對應(yīng)來描繪函數(shù)的概念,是一個抽象過程,學(xué)生學(xué)習(xí)可能有所不適應(yīng).教學(xué)中宜逐步設(shè)計合理的階梯,從實際問題逐步建構(gòu)函數(shù)的初步定義,對函數(shù)的概念的研究遵循“直觀感知、抽象概括”的認知過程展開,學(xué)生在對生活中的實例觀察感知基礎(chǔ)上,借助幫助學(xué)生總結(jié)它們的共同特征得出定義,構(gòu)建函數(shù)的一般概念,并通過辨析問題深化對定義的理解,這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。使學(xué)生更好地參與教學(xué)活動,展開思維,體驗探索的樂趣,增強學(xué)習(xí)數(shù)學(xué)的興趣.為更好地鞏固函數(shù)的概念,設(shè)置了有梯度的例題,例1的三個小題都是選擇題,第一小題重點考察是變量x與y是否具有函數(shù)關(guān)系,緊扣定義,驗證定義即可;第二小題考察從集合A到集合B的函數(shù)應(yīng)該滿足什么條件,方法一可以通過定義驗證對于集合A中的每一個元素,在集合B中是否有元素而且是唯一的元素與之相對應(yīng);另一種方法是從集合A到集合B的函數(shù),其特點是:A就是函數(shù) 的定義域,B包含函數(shù)的值域,值域可以變化,只要是B的子集即可。如果條件“從A到B的函數(shù)”改為“以A為定義域,以B為值域的函數(shù)”,學(xué)生應(yīng)當注意這道題變化前后的區(qū)別,再次加深函數(shù)的概念的理解;第三個題考察函數(shù)相等的條件,了解函數(shù)的三要素是定義域、對應(yīng)關(guān)系和值域,而三者中起決定因素的是定義域和對應(yīng)關(guān)系,使學(xué)生對于函數(shù)有直觀的認識。例2是一道解答題,考察求函數(shù)的定義域問題,函數(shù)問題首要考慮定義域,這是研究函數(shù)的值域,單調(diào)性等一些性質(zhì)的前提,所以函數(shù)的定義域顯得尤為重要,本例的意圖是讓學(xué)生總結(jié)如何求函數(shù)的定義域;例3是求函數(shù)值問題,旨在讓學(xué)生明白f(a)與f(x)的區(qū)別,真正理解函數(shù);最后設(shè)計了一道易錯題,考察含參問題一定要注意分類討論。這四個題都是學(xué)生自己討論、自己寫出解題過程、自己講解,最后教師點評。
整個教學(xué)過程主要是對函數(shù)概念的探究和應(yīng)用。通過對概念的探究,不僅培養(yǎng)和提高了學(xué)生對抽象問題的感知和概括能力,而且通過對函數(shù)概念的感性認識進一步讓學(xué)生認識到數(shù)學(xué)和生活密不可分,數(shù)學(xué)來源于生活并服務(wù)于生活,加深了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)問題診斷:
(1)班級學(xué)生狀況分析:
1.在學(xué)習(xí)本節(jié)課之前,學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,對函數(shù)已經(jīng)有了一些直觀的認識;
2.學(xué)生已具有小組合作學(xué)習(xí)的經(jīng)驗,能積極參與討論,對高效課堂的學(xué)習(xí)模式已經(jīng)熟悉,但部分學(xué)生課前預(yù)習(xí)抓不住重點,自學(xué)能力不強;
3.少部分學(xué)生能從初中所學(xué)的函數(shù)的概念再加上生活中一些函數(shù)模型學(xué)習(xí)本課,大部分學(xué)生對于抽象的、不可觸摸的函數(shù)概念理解不透徹,不知道怎么應(yīng)用,因此我們采取對生活中常見的三類例子進行分析,從實際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運用函數(shù)模型表述、思考和解決現(xiàn)實世界中蘊涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.4.學(xué)生對學(xué)習(xí)概念興趣不高,對學(xué)習(xí)抽象的函數(shù)概念有畏懼情緒,所以,學(xué)生需要受到鼓勵和安慰,增強學(xué)習(xí)的興趣。
(2)學(xué)情分析:
學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù),并且已經(jīng)認識一次函數(shù)、二次函數(shù)、正比例函數(shù)和反比例函數(shù),對于函數(shù)已經(jīng)有了直觀的認識,但對于類似“x=1”、“y=1”、?x?1x?0等一些表達式是否是函數(shù)沒有概念,無從下手,這就說明初 f(x)???x?1x?0 中所學(xué)的概念太過狹隘,這就要求我們從更高的層面再次學(xué)習(xí)函數(shù)。函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)學(xué)說,顯得很抽象,不好理解,特別“對于A中的任意一個元素,B中都有唯一的元素與之相對應(yīng)”這句話的怎么理解,它有什么深刻的含義,這就要求我們用生活中同學(xué)們所熟悉的實例出發(fā),提出問題讓學(xué)生思考,解釋為什么要強調(diào)A中任意,B中唯一,很自然的歸納出函數(shù)的定義,并通過一些例題加深對函數(shù)概念的認識和理解。對于函數(shù)的三要素、函數(shù)相等的條件、函數(shù)的定義域問題以及函數(shù)求值問題是對函數(shù)概念的升華,是為了加深對函數(shù)概念的理解,也是對函數(shù)概念的應(yīng)用
四、教法特點以及預(yù)期效果分析:
(1)教法特點:
·情境激趣策略:根據(jù)學(xué)生的特點,本節(jié)課借助對生活中常見的三類實例及多媒體手段,觀察思考數(shù)學(xué)在生活中的應(yīng)用,促進思維的深層次加工和提高課堂參與度,激發(fā)學(xué)生興趣,調(diào)動學(xué)生的積極性,使學(xué)生覺得學(xué)有所用;
·問題目標引導(dǎo)探究策略:通過問題目標的驅(qū)動,引導(dǎo)學(xué)生積極思考生活中的函數(shù)問題,并通過直觀感知、抽象概括一步步加深對函數(shù)概念的理解,使學(xué)習(xí)循序漸進、由淺入深,積極地參與到猜想、探究的學(xué)習(xí)中;
·自主合作、實驗探究式學(xué)習(xí)策略:建立小組討論、交流、合作的課堂氛圍,主張“先學(xué)后導(dǎo),問題評價”的教學(xué)思維,采用小組合作學(xué)習(xí)方式,師生共同圍繞研究這節(jié)課的主要內(nèi)容和問題進行自主學(xué)習(xí)、合作交流,在討論的過程中使學(xué)生思維更加開放、多樣和靈活,給予學(xué)生一定的自主性和創(chuàng)造發(fā)揮的空間,使學(xué)生樂意學(xué)習(xí),主動學(xué)習(xí)。(2)預(yù)期效果分析:
本節(jié)課借助多媒體輔助教學(xué),采用“引導(dǎo)-探究式“教學(xué)方法,整個教學(xué)過程遵循”直觀感知-歸納總結(jié)“的認知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低對抽象問題理解的難度,同時加強了抽象問題具體化的培養(yǎng),注重知識產(chǎn)生的
過程性,使學(xué)生更容易的記住本節(jié)課知識??紤]到學(xué)生的實際,有意地設(shè)計了一些鋪墊和引導(dǎo),既鞏固已有知識,又為新知識提供了附著點,充分體現(xiàn)學(xué)生的主體地位。
本節(jié)課做題過程中滲透了分類討論的數(shù)學(xué)思想方法,設(shè)計中注重對學(xué)生自己發(fā)現(xiàn)問題,自己解決問題能力的培養(yǎng),使學(xué)生學(xué)會思考、掌握方法,有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。相信通過這節(jié)課的學(xué)習(xí)會達到比較好地教學(xué)效果。
函數(shù)的課件【篇7】
1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進行初步的應(yīng)用.
(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.
