幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

一次函數(shù)課件

發(fā)布時(shí)間:2024-04-17 一次函數(shù)課件

一次函數(shù)課件。

編輯為您搜羅的“一次函數(shù)課件”。教案課件是我們老師的部分工作,因此每天老師都會按質(zhì)按時(shí)去寫好教案課件。?教學(xué)過程中可以通過教案課件以激發(fā)學(xué)生的興趣。星愿今天的分享能夠幫助到您!

一次函數(shù)課件 篇1

2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。

3、解方程(組),求出待定系數(shù);。

4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。

例、已知:一次函數(shù)的圖象經(jīng)過點(diǎn)(2,--1)和點(diǎn)(1,-2).

(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo)。

分析:一般一次函數(shù)有兩個(gè)待定字母k、b.要求解析式,只須將兩個(gè)獨(dú)立條件代入,再解方程組即可.凡涉及求兩個(gè)函數(shù)圖象的交點(diǎn)坐標(biāo)時(shí),一般方法是將兩個(gè)函數(shù)的解析式組成方程組,求出方程組的解就求出了交點(diǎn)坐標(biāo).

解:(1)設(shè)函數(shù)解析式為y=kx+b.

(2)當(dāng)y=0時(shí)x=3,當(dāng)x=0時(shí)y=-3??傻弥本€與x軸交點(diǎn)(3,0)、與y軸交點(diǎn)(0,-3)。

評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點(diǎn)均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.

一次函數(shù)課件 篇2

1、本節(jié)課講述內(nèi)容為北師大版教材九年級下冊第五章《反比例函數(shù)》的第二節(jié),也這一章的重點(diǎn)。本節(jié)課是在理解反比例函數(shù)的意義和概念的基礎(chǔ)上,進(jìn)一步熟悉其圖象和性質(zhì)的過程。

2、對教材的分析

(1)教學(xué)目標(biāo):進(jìn)一步熟悉作函數(shù)圖象的主要步驟,會作反比例函數(shù)的圖象;體會函數(shù)三種方式的相互轉(zhuǎn)換,對函數(shù)進(jìn)行認(rèn)識上的整和;逐步提高從函數(shù)圖象中獲取知識的能力,探索并掌握反比例函數(shù)的主要性質(zhì)。

(2)重點(diǎn):會作反比例函數(shù)的圖象;探索并掌握反比例函數(shù)的主要性質(zhì)。

(3)難點(diǎn):探索并掌握反比例函數(shù)的主要性質(zhì)。

1、提問:

(1)=4/x是什么函數(shù)?你會作反比例函數(shù)的圖象嗎?

(2)作圖的步驟是怎樣的

(3)填寫電腦上的表格,開始在坐標(biāo)紙上描點(diǎn)連線。

2、按照上述方法作=—4/x的圖象

3、對照你所作的兩個(gè)函數(shù)圖象,找一下它們的相同點(diǎn)和不同點(diǎn)。

1、讓學(xué)生觀察函數(shù)=/x的圖象,按下動(dòng)畫按鈕,在運(yùn)動(dòng)中觀察值的變化與函數(shù)圖象變化之間的關(guān)系,并與同學(xué)充分討論有何規(guī)律。

2、演示反比例函數(shù)中心對稱的性質(zhì)以及軸對稱性質(zhì),顯示反比例函數(shù)的兩條對稱軸。

3、讓學(xué)生觀察函數(shù)=/x的圖象,觀察過反比例函數(shù)上任意一點(diǎn)作x軸和軸的垂線,觀察其圍成矩形的面積變化情況。

(1)拖動(dòng),使變化,觀察不斷變化過程中,矩形面積的變化情況,討論得出結(jié)論。

(2)拖動(dòng)函數(shù)上的點(diǎn),觀察矩形面積的變化情況,討論得出結(jié)論。

1、給出兩個(gè)反比例函數(shù)的`圖象,判斷哪一個(gè)是=2/x和=—2/x的圖象。

2、判斷一位同學(xué)畫的反比例函數(shù)的圖象是否正確。

課本137頁第1題、141頁第2題

一次函數(shù)課件 篇3

數(shù)學(xué)一次函數(shù)教案

主題:一次函數(shù)的概念與應(yīng)用

一、教學(xué)目標(biāo)和要求:

1. 掌握一次函數(shù)的定義和性質(zhì);

2. 學(xué)會利用一次函數(shù)解決實(shí)際問題;

3. 發(fā)現(xiàn)一次函數(shù)在實(shí)際生活中的應(yīng)用。

二、教學(xué)重難點(diǎn):

1. 一次函數(shù)的定義和性質(zhì);

2. 一次函數(shù)的應(yīng)用解決實(shí)際問題。

三、教學(xué)過程:

1. 導(dǎo)入(5分鐘)

老師先通過簡單故事、情境或問題,引起學(xué)生對一次函數(shù)的興趣和注意,激發(fā)學(xué)生學(xué)習(xí)的動(dòng)機(jī)。

2. 定義介紹(10分鐘)

引導(dǎo)學(xué)生回顧數(shù)軸上的點(diǎn)、坐標(biāo)的概念,并引出一次函數(shù)的定義。通過例題的引導(dǎo),幫助學(xué)生理解一次函數(shù)的定義和特點(diǎn),并引導(dǎo)學(xué)生進(jìn)行概念總結(jié)。

3. 性質(zhì)探究(15分鐘)

通過觀察、思考和討論,引導(dǎo)學(xué)生發(fā)現(xiàn)一次函數(shù)的性質(zhì),并進(jìn)行總結(jié)。包括線性增長與線性減少,滿足函數(shù)定義等。

4. 應(yīng)用實(shí)例(20分鐘)

通過一些生活實(shí)例,讓學(xué)生體驗(yàn)利用一次函數(shù)解決實(shí)際問題的過程。比如購物優(yōu)惠活動(dòng)中的打折策略、汽車燃油消耗的模型等。讓學(xué)生將實(shí)際問題轉(zhuǎn)化為一次函數(shù)的表達(dá)式,并進(jìn)行計(jì)算和分析。

5. 實(shí)例講解(15分鐘)

選取一些典型的一次函數(shù)的實(shí)例,對解題過程進(jìn)行詳細(xì)講解。通過解析實(shí)例,讓學(xué)生了解一次函數(shù)解題的方法和技巧。

6. 練習(xí)和鞏固(20分鐘)

設(shè)計(jì)一些小組討論、個(gè)人練習(xí)和問題解答等不同形式的練習(xí),讓學(xué)生鞏固和運(yùn)用所學(xué)的知識和技能。

四、教學(xué)評價(jià):

在教學(xué)過程中,可以通過觀察學(xué)生的參與程度和合作情況,以及利用小組討論中的發(fā)言和回答問題的情況,來評價(jià)學(xué)生的掌握程度和應(yīng)用能力。同時(shí),可以設(shè)計(jì)一些綜合性的問題或?qū)嶋H問題供學(xué)生解答,檢驗(yàn)其對一次函數(shù)的理解和應(yīng)用能力。

五、拓展延伸:

對于學(xué)有余力的學(xué)生,可以介紹二次函數(shù)的概念和性質(zhì),讓他們進(jìn)一步深入了解函數(shù)這一概念,提高他們的數(shù)學(xué)思維和解決問題的能力。

六、教學(xué)反思:

通過這堂課的教學(xué)實(shí)踐,我發(fā)現(xiàn)學(xué)生對一次函數(shù)的定義和性質(zhì)掌握得還不夠扎實(shí),有一些學(xué)生還存在一些概念上的模糊。下一次教學(xué)中,我將更注重概念的講解和例題的引導(dǎo),加強(qiáng)學(xué)生對一次函數(shù)的理解和應(yīng)用能力的培養(yǎng)。同時(shí),還需要更多的實(shí)際問題和應(yīng)用實(shí)例,來幫助學(xué)生將抽象的數(shù)學(xué)概念與實(shí)際生活相聯(lián)系,增強(qiáng)學(xué)習(xí)的趣味性和實(shí)際意義。

一次函數(shù)課件 篇4

教學(xué)目標(biāo):

1、能夠用熱情、歡快的聲音演唱《木瓜恰恰恰》,感受歌曲的歡快情緒和喜悅心情。

2、能夠用打擊樂器為歌曲伴奏。

3、用叫賣的演唱形式表達(dá)歌曲,了解一些相關(guān)文化以及“叫賣”的藝術(shù)形式。

教學(xué)重點(diǎn)及難點(diǎn):

1、用熱情、歡快的聲音演唱《木瓜恰恰恰》。

2、正確地演唱《木瓜恰恰恰》的弱起小節(jié)及切分節(jié)奏。教學(xué)準(zhǔn)備:多媒體(ppt)、flash動(dòng)畫、歌曲(mp3)、打擊樂器(沙錘、雙響筒、碰鈴等)

教學(xué)過程:

一、播放《賣湯圓》和《冰糖葫蘆》,學(xué)生走進(jìn)教室。讓學(xué)生感受叫賣調(diào)(歡快、活潑、幽默、詼諧)

導(dǎo)課:師:同學(xué)們,剛才聽的歌曲你們熟悉嗎?你們知道是賣什么的?像這種類型的歌曲叫什么歌?介紹叫賣歌。今天,咱們學(xué)習(xí)一首印尼叫賣歌曲《木瓜恰恰恰》板書課題。

二、走入印尼國家

1、師:印尼是哪個(gè)國家?知道嗎?(印度尼西亞)。你們想去看看嗎?師:印度尼西亞,是“水中島國”,是由許多大小島嶼組成的群島國家,又稱“千島之國”。這里火山活躍,又被稱為“火山之國”。該國家盛產(chǎn)水果。它的首都是雅加達(dá),有“歌舞之邦”的美稱,生活在各島上的100多個(gè)民族都有自己獨(dú)特的民歌、舞蹈和樂器,各族人民都非常熱愛音樂,尤其在印度尼西亞的著名旅游勝地——巴厘島,舞蹈已成為人民生活的一部分。

師:你們感受到印尼美嗎?(學(xué)生答)

2、出示印尼水果市場

師:我們又來到了哪里?(水果市場)印度尼西亞的水果特別多,集市上到處都有各種各樣的水果,可真是琳瑯滿目。到處都有吆喝聲叫賣水果聲。咱們有沒有興趣來學(xué)學(xué)各種叫賣聲,看誰的叫賣聲最能吸引顧客來光顧。

二、感受歌曲,解決重難點(diǎn)

1、播放《木瓜恰恰恰》flash動(dòng)畫

師:歌曲給你帶來什么感受?(歡快、活潑、高興等)

2、范唱歌曲

師:你聽出來歌曲中唱到哪些水果?(番石榴、菠蘿等)

3、介紹弱起小節(jié)和切分音

4、跟老師一起讀有節(jié)奏的.叫賣聲,雙手拍腿

師:這個(gè)恰恰恰是輕快的還是笨重的?出現(xiàn)在每個(gè)樂句的前面還是末尾?(師生一起說“恰恰恰”。)

4、師生一起隨著歌聲唱唱輕快的“恰恰恰”。(“恰恰恰”聲音要求輕巧、有彈性)

5.如果讓你給這段歌聲加上伴奏的話,你覺得在哪兒加比較合適?(生略)讓我們拿起自己制作的沙錘或其他打擊樂器為音樂加上伴奏。

6、師:除了用樂器還可以用什么來表現(xiàn)恰恰恰韻律(扭胯)

7、我們一起邊說邊做,看誰的動(dòng)作既能合上音樂的感覺又和別人都不一樣(師生共同扭胯)。(發(fā)現(xiàn)較好學(xué)生,請她上臺帶領(lǐng)同學(xué)們再來一次。)

8、師:剛才我們又唱又跳,真開心!師:下面我們來學(xué)唱這首歌

四、學(xué)唱歌曲

1、讓學(xué)生用“啦”哼唱歌曲

2、跟琴學(xué)唱歌譜

3、完整演唱歌譜

4、按節(jié)奏讀歌詞

5、教唱歌詞

6、完整演唱歌曲

五、用多種形式表演歌曲

分組唱:一組唱,另一組打節(jié)奏。

師生合作:跟伴奏,邊唱邊表演打節(jié)奏。

教師小結(jié)

師:今天,我們通過對叫賣歌曲的學(xué)習(xí),了解了叫賣歌曲的特點(diǎn),這些極富情趣的演唱給了我們極大的藝術(shù)享受。其實(shí)啊,這些音樂都來源于我們的生活,只要你多做有心人,你也一定可以創(chuàng)作出動(dòng)聽有趣的音樂。好,今天的音樂課我們就上到這里,下課。

一次函數(shù)課件 篇5

【數(shù)學(xué)一次函數(shù)教案】

主題:求解一次函數(shù)的相關(guān)方法與應(yīng)用

一、教學(xué)目標(biāo)

1. 理解一次函數(shù)的定義和特征;

2. 熟練掌握一次函數(shù)的圖像、表達(dá)式和性質(zhì);

3. 掌握一次函數(shù)的求解方法,解決與實(shí)際問題的應(yīng)用;

4. 培養(yǎng)學(xué)生分析問題、解決問題的能力。

二、教學(xué)重點(diǎn)

1. 一次函數(shù)的性質(zhì)與表達(dá)式;

2. 一次函數(shù)的圖像及其相關(guān)參數(shù);

3. 一次函數(shù)的求解方法。

三、教學(xué)內(nèi)容

1. 一次函數(shù)的定義和性質(zhì):

了解一次函數(shù)的定義,并指出一次函數(shù)的圖像是一條直線;

了解一次函數(shù)的表達(dá)式形式,即y = kx + b;

了解一次函數(shù)的斜率和截距的概念,理解斜率對應(yīng)直線的傾斜程度。

2. 一次函數(shù)的圖像和特點(diǎn):

通過在平面直角坐標(biāo)系中畫出一次函數(shù)的圖像,探究函數(shù)的斜率和截距對圖像的影響;

探究當(dāng)斜率k為正數(shù)和負(fù)數(shù)時(shí),直線的走勢和傾斜方向的不同;