(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實質(zhì)去研究認識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.
2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點,通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.
3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進行對稱美,簡潔美等審美教育,調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.
(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).
(2) 本節(jié)的教學(xué)重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點.
(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點.
(1) 對數(shù)函數(shù)在引入時,就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù) 的`分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點,一定要讓學(xué)生動手做,動腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
教學(xué)設(shè)計示例1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.
2. 通過對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點,滲透數(shù)形結(jié)合,分類討論的思想.
3. 通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動學(xué)生學(xué)習(xí)的積極性.
重點是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).
難點是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).
今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實質(zhì)是研究兩個函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).
由學(xué)生說出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個學(xué)生口答求反函數(shù)的過程:
由 得 .又 的值域為 ,
所求反函數(shù)為 .
那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).
由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認識是什么?
教師可提示學(xué)生從反函數(shù)的三定與三反去認識,從而找出對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).
提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時教師也應(yīng)指出用列表描點法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.
由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時,要求學(xué)生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準確(關(guān)鍵點的位置,圖像的變化趨勢等).
(2) 畫出直線 .
(3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標系內(nèi))如圖:
2. 草圖.
教師畫完圖后再利用投影儀將? 和 的圖像畫在同一坐標系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)
由以上兩條可說明圖像位于 軸的右側(cè).
(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點即以 軸為漸近線.
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于 軸對稱.
(5) 單調(diào)性:與 有關(guān).當 時,在 上是增函數(shù).即圖像是上升的
當 時,在 上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當 時,有 ;當 時,有 .
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個結(jié)論的方法:當?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)
對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
例1.? 求下列函數(shù)的定義域:
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.
(1) 與 ;????? (2) 與 ;
(3) 與 ;????????? ?(4) 與 .
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W(xué)生以其中一組為例寫出詳細的比較過程.
(1)??? 定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性
(1) 已知 是函數(shù) 的反函數(shù),且 都有意義.
① 求 ;
② 試比較 與4 的大小,并說明理由.
(2) .
函數(shù)的課件【篇8】
(1)開口___________;
(2)對稱軸是___________;
(3)頂點坐標是___________;
(4)當時,隨的增大而___________;
當時,隨的增大而___________;
(5)函數(shù)圖象有___________點,函數(shù)有___________值;
當_____時,取得__________值____.
問題:那二次函數(shù)的圖象會是什么樣子呢?它會有哪些性質(zhì)呢?它與的圖象有關(guān)系嗎?
Ⅱ.自主探索、小組互學(xué)、展學(xué)提升:
(2)觀察、思考并與同伴交流完成“議一議”
(3)一小組派代表展示,其它小組與老師評價、完善。
(1)作出二次函數(shù)的圖象:
議一議:
仔細觀察,用心思考,與同伴交流:
(1)二次函數(shù)的圖象是什么樣子?
(2)它的開口方向是什么?
(3)它是軸對稱圖形嗎?對稱軸是誰?
(4)它的頂點坐標是什么?
(5)當取什么值時,隨的增大而增大?當取什么值時,隨的增大而減小?
(6)二次函數(shù)的圖象有最高點還是最低點?它會取得最大還是最小值?是多少?
此時,等于多少?
(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?
教師巡視,察看學(xué)生完成情況并適時給予指導(dǎo)。
當學(xué)生展開討論時,參與到學(xué)生的交流中啟發(fā)、點撥學(xué)生的思維。
學(xué)生通過上一環(huán)節(jié)的作圖、觀察、比較、歸納、交流討論等過程,已經(jīng)積累了一些方法和經(jīng)驗,所以此環(huán)節(jié)由學(xué)生自己獨立完成:
(1)作出二次函數(shù)的圖象;
(2)觀察、思考完成“想一想”
(3)一學(xué)生展示,其他同學(xué)與老師評價、完善。
問:
二次函數(shù)的圖象會是什么樣子?它與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?它圖象的開口方向、對稱軸、頂點坐標是什么?它的增減性、最值是什么情況呢?請你先猜一猜,然后做出它的圖象觀察思考,你猜的對嗎?
(1)作出二次函數(shù)的圖象:
(1)二次函數(shù)的圖象是什么樣子?
(2)它的開口方向是什么?
(3)它是軸對稱圖形嗎?對稱軸是誰?
(4)它的頂點坐標是什么?
(5)當取什么值時,隨的增大而增大?當取什么值時,隨的增大而減小?
(6)二次函數(shù)的圖象有最高點還是最低點?它會取得最大還是最小值?是多少?
此時,等于多少?
(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點和不同點呢?它們的圖象之間有什么關(guān)系呢?
教師巡視,察看學(xué)生解決問題情況并適時指導(dǎo).之后請學(xué)生展示,師生共同評價完善.
Ⅳ.自主探索、小組互學(xué)、展學(xué)提升:
學(xué)生在前面作圖、觀察、思考、交流討論的基礎(chǔ)上,完成“猜一猜”,然后師生共同利用計算機進行驗證。最后,學(xué)生在交流討論的基礎(chǔ)上總結(jié)二此函數(shù)的性質(zhì)。
猜一猜:
(1)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).
(2)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).
議一議:
(1)二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?
(2)二次函數(shù)的性質(zhì):
函數(shù)的課件【篇9】
2.函數(shù)f(x)=(a2-1)x在R上是減函數(shù),則a的取值范圍是( )
4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b
(C)y= (D)y=
8.若函數(shù)y=32x-1的反函數(shù)的圖像經(jīng)過P點,則P點坐標是( )
(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)
10.已知函數(shù)f(x)=ax+k,它的.圖像經(jīng)過點(1,7),又知其反函數(shù)的圖像經(jīng)過點(4,0),則函數(shù)f(x)的表達式是( )
(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3
11.已知01,b-1,則函數(shù)y=ax+b的圖像必定不經(jīng)過( )
12.一批設(shè)備價值a萬元,由于使用磨損,每年比上一年價值降低b%,則n年后這批設(shè)備的價值為( )
(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n
13.若a a ,則a的取值范圍是 。
14.若10x=3,10y=4,則10x-y= 。
15.化簡= 。
18.(12分)若 ,求 的值.
19.(12分)設(shè)01,解關(guān)于x的不等式a a .
20.(12分)已知x [-3,2],求f(x)= 的最小值與最大值。
21.(12分)已知函數(shù)y=( ) ,求其單調(diào)區(qū)間及值域。
22.(14分)若函數(shù) 的值域為 ,試確定 的取值范圍。
題號 11 12 13 14 15 16 17 18 19 20
4.(- ,0) (0,1) (1,+ ) ,聯(lián)立解得x 0,且x 1。
5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U為減函數(shù),( )9 y 39。 6。D、C、B、A。
令y=3U,U=2-3x2, ∵y=3U為增函數(shù),y=3 的單調(diào)遞減區(qū)間為[0,+ )。
8.0 f(125)=f(53)=f(522-1)=2-2=0。
9. 或3。
Y=m2x+2mx-1=(mx+1)2-2, ∵它在區(qū)間[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。
11.∵ g(x)是一次函數(shù),可設(shè)g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F(xiàn)( )=2, , k=- ,b= ,f(x)=2-
1.∵02, y=ax在(- ,+ )上為減函數(shù),∵ a a , 2x2-3x+1x2+2x-5,解得23,
2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01
3.f(x)= , ∵x [-3,2],.則當2-x= ,即x=1時,f(x)有最小值 ;當2-x=8,即x=-3時,f(x)有最大值57。
4.要使f(x)為奇函數(shù),∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。
5.令y=( )U,U=x2+2x+5,則y是關(guān)于U的減函數(shù),而U是(- ,-1)上的減函數(shù),[-1,+ ]上的增函數(shù), y=( ) 在(- ,-1)上是增函數(shù),而在[-1,+ ]上是減函數(shù),又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域為(0,( )4)]。
由函數(shù)y=2x的單調(diào)性可得x 。
7.(2x)2+a(2x)+a+1=0有實根,∵ 2x0,相當于t2+at+a+1=0有正根,
則
8.(1)∵定義域為x ,且f(-x)= 是奇函數(shù);
(2)f(x)= 即f(x)的值域為(-1,1);
(3)設(shè)x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函數(shù)。
一次函數(shù)課件
編輯為您搜羅的“一次函數(shù)課件”。教案課件是我們老師的部分工作,因此每天老師都會按質(zhì)按時去寫好教案課件。?教學(xué)過程中可以通過教案課件以激發(fā)學(xué)生的興趣。星愿今天的分享能夠幫助到您!
一次函數(shù)課件 篇1
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標.
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當y=0時x=3,當x=0時y=-3??傻弥本€與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
一次函數(shù)課件 篇2
1、本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進一步熟悉其圖象和性質(zhì)的過程。
2、對教材的分析
(1)教學(xué)目標:進一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進行認識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。
(2)重點:會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。
(3)難點:探索并掌握反比例函數(shù)的主要性質(zhì)。
1、提問:
(1)=4/x是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?