理解截距b的正負(fù)對圖像的平移和位置的影響。

3. 一次函數(shù)的求解方法:

理解如何求解一次函數(shù)的零點(diǎn),即函數(shù)與x軸的交點(diǎn);

學(xué)會通過斜率和截距求解直線的方程;

了解如何求解一次函數(shù)的交點(diǎn),即兩函數(shù)的解(非一次函數(shù))。

4. 一次函數(shù)在實(shí)際問題中的應(yīng)用:

探究一次函數(shù)在實(shí)際問題中的應(yīng)用案例;

學(xué)會用一次函數(shù)解決實(shí)際問題,如關(guān)于速度、距離、成本等方面的問題;

發(fā)展學(xué)生解決實(shí)際問題的思維能力。

四、教學(xué)方法

1. 示范法:通過畫圖和計(jì)算的方式,引導(dǎo)學(xué)生理解一次函數(shù)的定義和性質(zhì);

2. 指導(dǎo)法:通過具體問題的引導(dǎo),幫助學(xué)生理解一次函數(shù)的應(yīng)用方法;

3. 探究法:通過實(shí)例和問題的解析,引導(dǎo)學(xué)生主動(dòng)思考、探索與發(fā)現(xiàn)。

五、教學(xué)步驟

1. 導(dǎo)入:通過一些實(shí)際問題,引出一次函數(shù)的概念和應(yīng)用。

2. 發(fā)現(xiàn):通過畫圖和計(jì)算,讓學(xué)生發(fā)現(xiàn)一次函數(shù)圖像的特點(diǎn)和性質(zhì)。

3. 解釋:對一次函數(shù)的斜率和截距進(jìn)行解釋,并引導(dǎo)學(xué)生理解。

4. 拓展:通過一些實(shí)際問題,拓展學(xué)生對一次函數(shù)的應(yīng)用和解決方法。

5. 實(shí)踐:通過練習(xí)題和實(shí)例,檢驗(yàn)學(xué)生對一次函數(shù)的理解和應(yīng)用能力。

6. 總結(jié):對一次函數(shù)的定義、性質(zhì)和應(yīng)用進(jìn)行總結(jié)和歸納。

7. 反思:學(xué)生對本節(jié)課知識的掌握情況,提出問題和解答疑惑。(趙老師教案網(wǎng) ZJAn56.COM)

六、教學(xué)評估

1. 練習(xí)題:布置一些練習(xí)題,測試學(xué)生對一次函數(shù)的掌握情況。

2. 實(shí)際問題:讓學(xué)生解答一些實(shí)際問題,考察其對一次函數(shù)應(yīng)用的能力。

七、教學(xué)拓展

1. 深化一次函數(shù)的性質(zhì)和應(yīng)用,引入函數(shù)的變化率和幾何意義;

2. 探究一次函數(shù)與其他函數(shù)的關(guān)系,如一次函數(shù)與二次函數(shù)的交點(diǎn)問題;

3. 引入一次方程的概念和求解方法。

八、教學(xué)資源

1. 平面直角坐標(biāo)紙;

2. 教學(xué)課件;

3. 一次函數(shù)的實(shí)際應(yīng)用案例。

九、教學(xué)反饋

1. 學(xué)生的課后習(xí)題完成情況;

2. 學(xué)生的實(shí)際問題解答情況;

3. 學(xué)生的課堂互動(dòng)和問題反饋情況。

通過本節(jié)課的學(xué)習(xí),學(xué)生將能夠掌握一次函數(shù)的定義、性質(zhì)和求解方法,并能夠應(yīng)用一次函數(shù)解決實(shí)際問題。同時(shí),通過多種教學(xué)方法的運(yùn)用,幫助學(xué)生培養(yǎng)分析問題和解決問題的能力,提高數(shù)學(xué)思維和運(yùn)算能力。

一次函數(shù)課件 篇6

八年級數(shù)學(xué)一次函數(shù)教案(教學(xué)目標(biāo))

1、經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力。

2、理解一次函數(shù)和正比例函數(shù)的概念,能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力。

八年級數(shù)學(xué)一次函數(shù)教案(重難點(diǎn))

教學(xué)重點(diǎn):

正比例函數(shù)的概念及兩者之間的關(guān)系。

2、 會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

教學(xué)難點(diǎn): 一次函數(shù)知識的運(yùn)用教學(xué)方法教師引導(dǎo)學(xué)生自學(xué)法教具準(zhǔn)備彈簧一根、

八年級數(shù)學(xué)一次函數(shù)教案(課件教學(xué)過程)

一、創(chuàng)設(shè)問題情境,引入新課

1、 簡單復(fù)習(xí)函數(shù)的概念(設(shè)在某一變化過程中有兩個(gè)變量X和Y,如果 ,那么我們稱Y是X的函數(shù),其中X是自變量,Y是因變量)

2、 演示彈簧在力的作用下發(fā)生形變現(xiàn)象,提出問題:在彈簧長度發(fā)生變化過程中,彈簧的長度是哪個(gè)變量的函數(shù)?為什么?

3、 汽車勻速行駛途中,油箱中的剩余油量與什么有關(guān)系?這其中有函數(shù)嗎?

二、新課學(xué)習(xí)

1、 做一做。讓學(xué)生做書上157頁上面兩個(gè)題目,使學(xué)生在探索一般規(guī)律的過程中,發(fā)展抽象思維能力。

正比例函數(shù)的概念學(xué)習(xí)討論:剛才寫出的.兩個(gè)關(guān)系式y(tǒng)=y=100-0.18x在形式上有什么相同之處?

讓學(xué)生分析出他們的共同點(diǎn):①左邊都是因變量,右邊都是含自變量的代數(shù)式;②自變量X與因變量Y的次數(shù)都是1;③從形式上看,形式都為y=kx+b,K,b為常數(shù)。

問:從自變量的次數(shù)上看,這樣的函數(shù)大家認(rèn)為可以取個(gè)什么名字?引導(dǎo)學(xué)生歸納出一次函數(shù)的概念:若兩個(gè)變量x,y間的關(guān)系可以表示成y=kx+b(k,b為常數(shù),k≠0)的形式,則稱y是x的一次函數(shù)(x是自變量,y是因變量)。

問:一次函數(shù)y=kx+b中,k可以為0嗎?b可以為0嗎?引導(dǎo)學(xué)生得出正比例函數(shù)的概念。

并接著引導(dǎo)學(xué)生比較一次函數(shù)與正比例函數(shù)的關(guān)系(用集合的方法比較):一次函包括正比例函數(shù),正比例函數(shù)是一次函數(shù)的特殊情況。

3、 例題學(xué)習(xí)

例題1是考察學(xué)生對一次函數(shù)與正比例函數(shù)概念的理解,學(xué)生直接進(jìn)行口答。

例題2是培養(yǎng)學(xué)生根據(jù)題意列出簡單一次函數(shù)關(guān)系式及利用一次函數(shù)解決實(shí)際問題的能力。其中第三問嚴(yán)格地講應(yīng)先判斷出工資的范圍是800

三、隨堂練習(xí)

b的值。若不是一次函數(shù),請說明理由。

A、y= +x B、y=-y=y=6-

2、已知函數(shù)y=(m+1)x+(m2-1),當(dāng)m ,y是x的一次函數(shù);當(dāng)m ,y是x的正比例函數(shù)。

四、拓展應(yīng)用

學(xué)校組織部分學(xué)生去井崗山體驗(yàn)革命歷史。出行方面準(zhǔn)備從甲、乙兩家旅行社中選擇一家代辦,已知兩家旅行社報(bào)價(jià)相同,都是每人y乙,解答下列問題:(

讓學(xué)生歸納本節(jié)課學(xué)習(xí)內(nèi)容:

正比例函數(shù)概念以及它們之間的關(guān)系。

2、會根據(jù)已知信息寫出一次函數(shù)的關(guān)系式。

一次函數(shù)課件 篇7

一、教材分析

本節(jié)內(nèi)容共安排2個(gè)課時(shí)完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點(diǎn),其交點(diǎn)的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.

二、學(xué)情分析

學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.

三、目標(biāo)分析

1.教學(xué)目標(biāo)

知識與技能目標(biāo)

(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;

(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;

(3) 掌握二元一次方程組的圖像解法.

過程與方法目標(biāo)

(1) 教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;

(2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.

(3) 情感與態(tài)度目標(biāo)

(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.

(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.

2.教學(xué)重點(diǎn)

(1)二元一次方程和一次函數(shù)的關(guān)系;

(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.

3.教學(xué)難點(diǎn)

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.

四、教法學(xué)法

1.教法學(xué)法

啟發(fā)引導(dǎo)與自主探索相結(jié)合.

2.課前準(zhǔn)備

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

五、教學(xué)過程

本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.

第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)

內(nèi)容:1.方程x+y=5的解有多少個(gè)? 是這個(gè)方程的解嗎?

2.點(diǎn)(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?

3.在一次函數(shù)y= 的圖像上任取一點(diǎn),它的坐標(biāo)適合方程x+y=5嗎?

4.以方程x+y=5的解為坐標(biāo)的所有點(diǎn)組成的圖像與一次函數(shù)y= 的圖像相同嗎?

由此得到本節(jié)課的第一個(gè)知識點(diǎn):

二元一次方程和一次函數(shù)的圖像有如下關(guān)系:

(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.

效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.

前面研究了一個(gè)二元一次方程和相應(yīng)的一個(gè)一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個(gè)二元一次方程組成的方程組和相應(yīng)的兩個(gè)一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).

第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系

內(nèi)容:1.解方程組

2.上述方程移項(xiàng)變形轉(zhuǎn)化為兩個(gè)一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個(gè)函數(shù)的圖像.

3.方程組的解和這兩個(gè)函數(shù)的圖像的交點(diǎn)坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個(gè)知識點(diǎn):二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;

(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點(diǎn)的橫縱坐標(biāo);

(2) 求兩條直線的交點(diǎn)坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.

(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.

注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.

意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點(diǎn)坐標(biāo)打下基礎(chǔ).

效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的.意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.

第三環(huán)節(jié) 典型例題

探究方程與函數(shù)的相互轉(zhuǎn)化

內(nèi)容:例1 用作圖像的方法解方程組

例2 如圖,直線 與 的交點(diǎn)坐標(biāo)是 .

意圖:設(shè)計(jì)例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時(shí)解決實(shí)際問題作了很好的鋪墊.

效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.

第四環(huán)節(jié) 反饋練習(xí)

內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點(diǎn)為 ,則 .

2.已知一次函數(shù) 與 的圖像都經(jīng)過點(diǎn)A(2,0),且與 軸分別交于B,C兩點(diǎn),則 的面積為( ).

(A)4 (B)5 (C)6 (D)7

3.求兩條直線 與 和 軸所圍成的三角形面積.

4.如圖,兩條直線 與 的交點(diǎn)坐標(biāo)可以看作哪個(gè)方程組的解?

意圖:4個(gè)練習(xí),意在及時(shí)檢測學(xué)生對本節(jié)知識的掌握情況.

效果:加深了兩條直線交點(diǎn)的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計(jì)算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.

第五環(huán)節(jié) 課堂小結(jié)

內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:

1.二元一次方程和一次函數(shù)的圖像的關(guān)系;

(1) 以二元一次方程的解為坐標(biāo)的點(diǎn)都在相應(yīng)的函數(shù)圖像上;

(2) 一次函數(shù)圖像上的點(diǎn)的坐標(biāo)都適合相應(yīng)的二元一次方程.

2.方程組和對應(yīng)的兩條直線的關(guān)系:

(1) 方程組的解是對應(yīng)的兩條直線的交點(diǎn)坐標(biāo);

(2) 兩條直線的交點(diǎn)坐標(biāo)是對應(yīng)的方程組的解;

3.解二元一次方程組的方法有3種:

(1)代入消元法;

(2)加減消元法;

(3)圖像法. 要強(qiáng)調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.

意圖:旨在使本節(jié)課的知識點(diǎn)系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.

第六環(huán)節(jié) 作業(yè)布置

習(xí)題7.7

附: 板書設(shè)計(jì)

六、教學(xué)反思

本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個(gè)問題.

一次函數(shù)課件 篇8

【教學(xué)目標(biāo)】

【知識目標(biāo)】

1、使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.

3、能利用二元一次方程組確定一次函數(shù)的表達(dá)式

【能力目標(biāo)】

通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時(shí)培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.

【情感目標(biāo)】

通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強(qiáng)了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

【教學(xué)重點(diǎn)】

1、二元一次方程和一次函數(shù)的關(guān)系

2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解

【教學(xué)難點(diǎn)】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力

知識點(diǎn)

一、學(xué)生起點(diǎn)分析:

學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。

學(xué)生的活動(dòng)經(jīng)驗(yàn)基礎(chǔ):學(xué)生能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,能夠認(rèn)識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗(yàn)基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認(rèn)識,有小組合作學(xué)習(xí)經(jīng)驗(yàn).

二、學(xué)習(xí)任務(wù)分析:

本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點(diǎn)坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的'教學(xué)目標(biāo)為:

1.初步理解二元一次方程和一次函數(shù)的關(guān)系;

2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;

3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.

教學(xué)重點(diǎn)

二元一次方程和一次函數(shù)的關(guān)系;

教學(xué)難點(diǎn)

數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.

四、教法學(xué)法

1.教法學(xué)法

啟發(fā)引導(dǎo)與自主探索相結(jié)合.

2.課前準(zhǔn)備

教具:多媒體課件、三角板.

學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.

五、教學(xué)過程

本節(jié)課設(shè)計(jì)了六個(gè)教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.

同步練習(xí)

A,B兩地相距100千米,甲、乙兩人騎車同時(shí)分別從A,B兩地相向而行.假設(shè)他們都保持勻速行駛,則他們各自到A地的距離S(千米)都是騎車時(shí)間t(時(shí))的一次函數(shù).1小時(shí)后乙距離A地80千米;2小時(shí)后甲距離A地30千米.問經(jīng)過多長時(shí)間兩人將相遇?

三典型例題,探究一次函數(shù)解析式的確定

內(nèi)容:例1某長途汽車客運(yùn)站規(guī)定,乘客可以免費(fèi)攜帶一定質(zhì)量的行李,但超過該質(zhì)量則需購買行李票,且行李費(fèi)y(元)是行李質(zhì)量x(千克)的一次函數(shù).現(xiàn)知李明帶了60千克的行李,交了行李費(fèi)5元,張華帶了90千克的行李,交了行李費(fèi)10元.

(1)寫出y與x之間的函數(shù)表達(dá)式;

(2)旅客最多可免費(fèi)攜帶多少千克的行李?

一次函數(shù)課件 篇9

一次函數(shù)是數(shù)學(xué)中最基礎(chǔ)的函數(shù)之一,也是中學(xué)數(shù)學(xué)中最早接觸的函數(shù)之一。學(xué)習(xí)一次函數(shù)的概念和性質(zhì)對于理解其他更復(fù)雜的函數(shù)以及應(yīng)用數(shù)學(xué)非常重要。下面是一篇關(guān)于數(shù)學(xué)一次函數(shù)教案的主題范文,旨在幫助學(xué)生更好地理解和應(yīng)用一次函數(shù)。

主題:一次函數(shù)的定義、性質(zhì)及應(yīng)用

范文:

一、引言

在我們平常的生活中,許多的數(shù)學(xué)問題都能夠通過使用一次函數(shù)來進(jìn)行解決。一次函數(shù)是一種非常常見且重要的數(shù)學(xué)函數(shù),它可以用簡單的線性關(guān)系來描述數(shù)值之間的關(guān)系。本節(jié)課我們將學(xué)習(xí)一次函數(shù)的定義、性質(zhì)以及如何將其應(yīng)用到實(shí)際問題中。

二、一次函數(shù)的定義與性質(zhì)

1. 一次函數(shù)的定義

一次函數(shù)是指具有形如 y = ax + b 的函數(shù),其中a和b是常數(shù),且a不等于0。在一次函數(shù)中,自變量(x)的最高次數(shù)為1,因此也稱為線性函數(shù)。

2. 一次函數(shù)的性質(zhì)

(1)一次函數(shù)的圖像是一條直線,且直線的斜率等于函數(shù)中a的系數(shù),斜率可以表示函數(shù)的變化率。

(2)當(dāng)a大于0時(shí),函數(shù)是遞增的,當(dāng)a小于0時(shí),函數(shù)是遞減的。

(3)如果a等于0,那么函數(shù)將變成一個(gè)常數(shù)函數(shù),即無論自變量的值如何變化,函數(shù)的值都保持不變。

(4)一次函數(shù)的x軸上的截距為-b/a,即y=0時(shí)的解。

三、一次函數(shù)的應(yīng)用

1. 線性方程

一次函數(shù)可以用來解決線性方程。例如,一個(gè)商店出售T恤衫,每件T恤衫售價(jià)為20元,可以用一次函數(shù) y = 20x 來表示其中x表示購買的件數(shù),y表示總價(jià)。這樣當(dāng)我們知道購買件數(shù)時(shí),可以通過計(jì)算得到總價(jià)。

2. 成本、收益、利潤

一次函數(shù)還可以用來描述成本、收益和利潤之間的關(guān)系。如果我們知道某個(gè)企業(yè)生產(chǎn)一個(gè)產(chǎn)品的成本為10元每件,售價(jià)為30元每件,那么利潤可以用一次函數(shù) y = 20x - 10 來表示,其中x表示銷售數(shù)量,y表示利潤。

3. 速度和時(shí)間

一次函數(shù)還可以用來描述速度和時(shí)間之間的關(guān)系。例如,一輛汽車以每小時(shí)60公里的速度行駛,那么行駛時(shí)間t和行駛距離d之間可以表示為一次函數(shù) d = 60t。

四、綜合練習(xí)

1. 已知一次函數(shù)過點(diǎn)(2, 4)和斜率為3,求函數(shù)的解析式。

解:設(shè)函數(shù)的解析式為y = ax + b,根據(jù)過點(diǎn)(2, 4)可以得到 4 = 2a + b。根據(jù)斜率為3可以得到a = 3。將a的值代入第一個(gè)方程中解得b = -2。因此,函數(shù)的解析式為y = 3x - 2。

2. 一輛汽車以每小時(shí)100公里的速度勻速行駛,從A地到B地共需5小時(shí)。求AB兩地的距離。

解:設(shè)AB兩地的距離為d,根據(jù)速度和時(shí)間的關(guān)系可得 d = 100 × 5 = 500公里。因此,AB兩地的距離為500公里。

五、總結(jié)

本節(jié)課我們學(xué)習(xí)了一次函數(shù)的定義、性質(zhì)以及如何將其應(yīng)用到實(shí)際問題中。一次函數(shù)是數(shù)學(xué)中最基礎(chǔ)的函數(shù)之一,它的圖像是一條直線,斜率表示了函數(shù)的變化率。通過本節(jié)課的學(xué)習(xí),希望大家能夠更好地理解和應(yīng)用一次函數(shù),并能夠?qū)⑵溥\(yùn)用到實(shí)際生活中解決問題。

一次函數(shù)課件 篇10

教學(xué)目標(biāo)

(一)知識認(rèn)知要求

1、認(rèn)識一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關(guān)系;

2、學(xué)會用圖象法求解方程;

3、進(jìn)一步理解數(shù)形結(jié)合思想;

(二)能力訓(xùn)練要求

1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識;

2、訓(xùn)練大家能利用數(shù)學(xué)知識去解決實(shí)際問題的能力。

(三)情感與價(jià)值觀要求

體驗(yàn)數(shù)、圖形是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的.作用。

教學(xué)重點(diǎn)與難點(diǎn)

1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。

2、掌握用圖象求解方程的方法。

教學(xué)過程

一、提出問題

(1)方程2x+20=0;(2)函數(shù)y=2x+20

觀察思考:二者之間有什么聯(lián)系?

從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時(shí),對應(yīng)自變量x的值

從形上看:函數(shù)y=2x+20與x軸交點(diǎn)的橫坐標(biāo)即為方程2x+20=0的解

根據(jù)上述問題,教師啟發(fā)學(xué)生思考:

根據(jù)學(xué)生回答,教師總結(jié):

由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某一個(gè)函數(shù)的值為0時(shí),求相應(yīng)的自變量的值。從圖象上看,這相當(dāng)于已知直線y=ax+b,確定它也x軸交點(diǎn)的橫坐標(biāo)的值。

二、典型例題:

例1、(書中例1)一個(gè)物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?

一次函數(shù)課件 篇11

教學(xué)目標(biāo):

1.經(jīng)歷一般規(guī)律的探索過程、發(fā)展學(xué)生的抽象概括思維能力

2.理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,《一次函數(shù)》教案。能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式。

3.通過函數(shù)與變量之間的關(guān)系的聯(lián)系,一次函數(shù)與一次方程的聯(lián)系,發(fā)展學(xué)生的數(shù)學(xué)思維。

教學(xué)重點(diǎn):

1.一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

2.會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

教學(xué)難點(diǎn):

會根據(jù)已知信息寫出一次函數(shù)的表達(dá)式。

教學(xué)方法:

引導(dǎo)學(xué)生自學(xué)法、互動(dòng)學(xué)習(xí)法、啟發(fā)討論式。

教具準(zhǔn)備:

多媒體課件(補(bǔ)充練習(xí)6.2A)

教學(xué)過程:

一、導(dǎo)入新課

上節(jié)課我們已學(xué)習(xí)過函數(shù)的概念,在某個(gè)變化過程中,有兩個(gè)變量x和y,如果給定一個(gè)x值,相應(yīng)地就確定了一個(gè)y值,那么我們稱y是x的函數(shù),其中x是自變量,y是因變量。在現(xiàn)實(shí)生活中有許多問題都可以歸結(jié)為函數(shù)問題。大家能不能舉一些列子呢?

二、推進(jìn)新課

復(fù)習(xí)函數(shù)的概念及方程,接下來我們要從最簡單而重要的一種函數(shù)講起,到底是什么樣的函數(shù)請看P182引例和做一做

1、P182引例:某彈簧的自然長度為3厘米,在彈性限度內(nèi),所掛物體的質(zhì)量x每增加1千克、彈簧長度y增加0.5厘米。

(1)計(jì)算所掛物體的質(zhì)量分別為1千克、2千克、3千克、4千克、5千克時(shí)彈簧的長度,并填入下表:

x/千克012345y/厘米33.544.555.5

(2)你能寫出x與y之間的關(guān)系式嗎?

分析:當(dāng)不掛物體時(shí),彈簧長度為3厘米,當(dāng)掛1千克物體時(shí),增加0.5厘米,總長度為3.5厘米,當(dāng)增加1千克物體,即所掛物體為2千克時(shí),彈簧又增加0.5厘米,總共增加1厘米,由此可見,所掛物體每增加1千克,彈簧就伸長0.5厘米,所掛物體為x千克,彈簧就伸長0.5x厘米,則彈簧總長為原長加伸長的長度,即y=3+0.5x。

2、P182做一做

某輛汽車油箱中原有汽油100升,汽車每行駛50千克耗油9升。

(1)完成下表:

汽車行駛路程x/千米050100150200300

油箱剩余油量y/升

你能寫出x與y之間的關(guān)系嗎?(y=100-0.18x或y=100-x)

3、一次函數(shù),正比例函數(shù)的概念

上面的兩個(gè)函數(shù)關(guān)系式為y=0.5x+3,y=100-0.18x,都是左邊是因變量y,右邊是含自變量x的代數(shù)式。并且自變量和因變量的指數(shù)都是一次。若兩個(gè)變量x,y間的關(guān)系式可以表示成y=kx+b(k,b為常數(shù)k≠0)的形式,則稱y是x的一次函數(shù)(x為自變量,y為因變量)。特別地,當(dāng)b=0時(shí),稱y是x的正比例函數(shù)。

小練:下列函數(shù)中,y是x的一次函數(shù)的是

①y=x-6;②y=;③y=;④y=7-x;⑤

4、例題講解

P183例1:寫出下列各題中x與y之間的關(guān)系式,并判斷,y是否為x的一次函數(shù)?是否為正比例函數(shù)?

①汽車以60千米/時(shí)的速度勻速行駛,行駛路程中y(千米)與行駛時(shí)間x(時(shí))之間的關(guān)系式;

②圓的面積y(厘米2)與它的半徑x(厘米)之間的關(guān)系;

③一棵樹現(xiàn)在高50厘米,每個(gè)月長高2厘米,x月后這棵樹的高度為y(厘米)

[(1)y=60x,y是x的一次函數(shù),也是x的正比例函數(shù);

(2)y=πx2,y不是x的正比例函數(shù),也不是x的一次函數(shù);

(3)y=50+2x,y是x的一次函數(shù),但不是x的正比例函數(shù)]。

例2:當(dāng)k=時(shí),是一次函數(shù)

P183例3:我國現(xiàn)行個(gè)人工資、薪金稅征收辦法規(guī)定:月收入低于1600元的部分不收稅;月收入超過1600元但低于2100元的部分征收5%的所得稅…如某人某月收入1960元,他應(yīng)繳個(gè)人工資薪金所得稅為(1960-800)×5%=18(元)

①當(dāng)月收入大于1600元而又小于2100元時(shí),寫出應(yīng)繳所得稅y(元)與月收入x(元)之間的關(guān)系式。

②某人某月收入為1760元,他應(yīng)繳所得稅多少元?

③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?

分析:對于③應(yīng)要注意19.2是否在范圍之內(nèi)

(1)當(dāng)月收入大于1600元而小于2100元時(shí),y=0.05×(x-1600);

(2)當(dāng)x=1760時(shí),y=0.05×(1760-1600)=8(元);

(3)當(dāng)x=2100時(shí),y=0.05×(1300-1600)=25(元),25 19.2,

因此本月工資少于2100元,設(shè)此人本月工資是x元,則0.05×(x-1600)=19.2,x=1984。

三、課堂練習(xí)

1、隨堂練習(xí)

(1)解:y=2.2x,y是x的一次函數(shù),也是x的正比例函數(shù)。

(2)解:y=100+8x,y是x有一次函數(shù)。

2、補(bǔ)充練習(xí)

課件顯示6.2A

1、見下表:

x-2-1012…

y-5-2147…

根據(jù)上表寫出y與x之間的關(guān)系式是:_,y是否為x一的次函數(shù)?y是否為x有正比例函數(shù)?

2、為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某城市規(guī)定用水收費(fèi)標(biāo)準(zhǔn)如下:每戶每月用水量不超過6米3時(shí),水費(fèi)按0.6元/米3收費(fèi);每戶每月用水量超過6米3時(shí),超過部分按1元/米3收費(fèi)。設(shè)每戶每月用水量為x米3,應(yīng)繳水費(fèi)y元。(1)寫出每月用水量不超過6米3和超過6米3時(shí),y與x之間的函數(shù)關(guān)系式,并判斷它們是否為一次函數(shù)。(2)已知某戶5月份的用水量為8米3,求該用戶5月份的水費(fèi)。

[①y=0.6x,y=x-2.4,y是x的一次函數(shù)。②y=8-2.4=5.6(元)]

四、課后小結(jié)

1、一次函數(shù)、正比例函數(shù)的概念及關(guān)系。

2、能根據(jù)已知簡單信息,寫出一次函數(shù)的表達(dá)式。

五、課后作業(yè)

P186:1,2 MSN(中國)

yJS21.com更多精選幼師資料閱讀

二次函數(shù)的課件八篇


幼兒教師教育網(wǎng)小編為您尋找到了這篇重量級的“二次函數(shù)的課件”文章。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。?教案課件要敲定教學(xué)內(nèi)容,也要注重梳理難點(diǎn)。感謝大家?guī)椭窒磉@份資料讓大家能夠更好地學(xué)習(xí)和成長!