(2)作圖的步驟是怎樣的
(3)填寫電腦上的表格,開始在坐標紙上描點連線。
2、按照上述方法作=—4/x的圖象
3、對照你所作的兩個函數(shù)圖象,找一下它們的相同點和不同點。
1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動畫按鈕,在運動中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。
2、演示反比例函數(shù)中心對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。
3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過反比例函數(shù)上任意一點作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。
(1)拖動,使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。
(2)拖動函數(shù)上的點,觀察矩形面積的變化情況,討論得出結(jié)論。
1、給出兩個反比例函數(shù)的`圖象,判斷哪一個是=2/x和=—2/x的圖象。
2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。
課本137頁第1題、141頁第2題
一次函數(shù)課件 篇3
數(shù)學(xué)一次函數(shù)教案
主題:一次函數(shù)的概念與應(yīng)用
一、教學(xué)目標和要求:
1. 掌握一次函數(shù)的定義和性質(zhì);
2. 學(xué)會利用一次函數(shù)解決實際問題;
3. 發(fā)現(xiàn)一次函數(shù)在實際生活中的應(yīng)用。
二、教學(xué)重難點:
1. 一次函數(shù)的定義和性質(zhì);
2. 一次函數(shù)的應(yīng)用解決實際問題。
三、教學(xué)過程:
1. 導(dǎo)入(5分鐘)
老師先通過簡單故事、情境或問題,引起學(xué)生對一次函數(shù)的興趣和注意,激發(fā)學(xué)生學(xué)習(xí)的動機。
2. 定義介紹(10分鐘)
引導(dǎo)學(xué)生回顧數(shù)軸上的點、坐標的概念,并引出一次函數(shù)的定義。通過例題的引導(dǎo),幫助學(xué)生理解一次函數(shù)的定義和特點,并引導(dǎo)學(xué)生進行概念總結(jié)。
3. 性質(zhì)探究(15分鐘)
通過觀察、思考和討論,引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)的性質(zhì),并進行總結(jié)。包括線性增長與線性減少,滿足函數(shù)定義等。
4. 應(yīng)用實例(20分鐘)
通過一些生活實例,讓學(xué)生體驗利用一次函數(shù)解決實際問題的過程。比如購物優(yōu)惠活動中的打折策略、汽車燃油消耗的模型等。讓學(xué)生將實際問題轉(zhuǎn)化為一次函數(shù)的表達式,并進行計算和分析。
5. 實例講解(15分鐘)
選取一些典型的一次函數(shù)的實例,對解題過程進行詳細講解。通過解析實例,讓學(xué)生了解一次函數(shù)解題的方法和技巧。
6. 練習(xí)和鞏固(20分鐘)
設(shè)計一些小組討論、個人練習(xí)和問題解答等不同形式的練習(xí),讓學(xué)生鞏固和運用所學(xué)的知識和技能。
四、教學(xué)評價:
在教學(xué)過程中,可以通過觀察學(xué)生的參與程度和合作情況,以及利用小組討論中的發(fā)言和回答問題的情況,來評價學(xué)生的掌握程度和應(yīng)用能力。同時,可以設(shè)計一些綜合性的問題或?qū)嶋H問題供學(xué)生解答,檢驗其對一次函數(shù)的理解和應(yīng)用能力。
五、拓展延伸:
對于學(xué)有余力的學(xué)生,可以介紹二次函數(shù)的概念和性質(zhì),讓他們進一步深入了解函數(shù)這一概念,提高他們的數(shù)學(xué)思維和解決問題的能力。
六、教學(xué)反思:
通過這堂課的教學(xué)實踐,我發(fā)現(xiàn)學(xué)生對一次函數(shù)的定義和性質(zhì)掌握得還不夠扎實,有一些學(xué)生還存在一些概念上的模糊。下一次教學(xué)中,我將更注重概念的講解和例題的引導(dǎo),加強學(xué)生對一次函數(shù)的理解和應(yīng)用能力的培養(yǎng)。同時,還需要更多的實際問題和應(yīng)用實例,來幫助學(xué)生將抽象的數(shù)學(xué)概念與實際生活相聯(lián)系,增強學(xué)習(xí)的趣味性和實際意義。
一次函數(shù)課件 篇4
教學(xué)目標:
1、能夠用熱情、歡快的聲音演唱《木瓜恰恰恰》,感受歌曲的歡快情緒和喜悅心情。
2、能夠用打擊樂器為歌曲伴奏。
3、用叫賣的演唱形式表達歌曲,了解一些相關(guān)文化以及“叫賣”的藝術(shù)形式。
教學(xué)重點及難點:
1、用熱情、歡快的聲音演唱《木瓜恰恰恰》。
2、正確地演唱《木瓜恰恰恰》的弱起小節(jié)及切分節(jié)奏。教學(xué)準備:多媒體(ppt)、flash動畫、歌曲(mp3)、打擊樂器(沙錘、雙響筒、碰鈴等)
教學(xué)過程:
一、播放《賣湯圓》和《冰糖葫蘆》,學(xué)生走進教室。讓學(xué)生感受叫賣調(diào)(歡快、活潑、幽默、詼諧)
導(dǎo)課:師:同學(xué)們,剛才聽的歌曲你們熟悉嗎?你們知道是賣什么的?像這種類型的歌曲叫什么歌?介紹叫賣歌。今天,咱們學(xué)習(xí)一首印尼叫賣歌曲《木瓜恰恰恰》板書課題。
二、走入印尼國家
1、師:印尼是哪個國家?知道嗎?(印度尼西亞)。你們想去看看嗎?師:印度尼西亞,是“水中島國”,是由許多大小島嶼組成的群島國家,又稱“千島之國”。這里火山活躍,又被稱為“火山之國”。該國家盛產(chǎn)水果。它的首都是雅加達,有“歌舞之邦”的美稱,生活在各島上的100多個民族都有自己獨特的民歌、舞蹈和樂器,各族人民都非常熱愛音樂,尤其在印度尼西亞的著名旅游勝地——巴厘島,舞蹈已成為人民生活的一部分。
師:你們感受到印尼美嗎?(學(xué)生答)
2、出示印尼水果市場
師:我們又來到了哪里?(水果市場)印度尼西亞的水果特別多,集市上到處都有各種各樣的水果,可真是琳瑯滿目。到處都有吆喝聲叫賣水果聲。咱們有沒有興趣來學(xué)學(xué)各種叫賣聲,看誰的叫賣聲最能吸引顧客來光顧。
二、感受歌曲,解決重難點
1、播放《木瓜恰恰恰》flash動畫
師:歌曲給你帶來什么感受?(歡快、活潑、高興等)
2、范唱歌曲
師:你聽出來歌曲中唱到哪些水果?(番石榴、菠蘿等)
3、介紹弱起小節(jié)和切分音
4、跟老師一起讀有節(jié)奏的.叫賣聲,雙手拍腿
師:這個恰恰恰是輕快的還是笨重的?出現(xiàn)在每個樂句的前面還是末尾?(師生一起說“恰恰恰”。)
4、師生一起隨著歌聲唱唱輕快的“恰恰恰”。(“恰恰恰”聲音要求輕巧、有彈性)