二次函數(shù)的課件【篇1】

教學(xué)目標(biāo):

1、經(jīng)歷描點(diǎn)法畫函數(shù)圖像的過程;

2、學(xué)會觀察、歸納、概括函數(shù)圖像的特征;

3、掌握 型二次函數(shù)圖像的特征;

4、經(jīng)歷從特殊到一般的認(rèn)識過程,學(xué)會合情推理。

教學(xué)重點(diǎn):

型二次函數(shù)圖像的描繪和圖像特征的歸納

教學(xué)難點(diǎn):

選擇適當(dāng)?shù)淖宰兞康闹岛拖鄳?yīng)的函數(shù)值來畫函數(shù)圖像,該過程較為復(fù)雜。

教學(xué)設(shè)計(jì):

一、回顧知識

前面我們在學(xué)習(xí)正比例函數(shù)、一次函數(shù)和反比例函數(shù)時(shí)時(shí)如何進(jìn)一步研究這些函數(shù)的? 先(用描點(diǎn)法畫出函數(shù)的圖像,再結(jié)合圖像研究性質(zhì)。)

引入:我們仿照前面研究函數(shù)的方法來研究二次函數(shù),先從最特殊的形式即 入手。因此本節(jié)課要討論二次函數(shù) ( )的圖像。

板書課題:二次函數(shù) ( )圖像

二、探索圖像

1、 用描點(diǎn)法畫出二次函數(shù) 和 圖像

(1) 列表

引導(dǎo)學(xué)生觀察上表,思考一下問題:

①無論x取何值,對于 來說,y的值有什么特征?對于 來說,又有什么特征?

②當(dāng)x取 等互為相反數(shù)時(shí),對應(yīng)的y的值有什么特征?

(2) 描點(diǎn)(邊描點(diǎn),邊總結(jié)點(diǎn)的位置特征,與上表中觀察的結(jié)果聯(lián)系起來).

(3) 連線,用平滑曲線按照x由小到大的順序連接起來,從而分別得到 和 的圖像。

2、 練習(xí):在同一直角坐標(biāo)系中畫出二次函數(shù) 和 的圖像。

學(xué)生畫圖像,教師巡視并輔導(dǎo)學(xué)困生。(利用實(shí)物投影儀進(jìn)行講評)

3、二次函數(shù) ( )的圖像

由上面的四個(gè)函數(shù)圖像概括出:

(1) 二次函數(shù)的 圖像形如物體拋射時(shí)所經(jīng)過的路線,我們把它叫做拋物線,

(2) 這條拋物線關(guān)于y軸對稱,y軸就是拋物線的對稱軸。

(3) 對稱軸與拋物線的交點(diǎn)叫做拋物線的頂點(diǎn)。注意:頂點(diǎn)不是與y軸的交點(diǎn)。

(4) 當(dāng) 時(shí),拋物線的開口向上,頂點(diǎn)是拋物線上的最低點(diǎn),圖像在x軸的上方(除頂點(diǎn)外);當(dāng) 時(shí),拋物線的開口向下,頂點(diǎn)是拋物線上的最高點(diǎn)圖像在x軸的 下方(除頂點(diǎn)外)。

(最好是用幾何畫板演示,讓學(xué)生加深理解與記憶)

三、課堂練習(xí)

觀察二次函數(shù) 和 的圖像

(1) 填空:

拋物線

頂點(diǎn)坐標(biāo)

對稱軸

位 置

開口方向

(2)在同一坐標(biāo)系內(nèi),拋物線 和拋物線 的位置有什么關(guān)系?如果在同一個(gè)坐標(biāo)系內(nèi)畫二次函數(shù) 和 的圖像怎樣畫更簡便?

(拋物線 與拋物線 關(guān)于x軸對稱,只要畫出 與 中的一條拋物線,另一條可利用關(guān)于x軸對稱來畫)

四、例題講解

例題:已知二次函數(shù) ( )的圖像經(jīng)過點(diǎn)(-2,-3)。

(1) 求a 的值,并寫出這個(gè)二次函數(shù)的解析式。

(2) 說出這個(gè)二次函數(shù)圖像的頂點(diǎn)坐標(biāo)、對稱軸、開口方向和圖像的位置。

練習(xí):(1)課本第31頁課內(nèi)練習(xí)第2題。

(2) 已知拋物線y=ax2經(jīng)過點(diǎn)a(-2,-8)。

(1)求此拋物線的函數(shù)解析式;

(2)判斷點(diǎn)b(-1,- 4)是否在此拋物線上。

二次函數(shù)的課件【篇2】

一、由實(shí)際問題探索二次函數(shù)

某果園有100棵橙子樹,每一棵樹平均結(jié)600個(gè)橙子,現(xiàn)準(zhǔn)備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少.根據(jù)經(jīng)驗(yàn)估計(jì),每多種一棵樹,平均每棵樹就會少結(jié)5個(gè)橙子.

(1) 問題中有哪些變量?其中哪些是自變量?哪些因變量

(2)假設(shè)果園增種x棵橙子樹,那么果園共有多少棵橙子樹?這時(shí)平均每棵樹結(jié)多少個(gè)橙子?

(3)如果果園橙子的總產(chǎn)量為y個(gè),那么請你寫出y與x之間的關(guān)系式.

果園共有(100+x)棵樹,平均每棵樹結(jié)(600-5x)個(gè)橙子,因此果園橙子的總產(chǎn) 量

y=(100+z)(6005x)=-5x2+100x+ 60000.

二、想一想

在上述問題中,種多少棵橙子樹,可以使果園橙子的產(chǎn)量最多?

我們可以列表 表示橙子的總產(chǎn)量隨橙子樹的增加而變化情況.你能根據(jù) 表格中的數(shù)據(jù)作出猜測嗎 ?自己試一試.

x/棵

y/個(gè)

三.做一做

銀行的儲蓄利率是隨時(shí)間的變化而變化的。也就是說,利率是一個(gè)變量.在我國利率的調(diào)整是由中國人民銀行根據(jù)國民經(jīng)濟(jì)發(fā)展的情況而決定的.設(shè)人民幣一年定期儲蓄的年利率是x,一年到期后,銀行將本金和利 息自動(dòng)按一年定期儲蓄轉(zhuǎn)存. 如 果存款額是100元,那么請你寫出兩年后的本息和y(元)的表 達(dá)式(不考慮利息稅).

四、二次函數(shù)的定義

一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a0)的函數(shù)叫做x的二次函數(shù)(quadratic function)

注意:定義中只要求二次項(xiàng)系數(shù)不為零,一次項(xiàng)系數(shù)、常數(shù)項(xiàng)可以為 零。

例如,y=一5x2+100x+60000和y=100x2+200x+100都是二次函數(shù).我們以前學(xué)過的正方形面積A與邊長a的關(guān)系A(chǔ)=a2, 圓面積s與半徑r的 關(guān)系s=Try2等也都是二次函數(shù)的例子.

隨堂練習(xí)

1.下列函數(shù)中(x,t是自變量),哪些是二次 函數(shù)?

y=- +3x.y= x-x+25,y=2 + 2x,s=1+t+5t

2.圓的半徑是l㎝,假設(shè)半徑增加x㎝時(shí),圓的面積增加y㎝.

(1)寫出y與x之間的關(guān)系表達(dá)式;

(2)當(dāng)圓的半徑分別增加lcm、 ㎝、2㎝時(shí),圓的面積增加多少?

五、課時(shí)小結(jié)

1. 經(jīng)歷探索和表 示二次函數(shù)關(guān)系的過程,猜想并歸納二次函數(shù)的定義及一般形式。

2.用嘗試求值的方法解決種多少棵橙子樹,可以使果園橙子的總產(chǎn)量最多。

六、活動(dòng)與探究

若 是二次函數(shù),求m的值.

七、作業(yè)

習(xí)題2.1

1.物體從某一高度落下,已知下落的高度h(m)和下落的時(shí)間t(s)的關(guān)系是:h=4.9t , 填 表表示物體在前5s下落的高度:

t/s 1 2 3 4 5

h/m

⒉某工廠計(jì)劃為一批長方體形狀的產(chǎn)品涂上油漆,長方體的長和寬相等,高比長多0.5m。

(1)長方體的長和寬用x(m)表示,長方體需要涂漆的表面積S(㎡)如何表示?

(2) 如果涂漆每平方米所需要的費(fèi)用是5元,油漆每個(gè)長方體所需要費(fèi)用用y(元)表示,那么y的表達(dá)式是什么?

二次函數(shù)的課件【篇3】

【教學(xué)目標(biāo)】

1、知識與技能:

(1)體會函數(shù)與方程之間的聯(lián)系,初步體會利用函數(shù)圖象研究方程問題的方法;

(2)理解二次函數(shù)圖象與x軸(橫軸)交點(diǎn)的個(gè)數(shù)與一元二次方程的根的個(gè)數(shù)之間的關(guān)系,理解方程有兩個(gè)不等的實(shí)根、兩個(gè)相等的實(shí)根和沒有實(shí)根的函數(shù)圖象特征; (3)理解一元二次方程的根就是二次函數(shù)與y=h(h是實(shí)數(shù))圖象交點(diǎn)的橫坐標(biāo)。 2、過程與方法:

(1)由一次函數(shù)與一元一次方程根的聯(lián)系類比探求二次函數(shù)與一元二次方程之間的聯(lián)系; (2)經(jīng)歷類比、觀察、發(fā)現(xiàn)、歸納的探索過程,體會函數(shù)與方程相互轉(zhuǎn)化的數(shù)學(xué)思想和數(shù)形結(jié)合的數(shù)學(xué)思想。 3、情感、態(tài)度與價(jià)值觀:

培養(yǎng)學(xué)生類比與猜想、不完全歸納、認(rèn)識到事物之間的聯(lián)系與轉(zhuǎn)化、體驗(yàn)探究的樂趣和學(xué)會用辨證的觀點(diǎn)看問題的思維品質(zhì)。

【重點(diǎn)與難點(diǎn)】

重點(diǎn):經(jīng)歷“類比--觀察--發(fā)現(xiàn)--歸納”而得出二次函數(shù)與一元二次方程的關(guān)系的探索過程。 難點(diǎn):準(zhǔn)確理解二次函數(shù)與一元二次方程的關(guān)系。

【教法與學(xué)法】

教法(=):命題課,采用“發(fā)現(xiàn)式學(xué)習(xí)”的方式,注重“最近發(fā)展區(qū)”,尋根問源,以舊知識為基礎(chǔ)創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生經(jīng)歷“類比—猜想—觀察—發(fā)現(xiàn)—?dú)w納—應(yīng)用”的探究過程。 學(xué)法:探究式學(xué)習(xí)。

【課前準(zhǔn)備】

多媒體、PPT課件。

【教學(xué)過程】

附:板書設(shè)計(jì):

二次函數(shù)的課件【篇4】

二次函數(shù)y=a(x-h(huán))2+k的圖象和性質(zhì)

教學(xué)設(shè)計(jì)

知識與技能:會用描點(diǎn)法畫出二次函數(shù)y=a (x-h(huán))2+k的圖象;

過程與方法:結(jié)合圖象確定拋物線y=a (x-h(huán))2+k的開口方向、對稱軸與頂點(diǎn)坐標(biāo)及性質(zhì); 情感態(tài)度與價(jià)值觀:通過比較拋物線y=a (x-h(huán))2+k與y=ax2的關(guān)系,培養(yǎng)學(xué)生的觀察、分析、總結(jié)的能力。 學(xué)情分析

學(xué)生在學(xué)習(xí)了前兩課時(shí)的基礎(chǔ)上,對于頂點(diǎn)式已經(jīng)有了一定的認(rèn)識,可以根據(jù)類比思想比較容易得出完整頂點(diǎn)式的圖象性質(zhì),所以這一部分主要是學(xué)生獨(dú)立探究,個(gè)別指導(dǎo),然后歸納總結(jié)。之后把側(cè)重點(diǎn)放在對實(shí)際問題的探究上,重點(diǎn)研究實(shí)際問題的建模過程,鼓勵(lì)一題多解,拓展學(xué)生思維。 重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):畫出形如y=a (x-h(huán))2+k的二次函數(shù)的圖象,能指出開口方向,對稱軸,頂點(diǎn)。 教學(xué)難點(diǎn):理解函數(shù)y=a (x-h(huán))2+k與y=ax2及其圖象的相互關(guān)系。 4教學(xué)過程

一、復(fù)習(xí)導(dǎo)入新課

師:同學(xué)們,在學(xué)習(xí)新課之前,我們先來做這樣一道題。 觀察y=-x2、y=-x2-

1、y=-(x+1)2

這三條拋物線中,第一條拋物線可以經(jīng)過怎樣的平移得到第二條和第三條拋物線。(指名學(xué)生回答)。

師: 同學(xué)們可不可以在這個(gè)知識點(diǎn)的基礎(chǔ)上進(jìn)一步猜想一下第一條拋物線能否經(jīng)過怎樣的平移得到拋物線y=-(x+1)2-1 生: 向左平移一個(gè)單位,再向下平移一個(gè)單位。

師:這個(gè)猜想是否正確呢?這節(jié)課我們一起來驗(yàn)證一下。(板書課題)

二、探究 探究一(大屏幕出示) (自探問題部分)

1.畫出函數(shù)y=-(x+1)2-1的圖象,指出它的開口方向、對稱軸及頂點(diǎn)、最值、增減性.

x y=-(x+1)2-1 函數(shù)

… …

-4

-3

-2

-1

0 1 2 …

開口方向 頂點(diǎn) 對稱軸最 值 增減性

y=-(x+1)2-1 (學(xué)生口頭展示以上問題)

2.師:(結(jié)合課件)把拋物線y=-x2向_______平移______個(gè)單位,再向_______平移_______個(gè)單位,就得到拋物線y=-(x+1)2-1.所以拋物線y=-x2 與拋物線y=-(x+1)2-1 形狀___________,位置________________. 通過剛才的演示,可以證明我們前面的猜想是正確的。那也就可以說明拋物線y=a (x-h(huán))2+k與y=ax2之間也具備這樣的平移關(guān)系,那么我們是不是可以借此探究一下拋物線y=a (x-h(huán))2+k的性質(zhì)呢? (小組合探問題)