5.如果讓你給這段歌聲加上伴奏的話,你覺得在哪兒加比較合適?(生略)讓我們拿起自己制作的沙錘或其他打擊樂器為音樂加上伴奏。
6、師:除了用樂器還可以用什么來表現(xiàn)恰恰恰韻律(扭胯)
7、我們一起邊說邊做,看誰的動作既能合上音樂的感覺又和別人都不一樣(師生共同扭胯)。(發(fā)現(xiàn)較好學(xué)生,請她上臺帶領(lǐng)同學(xué)們再來一次。)
8、師:剛才我們又唱又跳,真開心!師:下面我們來學(xué)唱這首歌
四、學(xué)唱歌曲
1、讓學(xué)生用“啦”哼唱歌曲
2、跟琴學(xué)唱歌譜
3、完整演唱歌譜
4、按節(jié)奏讀歌詞
5、教唱歌詞
6、完整演唱歌曲
五、用多種形式表演歌曲
分組唱:一組唱,另一組打節(jié)奏。
師生合作:跟伴奏,邊唱邊表演打節(jié)奏。
教師小結(jié)
師:今天,我們通過對叫賣歌曲的學(xué)習(xí),了解了叫賣歌曲的特點,這些極富情趣的演唱給了我們極大的藝術(shù)享受。其實啊,這些音樂都來源于我們的生活,只要你多做有心人,你也一定可以創(chuàng)作出動聽有趣的音樂。好,今天的音樂課我們就上到這里,下課。
一次函數(shù)課件 篇5
【數(shù)學(xué)一次函數(shù)教案】
主題:求解一次函數(shù)的相關(guān)方法與應(yīng)用
一、教學(xué)目標
1. 理解一次函數(shù)的定義和特征;
2. 熟練掌握一次函數(shù)的圖像、表達式和性質(zhì);
3. 掌握一次函數(shù)的求解方法,解決與實際問題的應(yīng)用;
4. 培養(yǎng)學(xué)生分析問題、解決問題的能力。
二、教學(xué)重點
1. 一次函數(shù)的性質(zhì)與表達式;
2. 一次函數(shù)的圖像及其相關(guān)參數(shù);
3. 一次函數(shù)的求解方法。
三、教學(xué)內(nèi)容
1. 一次函數(shù)的定義和性質(zhì):
了解一次函數(shù)的定義,并指出一次函數(shù)的圖像是一條直線;
了解一次函數(shù)的表達式形式,即y = kx + b;
了解一次函數(shù)的斜率和截距的概念,理解斜率對應(yīng)直線的傾斜程度。
2. 一次函數(shù)的圖像和特點:
通過在平面直角坐標系中畫出一次函數(shù)的圖像,探究函數(shù)的斜率和截距對圖像的影響;
探究當斜率k為正數(shù)和負數(shù)時,直線的走勢和傾斜方向的不同;
理解截距b的正負對圖像的平移和位置的影響。
3. 一次函數(shù)的求解方法:
理解如何求解一次函數(shù)的零點,即函數(shù)與x軸的交點;
學(xué)會通過斜率和截距求解直線的方程;
了解如何求解一次函數(shù)的交點,即兩函數(shù)的解(非一次函數(shù))。
4. 一次函數(shù)在實際問題中的應(yīng)用:
探究一次函數(shù)在實際問題中的應(yīng)用案例;
學(xué)會用一次函數(shù)解決實際問題,如關(guān)于速度、距離、成本等方面的問題;
發(fā)展學(xué)生解決實際問題的思維能力。
四、教學(xué)方法
1. 示范法:通過畫圖和計算的方式,引導(dǎo)學(xué)生理解一次函數(shù)的定義和性質(zhì);
2. 指導(dǎo)法:通過具體問題的引導(dǎo),幫助學(xué)生理解一次函數(shù)的應(yīng)用方法;
3. 探究法:通過實例和問題的解析,引導(dǎo)學(xué)生主動思考、探索與發(fā)現(xiàn)。
五、教學(xué)步驟
1. 導(dǎo)入:通過一些實際問題,引出一次函數(shù)的概念和應(yīng)用。
2. 發(fā)現(xiàn):通過畫圖和計算,讓學(xué)生發(fā)現(xiàn)一次函數(shù)圖像的特點和性質(zhì)。
3. 解釋:對一次函數(shù)的斜率和截距進行解釋,并引導(dǎo)學(xué)生理解。
4. 拓展:通過一些實際問題,拓展學(xué)生對一次函數(shù)的應(yīng)用和解決方法。
5. 實踐:通過練習(xí)題和實例,檢驗學(xué)生對一次函數(shù)的理解和應(yīng)用能力。
6. 總結(jié):對一次函數(shù)的定義、性質(zhì)和應(yīng)用進行總結(jié)和歸納。
7. 反思:學(xué)生對本節(jié)課知識的掌握情況,提出問題和解答疑惑。
六、教學(xué)評估
1. 練習(xí)題:布置一些練習(xí)題,測試學(xué)生對一次函數(shù)的掌握情況。
2. 實際問題:讓學(xué)生解答一些實際問題,考察其對一次函數(shù)應(yīng)用的能力。
七、教學(xué)拓展
1. 深化一次函數(shù)的性質(zhì)和應(yīng)用,引入函數(shù)的變化率和幾何意義;
2. 探究一次函數(shù)與其他函數(shù)的關(guān)系,如一次函數(shù)與二次函數(shù)的交點問題;
3. 引入一次方程的概念和求解方法。
八、教學(xué)資源
1. 平面直角坐標紙;
2. 教學(xué)課件;
3. 一次函數(shù)的實際應(yīng)用案例。
九、教學(xué)反饋
1. 學(xué)生的課后習(xí)題完成情況;
2. 學(xué)生的實際問題解答情況;
3. 學(xué)生的課堂互動和問題反饋情況。
通過本節(jié)課的學(xué)習(xí),學(xué)生將能夠掌握一次函數(shù)的定義、性質(zhì)和求解方法,并能夠應(yīng)用一次函數(shù)解決實際問題。同時,通過多種教學(xué)方法的運用,幫助學(xué)生培養(yǎng)分析問題和解決問題的能力,提高數(shù)學(xué)思維和運算能力。
一次函數(shù)課件 篇6
八年級數(shù)學(xué)一次函數(shù)教案(教學(xué)目標)
1、經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。
2、理解一次函數(shù)和正比例函數(shù)的概念,能根據(jù)所給條件寫出簡單的一次函數(shù)表達式,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。
八年級數(shù)學(xué)一次函數(shù)教案(重難點)
教學(xué)重點:
正比例函數(shù)的概念及兩者之間的關(guān)系。
2、 會根據(jù)已知信息寫出一次函數(shù)的表達式。
教學(xué)難點: 一次函數(shù)知識的運用教學(xué)方法教師引導(dǎo)學(xué)生自學(xué)法教具準備彈簧一根、
八年級數(shù)學(xué)一次函數(shù)教案(課件教學(xué)過程)
一、創(chuàng)設(shè)問題情境,引入新課
1、 簡單復(fù)習(xí)函數(shù)的概念(設(shè)在某一變化過程中有兩個變量X和Y,如果 ,那么我們稱Y是X的函數(shù),其中X是自變量,Y是因變量)
2、 演示彈簧在力的作用下發(fā)生形變現(xiàn)象,提出問題:在彈簧長度發(fā)生變化過程中,彈簧的長度是哪個變量的函數(shù)?為什么?
3、 汽車勻速行駛途中,油箱中的剩余油量與什么有關(guān)系?這其中有函數(shù)嗎?
二、新課學(xué)習(xí)
1、 做一做。讓學(xué)生做書上157頁上面兩個題目,使學(xué)生在探索一般規(guī)律的過程中,發(fā)展抽象思維能力。
正比例函數(shù)的概念學(xué)習(xí)討論:剛才寫出的.兩個關(guān)系式y(tǒng)=y=100-0.18x在形式上有什么相同之處?
讓學(xué)生分析出他們的共同點:①左邊都是因變量,右邊都是含自變量的代數(shù)式;②自變量X與因變量Y的次數(shù)都是1;③從形式上看,形式都為y=kx+b,K,b為常數(shù)。
問:從自變量的次數(shù)上看,這樣的函數(shù)大家認為可以取個什么名字?引導(dǎo)學(xué)生歸納出一次函數(shù)的概念:若兩個變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x是自變量,y是因變量)。
問:一次函數(shù)y=kx+b中,k可以為0嗎?b可以為0嗎?引導(dǎo)學(xué)生得出正比例函數(shù)的概念。
并接著引導(dǎo)學(xué)生比較一次函數(shù)與正比例函數(shù)的關(guān)系(用集合的方法比較):一次函包括正比例函數(shù),正比例函數(shù)是一次函數(shù)的特殊情況。
3、 例題學(xué)習(xí)
例題1是考察學(xué)生對一次函數(shù)與正比例函數(shù)概念的理解,學(xué)生直接進行口答。
例題2是培養(yǎng)學(xué)生根據(jù)題意列出簡單一次函數(shù)關(guān)系式及利用一次函數(shù)解決實際問題的能力。其中第三問嚴格地講應(yīng)先判斷出工資的范圍是800
三、隨堂練習(xí)
b的值。若不是一次函數(shù),請說明理由。
A、y= +x B、y=-y=y=6-
2、已知函數(shù)y=(m+1)x+(m2-1),當m ,y是x的一次函數(shù);當m ,y是x的正比例函數(shù)。
四、拓展應(yīng)用
學(xué)校組織部分學(xué)生去井崗山體驗革命歷史。出行方面準備從甲、乙兩家旅行社中選擇一家代辦,已知兩家旅行社報價相同,都是每人y乙,解答下列問題:(
讓學(xué)生歸納本節(jié)課學(xué)習(xí)內(nèi)容:
正比例函數(shù)概念以及它們之間的關(guān)系。
2、會根據(jù)已知信息寫出一次函數(shù)的關(guān)系式。
一次函數(shù)課件 篇7
一、教材分析
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標為二元一次方程組的近似解,要得到準確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準確的.
二、學(xué)情分析
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.
三、目標分析
1.教學(xué)目標
知識與技能目標
(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法目標
(1) 教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2) 通過做一做引入例1,進一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
(3) 情感與態(tài)度目標
(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
2.教學(xué)重點
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
3.教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
四、教法學(xué)法
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標紙.
五、教學(xué)過程
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.
第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
3.在一次函數(shù)y= 的圖像上任取一點,它的坐標適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程.
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.
前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進入下一環(huán)節(jié).
第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:1.解方程組
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標系內(nèi)分別作出這兩個函數(shù)的圖像.
3.方程組的解和這兩個函數(shù)的圖像的交點坐標有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標;
(2) 求兩條直線的交點坐標可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達式聯(lián)立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標打下基礎(chǔ).
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的.意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.
第三環(huán)節(jié) 典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點坐標是 .
意圖:設(shè)計例1進一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊.
效果:進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
第四環(huán)節(jié) 反饋練習(xí)
內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點為 ,則 .
2.已知一次函數(shù) 與 的圖像都經(jīng)過點A(2,0),且與 軸分別交于B,C兩點,則 的面積為( ).
(A)4 (B)5 (C)6 (D)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點坐標可以看作哪個方程組的解?
意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.
效果:加深了兩條直線交點的坐標就是對應(yīng)的函數(shù)表達式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
第五環(huán)節(jié) 課堂小結(jié)
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1) 以二元一次方程的解為坐標的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1) 方程組的解是對應(yīng)的兩條直線的交點坐標;
(2) 兩條直線的交點坐標是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強調(diào)的是由于作圖的不準確性,由圖像法求得的解是近似解.
意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進一步明確學(xué)什么,學(xué)了有什么用.
第六環(huán)節(jié) 作業(yè)布置
習(xí)題7.7
附: 板書設(shè)計
六、教學(xué)反思
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準確性,所求的解往往是近似解.因此為了準確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.