1.拋物線y=a (x-h(huán))2+k與y=ax2形狀___________,位置________________. 2.函數(shù) 開口方向 頂點(diǎn) 對稱軸 最值 增減性

y=a (x-h(huán))2+k (板演展示,評價(jià),教師點(diǎn)評歸納) 如果掌握了上面這些內(nèi)容,我們就可以快速準(zhǔn)確的完成下面的練習(xí)了。(大屏幕) 3.快速搶答

說出下列拋物線的開口方向、對稱軸及頂點(diǎn) (1)y=2(x+3)2+5; (2)y=-3(x-1)2-2; (3)y=4(x-3)2+7; (2)y=-5(x+2)2-6;

師:像這種形式的拋物線我們可以直接確定他的頂點(diǎn)坐標(biāo),所以我們把它稱為二次函數(shù)的頂點(diǎn)式。已知拋物線的解析式可以快速確定頂點(diǎn)坐標(biāo),反之,已知頂點(diǎn)坐標(biāo)可以怎樣確定解析式呢? 我們來看一道實(shí)際問題。 探究二 合探完成例4.(大屏幕)

例4 要修建一個(gè)圓形噴水池,在池中心豎直安裝一根水管,在水管的頂端安一個(gè)噴水頭,使噴出的拋物線形水柱在與池中心的水平距離為1m處達(dá)到最高,高度為3m,水柱落地處離池中心3m,水管應(yīng)多長? (小組合作探究完成)

教師巡視過程中注意發(fā)現(xiàn)不同的建立直角坐標(biāo)系模型的方法,并指明不同建模方法的同學(xué)進(jìn)行板演和評價(jià)。

重點(diǎn)探究實(shí)際問題的建模過程,引導(dǎo)學(xué)生用不同的方法建立直角坐標(biāo)系。

教師點(diǎn)撥歸納:結(jié)合我們剛才解決這道題的過程,我們一起來歸納一下解決二次函數(shù)實(shí)際問題的一般方法。首先,我們要根據(jù)實(shí)際問題建立數(shù)學(xué)模型(建模),然后結(jié)合所建模型,選擇恰當(dāng)?shù)慕馕鍪叫问?;接下來根?jù)已知條件(已知點(diǎn)的坐標(biāo))求解析式,最后,找出實(shí)際問題的答案。

三、拓展運(yùn)用

1.頂點(diǎn)坐標(biāo)為(-2,3),開口方向和大小與拋物線y=x2相同的解析式為( ) A.y=(x-2)2+3 B.y=(x+2)2-3 C.y=(x+2)2+3 D.y=-(x+2)2+3 2.二次函數(shù)y=(x-1)2+2的最小值為__________________.

3.將拋物線y=5(x-1)2+3先向左平移2個(gè)單位,再向下平移4個(gè)單位后,得到拋物線的解析式為_______________________.

4.拋物線y=-3 (x+4)2+1中,當(dāng)x=_______時(shí),y有最________值是________. 5.一條拋物線的對稱軸是x=1,且與x軸有唯一的公共點(diǎn),并且開口方向向下,則這條拋物線的解析式為____________________________.(任寫一個(gè))

6.若拋物線y=a (x-1)2+k上有一點(diǎn)A(3,5),則點(diǎn)A關(guān)于對稱軸對稱點(diǎn)A’的坐標(biāo)為 。

(學(xué)生獨(dú)立完成,集體校對答案,發(fā)現(xiàn)問題組內(nèi)解決)

四、學(xué)科代表對本節(jié)課的學(xué)習(xí)情況做出歸納總結(jié)。 板書設(shè)計(jì):

二次函數(shù)y=a(x-h(huán))2+k的圖象和性質(zhì) ——頂點(diǎn)式

函數(shù) 開口方向 頂點(diǎn) 對稱軸 最值 增減性

y=a (x-h(huán))2+k 學(xué)生展示區(qū) 學(xué)生展示區(qū)

教學(xué)反思:二次函數(shù)的知識一直是初中數(shù)學(xué)教學(xué)的一個(gè)重點(diǎn)、難點(diǎn)。本節(jié)課為了更好的讓學(xué)生接受并理解,我在設(shè)計(jì)上總體遵循的原則是從易到難,從已知到未知的思路。體現(xiàn)了數(shù)學(xué)當(dāng)中的類比思想,分類討論思想,建立數(shù)學(xué)模型的思想。注重了以學(xué)生為主體,教師為主導(dǎo)。前面性質(zhì)的得出部分,主要想法是依照學(xué)生的認(rèn)知規(guī)律,讓學(xué)生根據(jù)已有經(jīng)驗(yàn)進(jìn)行猜想,引起學(xué)生求知的興趣,親手畫圖象感受從直觀到抽象的過程,降低理解難度,驗(yàn)證猜想,獲得成功的體驗(yàn),側(cè)重中等及中等偏下的學(xué)生,夯實(shí)基礎(chǔ)。后面的實(shí)際問題部分,由于學(xué)生是初次接觸二次函數(shù)的實(shí)際問題,必然會存在這樣那樣的問題,所以我重在引導(dǎo)學(xué)生學(xué)會建立二次函數(shù)的模型,用不同方法解決問題的思想。教學(xué)中取得了滿意的效果,不同層次的學(xué)生都學(xué)有所得。通過這節(jié)課的教學(xué),我感受到一個(gè)真正優(yōu)秀的教師,不單只是一個(gè)知識的載體,更應(yīng)該是學(xué)生吸納知識的一根導(dǎo)線,讓學(xué)生通過我們的引領(lǐng),真正的進(jìn)入知識的殿堂!

二次函數(shù)的課件【篇5】

關(guān)鍵詞: 初中數(shù)學(xué)教學(xué) 學(xué)導(dǎo)用 教學(xué)方法 教學(xué)應(yīng)用

隨著教育教學(xué)改革的深入,福建省寧化縣教育局在2012年秋提出了適合教育,適合教育就是為每一個(gè)學(xué)生提供適合的教育。適合教育是以學(xué)生發(fā)展為本的教育,它根據(jù)每位學(xué)生的特點(diǎn)施加不同的教育和影響,實(shí)現(xiàn)因人而異,因材施教,使學(xué)生天性與個(gè)性得到發(fā)展,潛能得到釋放,思維得到開發(fā),成長更有尊嚴(yán)。在數(shù)學(xué)教學(xué)過程中運(yùn)用“學(xué)導(dǎo)用”教學(xué)方法,是素質(zhì)教育的重要體現(xiàn),被廣大寧化縣數(shù)學(xué)教師與社會關(guān)注。下面我談?wù)勗诔踔袛?shù)學(xué)教學(xué)中應(yīng)用“學(xué)導(dǎo)用”教學(xué)法的體會與思考。

一、關(guān)于數(shù)學(xué)“學(xué)導(dǎo)用”教學(xué)方法的理解

所謂“學(xué)導(dǎo)用”是指教師在本節(jié)課的教學(xué)內(nèi)容前編寫成學(xué)案,學(xué)生根據(jù)教師的學(xué)案,自主預(yù)習(xí)閱讀教材,自主思考問題,在獨(dú)立完成的基礎(chǔ)上,合作討論學(xué)案上的問題,對每一個(gè)問題進(jìn)行解決,得到結(jié)論,然后在小組內(nèi)交流得失。遇到不懂的問題,生生討論,教師參與點(diǎn)評。當(dāng)堂測試鞏固本節(jié)課學(xué)習(xí)成果,加深學(xué)生的印象。

簡單來說,“學(xué)導(dǎo)用”實(shí)際就是把本節(jié)課需要掌握的內(nèi)容及重難點(diǎn)書面呈現(xiàn)給學(xué)生,讓學(xué)生做到對本節(jié)課心中有數(shù),該完成什么,不該做什么。

“學(xué)導(dǎo)用”要求數(shù)學(xué)教師的課前準(zhǔn)備要非常充分。(1)數(shù)學(xué)學(xué)案要有明確的目的性,到底要學(xué)什么?是新課學(xué)案或復(fù)習(xí)學(xué)案還是練習(xí)學(xué)案,教師要在課前潛心鉆研。(2)學(xué)案要符合學(xué)生的認(rèn)識特點(diǎn),不是知識的單一重復(fù),也不是讓學(xué)生啃硬骨頭,要適當(dāng)?shù)貑l(fā),讓學(xué)生想一想,“跳一跳”就“摸得著”,從而產(chǎn)生思維的火花,產(chǎn)生聯(lián)想,產(chǎn)生知識的遷移,經(jīng)歷形成新知識的過程,既發(fā)展思維又提高能力。(3)心設(shè)計(jì)學(xué)案,讓學(xué)生充分利用該學(xué)案,在學(xué)案的引導(dǎo)下,能有效地學(xué)習(xí),正確應(yīng)用所學(xué)知識解決新問題。

二、“學(xué)導(dǎo)用”教學(xué)方法在初中數(shù)學(xué)教學(xué)應(yīng)用

“學(xué)導(dǎo)用”教學(xué)方法在初中數(shù)學(xué)教學(xué)中總體分三步走:“學(xué)什么”,“怎么學(xué)”,“學(xué)會了嗎”。

(一)學(xué)什么?

由于學(xué)生自學(xué)能力的差異,學(xué)案要在課前發(fā)給學(xué)生,讓其對照學(xué)案先預(yù)習(xí),了解本節(jié)學(xué)習(xí)內(nèi)容是什么,要掌握什么內(nèi)容,這個(gè)過程正可以培養(yǎng)學(xué)生利用新知識與已有經(jīng)驗(yàn)分析解決問題。如在九年級下冊《二次函數(shù)y=ax■的圖像與性質(zhì)》中學(xué)習(xí)目標(biāo)就是:①用描點(diǎn)法畫二次函數(shù)圖像;②熟悉拋物線的定義及相關(guān)概念和對稱性;③通過觀察、歸納等方法掌握y=ax■型二次函數(shù)圖像的特征與性質(zhì)。重點(diǎn)為二次函數(shù)y=ax■圖像的畫法和圖像特征的歸納,難點(diǎn)為二次函數(shù)y=ax■的性質(zhì)特征,并能靈活運(yùn)用。只有了解本節(jié)課要學(xué)什么,學(xué)生才能帶著目標(biāo)學(xué)習(xí)和解決問題。

(二)怎么學(xué)?

要完成學(xué)案上的各個(gè)問題,必須對教材好好鉆研,這時(shí)學(xué)生就會通過這個(gè)學(xué)習(xí)過程發(fā)現(xiàn)自己的弱項(xiàng),并且解決自己遇到的問題。學(xué)案要照顧所有學(xué)生,如何引導(dǎo)學(xué)生學(xué)習(xí)?

如《二次函數(shù)y=ax■的圖像與性質(zhì)》中先用一個(gè)預(yù)習(xí)案:

一次函數(shù)y=2x-1的圖像是?搖 ?搖,反比例函數(shù)的圖像是?搖 ?搖。畫函數(shù)圖像的基本方法是?搖 ?搖。用描點(diǎn)法畫函數(shù)的圖像的一般步驟是?搖 ?搖、?搖 ?搖、?搖 ?搖。畫出二次函數(shù)y=x■圖像。二次函數(shù)的圖像叫做?搖 ?搖,如上面的二次函數(shù)y=x■的圖像叫做?搖 ?搖;拋物線y=x■的的對稱軸是?搖 ?搖;拋物線與其對稱軸的交點(diǎn)叫做拋物線的?搖 ?搖,拋物線y=x■的的頂點(diǎn)是?搖 ?搖;拋物線y=x■的頂點(diǎn)的位置在?搖 ?搖。讓學(xué)生通過預(yù)習(xí)完成這些問題,為本節(jié)內(nèi)容的教學(xué)做好鋪墊。

接著用一個(gè)探究案:1.畫。在同一坐系中畫出二次函數(shù)y=1/2x■、y=-1/2x■的圖像,并結(jié)合函數(shù)y=x■的圖像考慮這些拋物線有什么共同點(diǎn)和不同點(diǎn)?在同一坐標(biāo)系中觀察函數(shù)y=1/2x■、y=-1/2x■的圖像,并考慮這些拋物線有什么共同點(diǎn)和不同點(diǎn)?對于動(dòng)手慢的同學(xué)可以讓他通過其他同學(xué)的二次函數(shù)圖像觀察這些圖像的特征。

2.想。觀察函數(shù)y=x■的圖像,試分析函數(shù)y隨自變量x的變化而如何變化的?函數(shù)y是有最大值還是最小值?函數(shù)y=x■的呢?y=1/2x■,y=-1/2x■呢?

3.填。設(shè)計(jì)一個(gè)表格學(xué)生填填表格涉及二次函數(shù)的各類解析式的開口方向,對稱軸,頂點(diǎn),有最大值還是最小值增減性,頂點(diǎn)是最高(低)點(diǎn)(表格略)。

3.比。請同學(xué)們結(jié)合所畫的函數(shù)圖像思考下列問題,看誰最快最準(zhǔn)。

二次函數(shù)y=ax■的圖像和性質(zhì):

1.拋物線y=ax■的對稱軸是?搖 ?搖,頂點(diǎn)坐標(biāo)是?搖 ?搖。

2.當(dāng)a>0時(shí),拋物線的開口?搖 ?搖,在對稱軸的?搖 ?搖(即當(dāng)x?搖 ?搖時(shí)),函數(shù)y隨x的增大而減小;在對稱軸的?搖 ?搖(即當(dāng)x?搖 ?搖時(shí)),函數(shù)y隨x的增大而增大。此時(shí)拋物線有最?搖 ?搖點(diǎn),即當(dāng)x=?搖 ?搖時(shí),函數(shù)y有最?搖 ?搖值為?搖 ?搖。

3.當(dāng)a

通過以上四個(gè)步驟畫,想,填,比,讓學(xué)生認(rèn)識到本節(jié)課學(xué)的是什么。學(xué)生通過探究,發(fā)現(xiàn)自己對本節(jié)知識認(rèn)識的不足,通過交流探討,教師點(diǎn)評的方式,加深學(xué)生對二次函數(shù)y=ax■性質(zhì)的理解。

(三)學(xué)會了嗎?