一次函數(shù)課件 篇8
【教學(xué)目標】
【知識目標】
1、使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
3、能利用二元一次方程組確定一次函數(shù)的表達式
【能力目標】
通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.
【情感目標】
通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
【教學(xué)重點】
1、二元一次方程和一次函數(shù)的關(guān)系
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解
【教學(xué)難點】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力
知識點
一、學(xué)生起點分析:
學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。
學(xué)生的活動經(jīng)驗基礎(chǔ):學(xué)生能夠根據(jù)已知條件準確畫出一次函數(shù)圖象,能夠認識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認識,有小組合作學(xué)習(xí)經(jīng)驗.
二、學(xué)習(xí)任務(wù)分析:
本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的'教學(xué)目標為:
1.初步理解二元一次方程和一次函數(shù)的關(guān)系;
2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
教學(xué)重點
二元一次方程和一次函數(shù)的關(guān)系;
教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
四、教法學(xué)法
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標紙.
五、教學(xué)過程
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.
同步練習(xí)
A,B兩地相距100千米,甲、乙兩人騎車同時分別從A,B兩地相向而行.假設(shè)他們都保持勻速行駛,則他們各自到A地的距離S(千米)都是騎車時間t(時)的一次函數(shù).1小時后乙距離A地80千米;2小時后甲距離A地30千米.問經(jīng)過多長時間兩人將相遇?
三典型例題,探究一次函數(shù)解析式的確定
內(nèi)容:例1某長途汽車客運站規(guī)定,乘客可以免費攜帶一定質(zhì)量的行李,但超過該質(zhì)量則需購買行李票,且行李費y(元)是行李質(zhì)量x(千克)的一次函數(shù).現(xiàn)知李明帶了60千克的行李,交了行李費5元,張華帶了90千克的行李,交了行李費10元.
(1)寫出y與x之間的函數(shù)表達式;
(2)旅客最多可免費攜帶多少千克的行李?
一次函數(shù)課件 篇9
一次函數(shù)是數(shù)學(xué)中最基礎(chǔ)的函數(shù)之一,也是中學(xué)數(shù)學(xué)中最早接觸的函數(shù)之一。學(xué)習(xí)一次函數(shù)的概念和性質(zhì)對于理解其他更復(fù)雜的函數(shù)以及應(yīng)用數(shù)學(xué)非常重要。下面是一篇關(guān)于數(shù)學(xué)一次函數(shù)教案的主題范文,旨在幫助學(xué)生更好地理解和應(yīng)用一次函數(shù)。
主題:一次函數(shù)的定義、性質(zhì)及應(yīng)用
范文:
一、引言
在我們平常的生活中,許多的數(shù)學(xué)問題都能夠通過使用一次函數(shù)來進行解決。一次函數(shù)是一種非常常見且重要的數(shù)學(xué)函數(shù),它可以用簡單的線性關(guān)系來描述數(shù)值之間的關(guān)系。本節(jié)課我們將學(xué)習(xí)一次函數(shù)的定義、性質(zhì)以及如何將其應(yīng)用到實際問題中。
二、一次函數(shù)的定義與性質(zhì)
1. 一次函數(shù)的定義
一次函數(shù)是指具有形如 y = ax + b 的函數(shù),其中a和b是常數(shù),且a不等于0。在一次函數(shù)中,自變量(x)的最高次數(shù)為1,因此也稱為線性函數(shù)。
2. 一次函數(shù)的性質(zhì)
(1)一次函數(shù)的圖像是一條直線,且直線的斜率等于函數(shù)中a的系數(shù),斜率可以表示函數(shù)的變化率。
(2)當a大于0時,函數(shù)是遞增的,當a小于0時,函數(shù)是遞減的。
(3)如果a等于0,那么函數(shù)將變成一個常數(shù)函數(shù),即無論自變量的值如何變化,函數(shù)的值都保持不變。
(4)一次函數(shù)的x軸上的截距為-b/a,即y=0時的解。
三、一次函數(shù)的應(yīng)用
1. 線性方程
一次函數(shù)可以用來解決線性方程。例如,一個商店出售T恤衫,每件T恤衫售價為20元,可以用一次函數(shù) y = 20x 來表示其中x表示購買的件數(shù),y表示總價。這樣當我們知道購買件數(shù)時,可以通過計算得到總價。
2. 成本、收益、利潤
一次函數(shù)還可以用來描述成本、收益和利潤之間的關(guān)系。如果我們知道某個企業(yè)生產(chǎn)一個產(chǎn)品的成本為10元每件,售價為30元每件,那么利潤可以用一次函數(shù) y = 20x - 10 來表示,其中x表示銷售數(shù)量,y表示利潤。
3. 速度和時間
一次函數(shù)還可以用來描述速度和時間之間的關(guān)系。例如,一輛汽車以每小時60公里的速度行駛,那么行駛時間t和行駛距離d之間可以表示為一次函數(shù) d = 60t。
四、綜合練習(xí)
1. 已知一次函數(shù)過點(2, 4)和斜率為3,求函數(shù)的解析式。
解:設(shè)函數(shù)的解析式為y = ax + b,根據(jù)過點(2, 4)可以得到 4 = 2a + b。根據(jù)斜率為3可以得到a = 3。將a的值代入第一個方程中解得b = -2。因此,函數(shù)的解析式為y = 3x - 2。
2. 一輛汽車以每小時100公里的速度勻速行駛,從A地到B地共需5小時。求AB兩地的距離。
解:設(shè)AB兩地的距離為d,根據(jù)速度和時間的關(guān)系可得 d = 100 × 5 = 500公里。因此,AB兩地的距離為500公里。
五、總結(jié)
本節(jié)課我們學(xué)習(xí)了一次函數(shù)的定義、性質(zhì)以及如何將其應(yīng)用到實際問題中。一次函數(shù)是數(shù)學(xué)中最基礎(chǔ)的函數(shù)之一,它的圖像是一條直線,斜率表示了函數(shù)的變化率。通過本節(jié)課的學(xué)習(xí),希望大家能夠更好地理解和應(yīng)用一次函數(shù),并能夠?qū)⑵溥\用到實際生活中解決問題。
一次函數(shù)課件 篇10
教學(xué)目標
(一)知識認知要求
1、認識一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關(guān)系;
2、學(xué)會用圖象法求解方程;
3、進一步理解數(shù)形結(jié)合思想;
(二)能力訓(xùn)練要求
1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識;
2、訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力。
(三)情感與價值觀要求
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認識到數(shù)學(xué)是解決問題和進行交流的重要工具,了解數(shù)學(xué)對促進社會進步和發(fā)展人類理性精神的.作用。
教學(xué)重點與難點
1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。
2、掌握用圖象求解方程的方法。
教學(xué)過程
一、提出問題
(1)方程2x+20=0;(2)函數(shù)y=2x+20
觀察思考:二者之間有什么聯(lián)系?
從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時,對應(yīng)自變量x的值
從形上看:函數(shù)y=2x+20與x軸交點的橫坐標即為方程2x+20=0的解
根據(jù)上述問題,教師啟發(fā)學(xué)生思考:
根據(jù)學(xué)生回答,教師總結(jié):
由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當某一個函數(shù)的值為0時,求相應(yīng)的自變量的值。從圖象上看,這相當于已知直線y=ax+b,確定它也x軸交點的橫坐標的值。
二、典型例題:
例1、(書中例1)一個物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?
一次函數(shù)課件 篇11
教學(xué)目標:
1.經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象概括思維能力
2.理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,《一次函數(shù)》教案。能根據(jù)所給條件寫出簡單的一次函數(shù)表達式。
3.通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。
教學(xué)重點:
1.一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2.會根據(jù)已知信息寫出一次函數(shù)的表達式。
教學(xué)難點:
會根據(jù)已知信息寫出一次函數(shù)的表達式。
教學(xué)方法:
引導(dǎo)學(xué)生自學(xué)法、互動學(xué)習(xí)法、啟發(fā)討論式。
教具準備:
多媒體課件(補充練習(xí)6.2A)
教學(xué)過程:
一、導(dǎo)入新課
上節(jié)課我們已學(xué)習(xí)過函數(shù)的概念,在某個變化過程中,有兩個變量x和y,如果給定一個x值,相應(yīng)地就確定了一個y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。在現(xiàn)實生活中有許多問題都可以歸結(jié)為函數(shù)問題。大家能不能舉一些列子呢?
二、推進新課
復(fù)習(xí)函數(shù)的概念及方程,接下來我們要從最簡單而重要的一種函數(shù)講起,到底是什么樣的函數(shù)請看P182引例和做一做
1、P182引例:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。
(1)計算所掛物體的質(zhì)量分別為1千克、2千克、3千克、4千克、5千克時彈簧的長度,并填入下表:
x/千克012345y/厘米33.544.555.5
(2)你能寫出x與y之間的關(guān)系式嗎?
分析:當不掛物體時,彈簧長度為3厘米,當掛1千克物體時,增加0.5厘米,總長度為3.5厘米,當增加1千克物體,即所掛物體為2千克時,彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。
2、P182做一做
某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。
(1)完成下表:
汽車行駛路程x/千米050100150200300
油箱剩余油量y/升
你能寫出x與y之間的關(guān)系嗎?(y=100-0.18x或y=100-x)
3、一次函數(shù),正比例函數(shù)的概念
上面的兩個函數(shù)關(guān)系式為y=0.5x+3,y=100-0.18x,都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當b=0時,稱y是x的正比例函數(shù)。
小練:下列函數(shù)中,y是x的一次函數(shù)的是
①y=x-6;②y=;③y=;④y=7-x;⑤
4、例題講解
P183例1:寫出下列各題中x與y之間的關(guān)系式,并判斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?
①汽車以60千米/時的速度勻速行駛,行駛路程中y(千米)與行駛時間x(時)之間的關(guān)系式;
②圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;
③一棵樹現(xiàn)在高50厘米,每個月長高2厘米,x月后這棵樹的高度為y(厘米)
[(1)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);
(2)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);
(3)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)]。
例2:當k=時,是一次函數(shù)
P183例3:我國現(xiàn)行個人工資、薪金稅征收辦法規(guī)定:月收入低于1600元的部分不收稅;月收入超過1600元但低于2100元的部分征收5%的所得稅…如某人某月收入1960元,他應(yīng)繳個人工資薪金所得稅為(1960-800)×5%=18(元)
①當月收入大于1600元而又小于2100元時,寫出應(yīng)繳所得稅y(元)與月收入x(元)之間的關(guān)系式。
②某人某月收入為1760元,他應(yīng)繳所得稅多少元?
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?
分析:對于③應(yīng)要注意19.2是否在范圍之內(nèi)
(1)當月收入大于1600元而小于2100元時,y=0.05×(x-1600);
(2)當x=1760時,y=0.05×(1760-1600)=8(元);
(3)當x=2100時,y=0.05×(1300-1600)=25(元),25 19.2,
因此本月工資少于2100元,設(shè)此人本月工資是x元,則0.05×(x-1600)=19.2,x=1984。
三、課堂練習(xí)
1、隨堂練習(xí)
(1)解:y=2.2x,y是x的一次函數(shù),也是x的正比例函數(shù)。
(2)解:y=100+8x,y是x有一次函數(shù)。
2、補充練習(xí)
課件顯示6.2A
1、見下表:
x-2-1012…
y-5-2147…
根據(jù)上表寫出y與x之間的關(guān)系式是:_,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?
2、為了加強公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費標準如下:每戶每月用水量不超過6米3時,水費按0.6元/米3收費;每戶每月用水量超過6米3時,超過部分按1元/米3收費。設(shè)每戶每月用水量為x米3,應(yīng)繳水費y元。(1)寫出每月用水量不超過6米3和超過6米3時,y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費。
[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]
四、課后小結(jié)
1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。
2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達式。
五、課后作業(yè)
P186:1,2 MSN(中國)