學(xué)生經(jīng)歷知識的歸納和探究過程,體會從特殊到一般,類比的思想。但要知道學(xué)生是否真正掌握了知識,就要靠當(dāng)堂測試。當(dāng)堂測試題是根據(jù)本節(jié)課的目標(biāo)與內(nèi)容設(shè)計(jì)的測試題目,具有一定的概括性與梯度。通過當(dāng)堂測試完成知識的遷移與對比,檢驗(yàn)本節(jié)課的學(xué)習(xí)效果。并且通過當(dāng)堂測試為下節(jié)內(nèi)容提供設(shè)計(jì)目標(biāo)的重要依據(jù)。

如在《二次函數(shù)y=ax■的圖像與性質(zhì)》中設(shè)計(jì)當(dāng)堂測試如下:

1.函數(shù)y=1/4x■的對稱軸是?搖 ?搖,頂點(diǎn)坐標(biāo)是?搖 ?搖,在對稱軸的右側(cè)y隨x的增大而?搖 ?搖。當(dāng)x=?搖 ?搖時(shí),函數(shù)y有最?搖 ?搖值為?搖 ?搖。

2.已知二次函數(shù)y=4x■,下列說法中錯(cuò)誤的是(?搖?搖?搖?搖)

A.圖像有最低點(diǎn) B.圖像開口向上

C.當(dāng)x0

3.二次函數(shù)y=mx■有最高點(diǎn),則m是多少?

4.二次函數(shù)y=(k+1)x■的圖像如右圖(圖略)所示,則k的取值范圍為多少?

5.已知正方形的周長是x,面積是y,(1)求y與x的函數(shù)關(guān)系式;(2)畫出此函數(shù)的圖像。學(xué)生可自主交流批改,展示當(dāng)堂測試成果,教師也可以課堂展示小組成果,通過檢測可以了解學(xué)生本節(jié)課的掌握情況。課堂上通過對學(xué)案的學(xué)習(xí),學(xué)生進(jìn)行了互查,討論,總結(jié)。

通過以上三步走,學(xué)生不僅對知識的掌握更牢固,而且學(xué)會了學(xué)習(xí),發(fā)展了思維,提高了學(xué)習(xí)熱情。

三、“學(xué)導(dǎo)用”教學(xué)方法在初中數(shù)學(xué)教學(xué)應(yīng)用中的思考

“學(xué)導(dǎo)用”教學(xué)方法在初中數(shù)學(xué)中應(yīng)用的情況:(1)在小組討論或自主學(xué)習(xí)時(shí)出現(xiàn)了幾種現(xiàn)象:懂的滔滔不絕,不懂的默默無聞;借討論在聊天;借自主學(xué)習(xí)在發(fā)呆,等等。(2)在課堂教學(xué)中,教師“前怕狼后怕虎”,放不開。(3)學(xué)生習(xí)慣于被動(dòng)接受,觀念一時(shí)難以扭轉(zhuǎn)。(4)時(shí)間控制得不好。

二次函數(shù)的課件【篇6】

二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

必修1《 二次函數(shù)的性質(zhì)與圖象》教學(xué)設(shè)計(jì)

一、教學(xué)內(nèi)容分析

本節(jié)課是《普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)(1)》(人教B版)第二章第二節(jié)第二課()《二次函數(shù)的性質(zhì)與圖象》。關(guān)于《二次函數(shù)的性質(zhì)與圖象》在初中已經(jīng)學(xué)習(xí)過,根據(jù)我所任教的學(xué)生的實(shí)際情況,我將《二次函數(shù)的性質(zhì)與圖象》設(shè)定為一節(jié)課(探究圖象及其性質(zhì))。二次函數(shù)是重要的基本初等函數(shù)之一,作為常見函數(shù),它不僅是今后學(xué)習(xí)其他初等函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以二次函數(shù)應(yīng)重點(diǎn)研究。

二、學(xué)生學(xué)習(xí)況情分析

二次函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,是學(xué)生對函數(shù)概念及性質(zhì)的又一次應(yīng)用?;谠诔踔薪滩牡膶W(xué)習(xí)中已經(jīng)給出了二次函數(shù)的圖象及性質(zhì),已經(jīng)讓學(xué)生掌握了二次函數(shù)的圖象及一些性質(zhì),只是像單調(diào)性、對稱性、零點(diǎn)這種性質(zhì)還沒有規(guī)范,課本給出的三個(gè)例題對于學(xué)生來說非常熟悉。本節(jié)課需要認(rèn)真設(shè)計(jì)問題來激發(fā)學(xué)生學(xué)習(xí)新知的興趣和欲望。

三、設(shè)計(jì)思想

1.函數(shù)及其圖象在高中數(shù)學(xué)中占有很重要的位置。如何突破這個(gè)既重要又抽象的內(nèi)容,其實(shí)質(zhì)就是將抽象的符號語言與直觀的圖象語言有機(jī)的結(jié)合起來,通過具有一定思考價(jià)值的問題,激發(fā)學(xué)生的求知欲望――持久的好奇心。我們知道,函數(shù)的表示法有三種:列表法、圖象法、解析法,以往的函數(shù)的學(xué)習(xí)大多只關(guān)注到圖象的作用,這其實(shí)只是借助了圖象的直觀性,只是從一個(gè)角度看函數(shù),是片面的。本節(jié)課,力圖讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進(jìn)行一個(gè)全方位的研究,并通過對比總結(jié)得到研究的方法,讓學(xué)生去體會這種研究方法,以便能將其遷移到其他函數(shù)的研究中去。

2.結(jié)合新課程實(shí)施的教學(xué)理念,在本課的教學(xué)中我努力實(shí)踐以下兩點(diǎn):

(1)在課堂活動(dòng)中通過同伴合作、自主探究嘗試培養(yǎng)學(xué)生積極主動(dòng)、勇于探索的學(xué)習(xí)方式。

(2)在教學(xué)過程中努力做到師生的互動(dòng),并且在對話之后重視體會、總結(jié)、反思,力圖在培養(yǎng)和發(fā)展學(xué)生數(shù)學(xué)素養(yǎng)的同時(shí)讓學(xué)生掌握一些學(xué)習(xí)、研究數(shù)學(xué)的方法。

(3)通過課堂教學(xué)活動(dòng)向?qū)W生滲透數(shù)學(xué)思想方法。

1 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

四、教學(xué)目標(biāo)

根據(jù)任教班級學(xué)生的實(shí)際情況,本節(jié)課我確定的教學(xué)目標(biāo)是:

1、知識與技能:掌握二次函數(shù)的圖象與性質(zhì),能夠借助于具體的二次函數(shù)應(yīng)用所學(xué)知識解決簡單的函數(shù)問題,理解和掌握從不同的角度研究函數(shù)的性質(zhì)與圖象的方法。

2、過程與方法:通過老師的引導(dǎo)、點(diǎn)撥,讓學(xué)生在分組合作、積極探索的氛圍中,通過回顧歸納,類比分析的方法掌握從函數(shù)圖象出發(fā)研究函數(shù)性質(zhì)和從函數(shù)解析式性質(zhì)去研究函數(shù)圖象這兩種從不同角度研究函數(shù)的數(shù)學(xué)方法,加深對函數(shù)概念的理解和研究函數(shù)的方法的認(rèn)識。

3、情感、態(tài)度、價(jià)值觀:讓學(xué)生在數(shù)學(xué)活動(dòng)中感受數(shù)學(xué)思想方法之美、體會數(shù)學(xué)思想方法之重要;同時(shí)通過本節(jié)課的學(xué)習(xí),使學(xué)生獲得研究函數(shù)的規(guī)律和方法;培養(yǎng)學(xué)生主動(dòng)學(xué)習(xí)、合作交流的意識。

五、教學(xué)重點(diǎn)與難點(diǎn)

教學(xué)重點(diǎn):使學(xué)生掌握二次函數(shù)的概念、圖象和性質(zhì);熟悉從不同的角度研究函數(shù)的性質(zhì)與圖象的方法。

教學(xué)難點(diǎn):借助于二次函數(shù)的解析式通過配方對函數(shù)性質(zhì)的研究來分析推斷二次函數(shù)的圖象。

六、教學(xué)過程:

(一)創(chuàng)設(shè)情景、提出問題

本節(jié)課一開始我就讓學(xué)生直接總結(jié)出二次函數(shù)的性質(zhì)與圖象,并指出如何得到函數(shù)的相關(guān)性質(zhì)。學(xué)生在初中學(xué)習(xí)的基礎(chǔ)上很容易就完成。就在學(xué)生回答后,教師提出一個(gè)讓大家意想不到的問題:既然大家已經(jīng)學(xué)習(xí)也掌握了二次函數(shù)的圖象和性質(zhì),那我們今天還有必要再重復(fù)嗎?編者的失誤?還是另有用意呢?

【設(shè)計(jì)意圖:一方面可以激發(fā)學(xué)生學(xué)習(xí)熱情和探索新知的欲望;另一方面也給學(xué)生傳遞一個(gè)學(xué)習(xí)目標(biāo)方面的信息。在學(xué)生感覺很疑惑的時(shí)候,教師再次設(shè)問,把問題引向深入。】

【學(xué)情預(yù)設(shè):學(xué)生可能很疑惑,或者有一些猜測】

你能獨(dú)立完成問題2嗎?。

2 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

問題2:試作出二次函數(shù)的圖象。

要求學(xué)生按照自己處理二次函數(shù)的方法獨(dú)立完成。

【設(shè)計(jì)意圖:充分暴露學(xué)生的問題,突出本節(jié)課的重要性,激發(fā)學(xué)生學(xué)習(xí)的動(dòng)力。】

【學(xué)情預(yù)設(shè):一部分學(xué)生使用描點(diǎn)法作圖;另一部分學(xué)生只確定對稱軸和開口、只利用對稱軸和y軸的交點(diǎn)等不是很規(guī)范的方法作圖。】

在總結(jié)交流的基礎(chǔ)上教師指出:有的同學(xué)用描點(diǎn)作圖的方法作出函數(shù)的圖象,從方法上沒有問題,但是需要描出大量的點(diǎn)才能得到較為準(zhǔn)確的圖象;有的同學(xué)只是找到函數(shù)的對稱軸判定開口方向就畫出一個(gè)圖象,或者是找到函數(shù)的對稱軸和y軸的交點(diǎn)確定開口方向就畫出函數(shù)的圖象等等,這種不是很規(guī)范的作圖方法,感覺很快,但是往往得到的圖象不是很準(zhǔn)確的,為什么呢?

(學(xué)生稍作思考)

師:實(shí)質(zhì)上函數(shù)的性質(zhì)是函數(shù)自身特殊對應(yīng)關(guān)系的體現(xiàn),而體現(xiàn)函數(shù)的對應(yīng)關(guān)系的方法有解析式法、圖象法和列表法。既然能夠用解析式結(jié)合圖象得到函數(shù)的性質(zhì),那么能否借助于解析式直接分析其性質(zhì),然后推斷出圖象的特征呢?在推斷函數(shù)的圖象時(shí)要考慮函數(shù)的哪些主要性質(zhì)呢?我想這也是今天這節(jié)課的意圖所在,如何利用函數(shù)性質(zhì)的研究來推斷出較為準(zhǔn)確的函數(shù)圖象,大家是否有興趣和能力來探討這個(gè)問題呢?

帶著這樣的問題我?guī)ьI(lǐng)學(xué)生進(jìn)入下一個(gè)環(huán)節(jié)——師生互動(dòng)、探究新知。

(二)師生互動(dòng)、探究新知

在這個(gè)環(huán)節(jié)上,我引用課本所給的例題1請同學(xué)們以學(xué)習(xí)小組為單位嘗試完成。

例1、試述二次函數(shù)的性質(zhì),并作出它的圖象。

要求:按照解析式----性質(zhì)----推斷函數(shù)圖象的過程來探討,

3 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

【設(shè)計(jì)意圖是:以便于學(xué)生在對比中進(jìn)一步理解函數(shù)性質(zhì)的應(yīng)用,突破應(yīng)用函數(shù)的性質(zhì)來推斷函數(shù)圖象這一難點(diǎn)。同時(shí)體驗(yàn)分析障礙和獲得成功的快樂,激發(fā)學(xué)生的學(xué)習(xí)興趣。】

在學(xué)生學(xué)習(xí)小組的一番探討后,教師選小組代表做總結(jié)發(fā)言,要求說出利用解析式得到性質(zhì)的分析過程。

(其他小組作出補(bǔ)充,教師引導(dǎo)從以下幾個(gè)方面完善):

(1)定義域(2)開口方向(3)值域(頂點(diǎn))及最值(4)對稱軸(5)單調(diào)性(6)奇偶性(7)零點(diǎn)(8)圖象

【設(shè)計(jì)意圖是:讓學(xué)生在師生互動(dòng),共同探討的過程中逐步實(shí)現(xiàn)知識的遷移,基本上形成新的認(rèn)知?!?/p>

【學(xué)情預(yù)設(shè):因?yàn)槭堑谝淮螄L試?yán)媒馕鍪椒治鲂再|(zhì)并推斷圖象,學(xué)生對于某些性質(zhì)不能準(zhǔn)確的闡述出分析過程,對對稱軸的確定、單調(diào)區(qū)間及單調(diào)性的分析等可能存在困難?!?/p>

這時(shí)教師可以利用對解析式的分析結(jié)合多媒體引導(dǎo)學(xué)生得到分析的思路和解決的方法,進(jìn)而突破教學(xué)難點(diǎn)。

根據(jù)實(shí)際情況教師可以引導(dǎo)學(xué)生從二次函數(shù)的配方結(jié)果來分析:

(1)單調(diào)性的分析:

在時(shí),自變量越小,

=就越大,就越大,即

中當(dāng)就越大,即就越大;

時(shí),就越大;當(dāng)

取得最小值-2,當(dāng)

時(shí),自變量

越大,就越大,這樣單調(diào)性及單調(diào)區(qū)間(分界點(diǎn))自然可以解決,結(jié)合單調(diào)性的定義可給出嚴(yán)格的證明;同時(shí)也可以幫助我們說明開口的方向是向上的。

(2)對稱性的分析:

4 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

在時(shí),即,

=也就是,則

中當(dāng)時(shí),一定有也就是

和時(shí),如果=

成立。因此可以令

成立,這就是說二次函數(shù)的兩個(gè)數(shù)于直線和對稱。

的自變量時(shí),函數(shù)值

在軸上取兩個(gè)關(guān)于-4對應(yīng)的點(diǎn)為對稱中心的兩個(gè)點(diǎn)對應(yīng)

總是成立的,這就說明函數(shù)的圖象關(guān)在對解析式分析的同時(shí)借助于幾何畫板課件演示,讓學(xué)生直觀感受:

然后在教師的引導(dǎo)之下推廣并得出一般結(jié)論:如果函數(shù)成立,則函數(shù)

的圖象關(guān)于直線

對定義域內(nèi)的任意對稱。

都有在得出對稱性的一般結(jié)論這一副產(chǎn)品后,為了強(qiáng)化對這個(gè)結(jié)論的認(rèn)識和理解,教師可以安插一個(gè)練習(xí)題:

練習(xí):試用以上結(jié)論來概括函數(shù)___________________________.

應(yīng)該滿足的結(jié)論是在完成以上各環(huán)節(jié)后,教師再次提出任務(wù):既然我們把二次函數(shù)的相關(guān)性質(zhì)都分析完成,那么根據(jù)以上性質(zhì)請同學(xué)們再次分析如何利用二次函數(shù)的性質(zhì)推斷出二次函數(shù)的圖象? 用二次函數(shù)的性質(zhì)推斷函數(shù)的圖象時(shí)需要研究分析二次函數(shù)的哪些主要性質(zhì)才能比較準(zhǔn)確地畫出圖象?

5 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

【設(shè)計(jì)意圖是:學(xué)生自主探究、小組討論、發(fā)現(xiàn)知識間的內(nèi)在聯(lián)系.教師針對學(xué)生的討論,對學(xué)生思維上進(jìn)行恰當(dāng)?shù)膯⒌?,方法上進(jìn)行及時(shí)的點(diǎn)撥,讓學(xué)生真正實(shí)現(xiàn)知識的遷移,形成較為完整的新的認(rèn)知體系。鼓勵(lì)學(xué)生積極、主動(dòng)地探究,以順利地完成整個(gè)探究過程.】

各學(xué)習(xí)小組再次探討后,請學(xué)習(xí)小組代表回答,教師引導(dǎo)完成圖象:

在這個(gè)過程中,考慮到各學(xué)習(xí)小組的水平可能有所不同,有同學(xué)可能提出圖象為什么是曲線而不是直線等問題,教師要說明其實(shí)這也是研究函數(shù)要考慮的一個(gè)重要的性質(zhì),是函數(shù)的凹凸性,后面我們將要給大家介紹,有興趣的同學(xué)可以閱讀課本第110頁的探索與研究。

【設(shè)計(jì)意圖是:為后面的探索與研究打下伏筆,同時(shí)也給學(xué)生留下一個(gè)思考與探索的空間,培養(yǎng)學(xué)生課外閱讀、自主研究的能力,增強(qiáng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.】

【學(xué)情預(yù)設(shè):有同學(xué)可能提出圖象為什么是曲線而不是直線的質(zhì)疑?!?/p>

在得到函數(shù)的圖象之后,教師再請同學(xué)們以學(xué)習(xí)小組為單位,分析討論利用二次函數(shù)解析式結(jié)合圖象分析性質(zhì)和利用解析式分析性質(zhì)然后推斷函數(shù)圖象的兩種研究過程的流程圖.學(xué)習(xí)小組代表回答,教師引導(dǎo)完成以下內(nèi)容:

6 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

【設(shè)計(jì)意圖是:①把具體的數(shù)學(xué)問題進(jìn)一步梳理并加以提煉、抽象、概括,使問題得以升華,拓寬學(xué)生的思維,形成新的認(rèn)知。

②對學(xué)生進(jìn)行數(shù)學(xué)思想方法(從一般到特殊再到一般、數(shù)形結(jié)合、分類討論)的有機(jī)滲透?!?/p>

在學(xué)生形成認(rèn)知的基礎(chǔ)上,為了讓學(xué)生抓住問題的本質(zhì),把這種方法真正的內(nèi)化,拓寬學(xué)生的認(rèn)知結(jié)構(gòu),教師再次提出問題:

教師提出問題:研究函數(shù)(比如今天的二次函數(shù))可以怎么研究?用什么方法、從什么角度研究?特別是:如果用函數(shù)的性質(zhì)推斷函數(shù)的圖象時(shí)需要研究分析函數(shù)的哪些主要性質(zhì)才能比較準(zhǔn)確地畫出圖象?

在教師的引導(dǎo)中得出結(jié)論:可以根據(jù)具體的函數(shù)從圖象和解析式這兩個(gè)不同的角度進(jìn)行研究;當(dāng)然也可以用列表法研究函數(shù),只是今天我們所學(xué)的函數(shù)用列表法不易得出此函數(shù)的性質(zhì),可見具體問題要選擇適當(dāng)?shù)姆椒▉硌芯坎拍苁掳牍Ρ?!還可以借助一些數(shù)學(xué)思想方法來思考。

【設(shè)計(jì)意圖是:在教師的組織引導(dǎo)下通過合作交流、共同探索,使學(xué)生經(jīng)歷完整的數(shù)學(xué)學(xué)習(xí)過程,引導(dǎo)學(xué)生在已有數(shù)學(xué)認(rèn)知結(jié)構(gòu)的基礎(chǔ)上,通過積極主動(dòng)的思維而將新知識內(nèi)化到自己的認(rèn)知結(jié)構(gòu)中去.最終尋求到解決問題的方法?!?/p>

(三)獨(dú)立探究,鞏固方法

師:既然通過上面的學(xué)習(xí)使我們認(rèn)識到學(xué)習(xí)研究函數(shù)的性質(zhì)與圖象可以從不同的角度完成,那么同學(xué)們是否可以按照例1的方法---先分析性質(zhì)再推斷圖象來獨(dú)立完成下一個(gè)問題呢?由此將帶領(lǐng)學(xué)生進(jìn)入本節(jié)課的第三個(gè)環(huán)節(jié)——獨(dú)立探究,鞏固方法,這也是本節(jié)課所要突破的一個(gè)難點(diǎn)。

7 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

例2、試述二次函數(shù)

的性質(zhì),并作出它的圖象。

要求:每位同學(xué)都按照從解析式出發(fā)、分析研究性質(zhì)從而推斷圖象。最后將研究所得到的結(jié)論寫出來以便交流。

【設(shè)計(jì)意圖:例2在題目的設(shè)置上變換二次函數(shù)的開口方向,目的是一方面使學(xué)生加深對知識的理解,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動(dòng)認(rèn)識,從而進(jìn)一步提高分析、類比和綜合的能力.學(xué)生在例1的基礎(chǔ)上從極值點(diǎn),零點(diǎn),單調(diào)區(qū)間,對稱性等方面目標(biāo)明確地研究性質(zhì)再比較準(zhǔn)確的畫出圖象,使新知得到有效鞏固.強(qiáng)化方法的同時(shí)訓(xùn)練學(xué)生靈活應(yīng)用的意識和能力。通過自主探索、不僅讓學(xué)生充當(dāng)學(xué)習(xí)的主人更可讓學(xué)生充分經(jīng)歷知識的形成過程,從而加深每位同學(xué)對所得到結(jié)論的理解和認(rèn)識。形成自己對本節(jié)課難點(diǎn)的理解和解決策略,培養(yǎng)學(xué)生的直覺和感悟能力。讓學(xué)生上臺匯報(bào)研究成果,是讓學(xué)生有種成就感,同時(shí)還可訓(xùn)練其對數(shù)學(xué)問題的分析和表達(dá)能力,培養(yǎng)其數(shù)學(xué)素養(yǎng)?!?/p>

【學(xué)情預(yù)設(shè):考慮到各位同學(xué)的水平可能有所不同,教師應(yīng)巡視,對個(gè)別同學(xué)可做適當(dāng)?shù)闹笇?dǎo)。】

在學(xué)生分析解決的過程,教師巡視,幫助有困難的同學(xué),之后進(jìn)行交流總結(jié)。

師:下面我們分享各位同學(xué)的研究成果! 教師選擇一些具有代表性的同學(xué)上臺展示研究成果。對于從解析式、性質(zhì)推斷函數(shù)圖象的研究,某些同學(xué)可能對于某些環(huán)節(jié)仍有問題,需要老師進(jìn)一步引導(dǎo)完善。

通過前面幾個(gè)環(huán)節(jié),學(xué)生已基本掌握了本節(jié)課的相關(guān)知識,教師可根據(jù)上課的實(shí)際情況對學(xué)生發(fā)現(xiàn)、得出的結(jié)論進(jìn)行適當(dāng)?shù)狞c(diǎn)評或要求學(xué)生分析。但對二次函數(shù)的奇偶性的分析,有同學(xué)可能提出質(zhì)疑,教師可利用奇偶性的定義同時(shí)借助于幾何畫板的演示,得出一般性結(jié)論。為此我將帶領(lǐng)學(xué)生體驗(yàn)運(yùn)用新知識去解決問題的樂趣,進(jìn)入本節(jié)課的下一個(gè)環(huán)節(jié)——強(qiáng)化訓(xùn)練,加深理解。

(四)強(qiáng)化訓(xùn)練,加深理解

例3、求函數(shù)的值域和它的圖象的對稱軸,并說出它在哪個(gè)區(qū)間上是增函數(shù),在哪個(gè)區(qū)間上是減函數(shù)?它的奇偶性如何?

學(xué)生獨(dú)立完成,教師最后做出點(diǎn)評分析。

8 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

【設(shè)計(jì)意圖是:把教科書的例3進(jìn)行改變.在教學(xué)過程中,利用函數(shù)奇偶性的定義,借助于多媒體的演示,引導(dǎo)學(xué)生分析函數(shù)中的參數(shù)b對奇偶性的影響,既解決了學(xué)生對二次函數(shù)的奇偶性的質(zhì)疑,也強(qiáng)化了學(xué)生對函數(shù)的奇偶性的理解及運(yùn)用,同時(shí)也把具體的函數(shù)問題推廣到一般模式,使學(xué)生鞏固了新知識,靈活運(yùn)用了所學(xué)知識,培養(yǎng)了學(xué)生思維的深刻性和靈活性.】

【學(xué)情預(yù)設(shè):①首先對于函數(shù)的值域、對稱軸及單調(diào)性的確定問題不會太大;

②對二次函數(shù)的奇偶性的分析,有同學(xué)可能提出質(zhì)疑,教師可借助于幾何畫板演示,得出一般性結(jié)論。】

通過本例題的探討,學(xué)生不僅對二次函數(shù)的奇偶性有個(gè)新的認(rèn)識,對本節(jié)課所強(qiáng)調(diào)的借助于函數(shù)解析式研究性質(zhì)進(jìn)而推斷函數(shù)圖象的研究方法基本內(nèi)化,同時(shí)對函數(shù)奇偶性概念也會有更為深刻的理解。本節(jié)課的教學(xué)目標(biāo)基本完成,緊接著我將帶領(lǐng)學(xué)生進(jìn)入下一個(gè)環(huán)節(jié)----小結(jié)歸納,拓展深化

(五)小結(jié)歸納,拓展深化

在小結(jié)歸納中我將從學(xué)生的知識,方法和體驗(yàn)入手,帶領(lǐng)學(xué)生從以下幾個(gè)方面進(jìn)行小結(jié):

師:通過本節(jié)課的學(xué)習(xí),你對二次函數(shù)有什么認(rèn)識?研究二次函數(shù)的方法有哪些?你有什么收獲?

師生共同總結(jié)二次函數(shù)的圖象和性質(zhì),教師可以邊總結(jié)邊板書。

在收獲方面教師強(qiáng)調(diào)拓展今天所學(xué)習(xí)的方法實(shí)際上是研究函數(shù)性質(zhì)圖象的一般方法,對于一些陌生的或較為復(fù)雜的函數(shù)只要借助于合適的方法得到相關(guān)的性質(zhì)就可以推斷出函數(shù)的圖象。

9 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

【設(shè)計(jì)意圖:①讓學(xué)生再一次復(fù)習(xí)條理對函數(shù)的研究方法(可以從也應(yīng)該從多個(gè)角度進(jìn)行),讓學(xué)生體會本課的研究方法,以便能將其遷移到其他函數(shù)的研究中去。

②總結(jié)本節(jié)課中所用到的數(shù)學(xué)思想方法。

③強(qiáng)調(diào)各種研究數(shù)學(xué)的方法之間有區(qū)別又有聯(lián)系,相互作用,才能融會貫通。】

【學(xué)情預(yù)設(shè):學(xué)生可能只是把二次函數(shù)的性質(zhì)總結(jié)一下,教師要引導(dǎo)學(xué)生談?wù)剬瘮?shù)研究的學(xué)習(xí),即怎么研究一個(gè)函數(shù)?!?/p>

(六)布置作業(yè),提高升華

業(yè):課本62頁習(xí)題2.2A組第4、5題。

探究作業(yè):已知拋物線的對稱軸

(1)求m的值,并判斷拋物線開口方向;(2)求函數(shù)的最值及單調(diào)區(qū)間。

【設(shè)計(jì)意圖是:作業(yè)分層落實(shí).鞏固題讓學(xué)生復(fù)習(xí)解題思路,完善解題格式,以便舉一反三.探究題通過對教材例題的改編,供學(xué)有余力的學(xué)生自主探索,提高他們分析問題、解決問題的能力.】

七、教學(xué)反思

1.本節(jié)課改變了以往常見的函數(shù)研究方法,讓學(xué)生從不同的角度去研究函數(shù),對函數(shù)進(jìn)行一個(gè)全方位的研究,不僅僅是通過對比總結(jié)得到二次函數(shù)的性質(zhì),更重要的是讓學(xué)生體會到對函數(shù)的研究方法,以便能將其遷移到其他函數(shù)的研究中去,教師可以真正做到“授之以漁”而非“授之以魚”。

2.教學(xué)中借助信息技術(shù)可以彌補(bǔ)傳統(tǒng)教學(xué)在直觀感、立體感和動(dòng)態(tài)感方面的不足,可以很容易的化解教學(xué)難點(diǎn)、突破教學(xué)重點(diǎn)、提高課堂效率,本課使用幾何畫板可以動(dòng)態(tài)地演示出二次函數(shù)的系數(shù)的動(dòng)態(tài)過程,讓學(xué)生直觀觀察系數(shù)對二次函數(shù)單調(diào)性、對稱性、奇偶性的影響。

3.在教學(xué)過程中不斷向?qū)W生滲透數(shù)學(xué)思想方法,讓學(xué)生在活動(dòng)中感受數(shù)學(xué)思想方法之美、體會數(shù)學(xué)思想方法之重要,部分學(xué)生還能自覺得運(yùn)用這些數(shù)學(xué)思想方法去分析、思考問題。

10 / 11 二次函數(shù)的性質(zhì)和圖像教學(xué)設(shè)計(jì)

11 / 11

二次函數(shù)的課件【篇7】

二次函數(shù)與實(shí)際問題

利潤的最大化問題——教學(xué)設(shè)計(jì)

教學(xué)目標(biāo):

1、探究實(shí)際問題與二次函數(shù)的關(guān)系

2、讓學(xué)生掌握用二次函數(shù)最值的性質(zhì)解決最大值問題的方法

3、讓學(xué)生充分感受實(shí)際情景與數(shù)學(xué)知識合理轉(zhuǎn)化的過程,體會如何遇到問題—提出問題—解決問題的思考脈絡(luò)。 教學(xué)重點(diǎn):

探究利用二次函數(shù)的最大值性質(zhì)解決實(shí)際問題的方法 教學(xué)難點(diǎn):

如何將實(shí)際問題轉(zhuǎn)化為二次函數(shù)的數(shù)學(xué)問題,并利用函數(shù)性質(zhì)進(jìn)行決策 教學(xué)過程 : 情境設(shè)置:水果店售某種水果,平均每天售出20千克,每千克售價(jià)60元,進(jìn)價(jià)20元。經(jīng)市場調(diào)查發(fā)現(xiàn),在進(jìn)價(jià)不變的情況下,若每千克這種水果在原售價(jià)的基礎(chǔ)上每漲價(jià)1元,日銷售量減少1千克;若每降價(jià)1元,日銷售量將增加2千克?,F(xiàn)商店為增加利潤,擴(kuò)大銷售,盡量減少庫存,決定采取適當(dāng)措施。

(1)如果水果店日銷水果要盈利1200元,那么每千克這種水果應(yīng)漲價(jià)或降價(jià)多少元?

解:設(shè)每千克這種水果降價(jià)x元。

(60-20-x)(20+2x)=1200

解得x=10或x =20 水果店擴(kuò)大銷售,盡量減少庫存 x=10不合題意,舍 x=20 答:每千克這種水果應(yīng)降價(jià)20元。

(2)如果水果店日銷水果要盈利最多,應(yīng)如何調(diào)價(jià)?最多獲利多少元?

設(shè)計(jì):問題1是利用一元二次方程解決問題,引導(dǎo)學(xué)生先根據(jù)題意判斷出應(yīng)只選擇降價(jià),只是一種可能。通過分析“降價(jià)”讓學(xué)生自主完成,教師點(diǎn)評,強(qiáng)調(diào)驗(yàn)根。因?qū)W生已經(jīng)學(xué)習(xí)過一元二次方程,困難不會太大。

問題2,引導(dǎo)學(xué)生由一元二次方程過度到二次函數(shù),并想到利用二次函數(shù)最值的性質(zhì)去解決問題。給學(xué)生空間時(shí)間去思考。 老師問兩個(gè)問題;1 怎樣設(shè)?2什么方法去解決?

解:設(shè)每千克這種水果降價(jià)x元。 y=(60-20-x)(20+2x) =-2 x2+60x+800 (0

當(dāng)x= 15時(shí),y最大 此時(shí),y=1250

答:每千克應(yīng)降價(jià)15元,使獲利最多,最多可獲利1250元。 得到答案后,學(xué)生自做幫學(xué)生梳理過程,并畫圖象,更深刻體會。易忽略自變?nèi)≈捣秶?/p>

小結(jié):解決利潤最大化問題的基本方法和步驟: 方法:二次函數(shù)思想

步驟

1、設(shè)自變量

2、建立函數(shù)解析式

3、確定自變量取值范圍

4、頂點(diǎn)公式求出最值 (在自變量取值范圍內(nèi))

變式:若將題中“擴(kuò)大銷售,盡量減少庫存”去掉,水果店應(yīng)如何調(diào)價(jià)?

解:分兩種情況討論:

(1)設(shè)每千克這種水果降價(jià)x元。 y=(60-20-x)(20+2x) =-2 x2+60x+800 (0

當(dāng)x =15時(shí),y最大 此時(shí),y=1250 答:每千克應(yīng)降價(jià)15元,使獲利最多,最多可獲利1250元。

(2)設(shè)每千克這種水果應(yīng)漲價(jià)x元 y=(60-20+x)(20-x) =-x2-20x+800 (0

當(dāng)x> -10 時(shí),y隨x增大而減小

當(dāng)x=0時(shí),y取最大值

此時(shí)y=800 由上述討論可知:應(yīng)每千克降價(jià)15元,獲利最多,最多可獲利為1250元。

讓學(xué)生想到是二種可能,漲價(jià)和降價(jià),得分類討論思想,函數(shù)思想,數(shù)形結(jié)合思想。強(qiáng)調(diào)在自變量取值范圍內(nèi)取最值,如頂點(diǎn)不在這個(gè)范圍,根據(jù)函數(shù)圖象的增減性來判斷,而且實(shí)際問題的圖象不是整個(gè)的拋物線,而是局部,這取決于自變量取值范圍。 學(xué)生自己整哩書寫,教師指導(dǎo)。 練習(xí)與作業(yè)

某商品的進(jìn)價(jià)為每件30元,現(xiàn)在的售價(jià)為每件40元,每星期可賣出150件。市場調(diào)查反映:如果每件的售價(jià)每漲1元(售價(jià)每件不能高于45元),那么每星期少賣10件。設(shè)每件漲價(jià)x元(x為非負(fù)整數(shù)),每星期的銷售為y件。

(1)求y與x的函數(shù)關(guān)系式及自變量x的取值范圍;

(2)如何定價(jià)才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?

高一函數(shù)課件


這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。

高一函數(shù)課件【篇1】

一、說教材

(一)地位與重要性

函數(shù)的最值是《高中數(shù)學(xué)》一年級第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對立統(tǒng)一的觀點(diǎn),本節(jié)課對初高中知識的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。

(二)教學(xué)目標(biāo)

知識與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。

情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性,樹立學(xué)好數(shù)學(xué)的信心。

過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。

科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。

(三)教學(xué)重難點(diǎn)

重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。

難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。

二、說教法與學(xué)法

在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識,根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗(yàn)作為新知識的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識主動(dòng)納入已建構(gòu)好的知識體系,真正做到“學(xué)會學(xué)習(xí)”。

三、說教學(xué)過程

(一)課題引入

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?

學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。

教學(xué)手段:用PPT展示題目

教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評。

學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆

教學(xué)手段:實(shí)物投影儀

(二)新知教學(xué)

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

一、函數(shù)最大值和最小值的概念

通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。

學(xué)生口述師板書。

一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。

二、例題講練

例1、求二次函數(shù)的最大值或者最小值:

師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請學(xué)生板演。

學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。

培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識未知的認(rèn)識規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。

突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對稱軸與所給區(qū)間的關(guān)系。

教學(xué)方式:講練結(jié)合

例2、在的條件下,求函數(shù)的最大值和最小值。

教師引導(dǎo)學(xué)生逐步深入思考:

1、定義域與函數(shù)最值是什么關(guān)系?

2、轉(zhuǎn)化后要研究的函數(shù)是什么?

教學(xué)方式:學(xué)生自主探究

高一函數(shù)課件【篇2】

一考綱要求。

1.利用計(jì)算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。

2.搜集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。

二.高考趨勢。

函數(shù)知識應(yīng)用十分廣泛,利用函數(shù)知識解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點(diǎn)內(nèi)容。

三.要點(diǎn)回顧

解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識問題的實(shí)際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗(yàn),求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實(shí)際問題。

四.基礎(chǔ)訓(xùn)練。

1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價(jià)元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價(jià)應(yīng)該是

2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價(jià)格與時(shí)間滿足關(guān)系銷售量與時(shí)間滿足關(guān)系則這種商品的日銷售額的值為.

3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(9時(shí),一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式為.

4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個(gè)面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計(jì))。

5.某建筑商場國慶期間搞促銷活動(dòng),規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計(jì)計(jì)算。

可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。

6.在邊長為4的正方形ABCD的邊上有一點(diǎn)p沿著折線BCDA,由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)p點(diǎn)移動(dòng)的路程為,的面積與點(diǎn)p移動(dòng)的路程間的函數(shù)關(guān)系式為

五.例題精講。

例1.某村計(jì)劃建造一個(gè)室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積?種植面積是多少?

例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出當(dāng)每輛車的月租金每增加50元時(shí),未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。

1當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2當(dāng)每輛車的月租金定為多少元時(shí),公司的月收益?月收益是多少?

例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題

1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式

2計(jì)算xx以后該城市人口總數(shù)(精確到0.1萬人)

3計(jì)算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)

六.鞏固練習(xí):.

1.鐵路機(jī)車運(yùn)行1小時(shí)所需的成本由兩部分組成:固定部分元,變動(dòng)部分(元)與運(yùn)行速度(千米/小時(shí))的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為

2.某公司有60萬元資金,計(jì)劃投資甲,乙兩個(gè)項(xiàng)目,按要求,對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不少于5萬元,對項(xiàng)目甲投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的利潤為

3.將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)出售時(shí),能賣出400個(gè),已知該商品每個(gè)上漲1元,其銷售量就減少20個(gè),為獲得利潤,售價(jià)應(yīng)定為

4.某地每年消耗木材約20萬立方米,沒立方米木料價(jià)格為240元,為了減少木材消耗,決定按木料價(jià)格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為

5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為

6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲存費(fèi)用之和最小,則=

7.用總長為14.8的鋼條做一個(gè)長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為

8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元

9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗(yàn)公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?

高一函數(shù)課件【篇3】

教學(xué)目標(biāo):

掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.

教學(xué)重點(diǎn):

二倍角公式的推導(dǎo)及簡單應(yīng)用.

教學(xué)難點(diǎn):

理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).

教學(xué)過程:

Ⅰ.課題導(dǎo)入

前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當(dāng)α=β時(shí),tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學(xué)們是否也考慮到了呢?

另外運(yùn)用這些公式要注意如下幾點(diǎn):

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2+kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時(shí)tan2α的值不存在).

當(dāng)α=π2+kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:

即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立

高一函數(shù)課件【篇4】

1.2解三角形應(yīng)用舉例第二課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題

2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。

3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識及觀察、歸納、類比、概括的能力

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題

難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶兀拷裉煳覀兙蛠砉餐接戇@方面的問題

Ⅱ.講授新課

[范例講解]

例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。

分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。

解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)

師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?

若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?

生:需求出BD邊。

師:那如何求BD邊呢?

生:可首先求出AB邊,再根據(jù)BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根據(jù)正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

將測量數(shù)據(jù)代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度約為150米.

思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)

解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度約為1047米

Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理和余弦定理來解題時(shí),要學(xué)會審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>

Ⅴ.課后作業(yè)

作業(yè):《習(xí)案》作業(yè)五

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.

(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.

(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).

(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.

2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.

學(xué)過什么函數(shù)?

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).

(板書)2.2函數(shù)

一、函數(shù)的概念

高一函數(shù)課件【篇5】

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議

高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對底數(shù)

時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

的樣子,不能有一點(diǎn)差異,諸如

,

等都不是指數(shù)函數(shù).

(2)對底數(shù)

的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

高一函數(shù)課件【篇6】

說教學(xué)目標(biāo)

熟練地掌握二次函數(shù)的最值及其求法。

說教學(xué)重點(diǎn)

二次函數(shù)的的最值及其求法。

說教學(xué)難點(diǎn)

二次函數(shù)的最值及其求法。

說教學(xué)過程

一、引入

二次函數(shù)的最值:

二、例題分析:

例1:求二次函數(shù)的最大值以及取得最大值時(shí)的值。

變題1:

變題2:求函數(shù)的最大值。

變題3:求函數(shù)的最大值。

例2:已知的最大值為3,最小值為2,求的取值范圍。

例3:若,是二次方程的兩個(gè)實(shí)數(shù)根,求的最小值。

三、隨堂練習(xí):

1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。

2、已知,是關(guān)于的一元二次方程的兩實(shí)數(shù)根,則的最小值是()

A、0 B、1 C、-1 D、2

3、求函數(shù)在區(qū)間上的最大值。

四、回顧小結(jié)

本節(jié)課了以下內(nèi)容:

1、二次函數(shù)的的最值及其求法。

課后作業(yè)

班級:()班姓名__________

一、基礎(chǔ)題:

1、函數(shù)

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函數(shù)的最大值是4,且當(dāng)=2時(shí),=5,則=______,=_______。

二、提高題:

3、試求關(guān)于的函數(shù)在上的最大值,高三。

4、已知函數(shù)當(dāng)時(shí),取最大值為2,求實(shí)數(shù)的值。

5、已知是方程的兩實(shí)根,求的最大值和最小值。

三、題:

已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對應(yīng)的自變量的值。

高一函數(shù)課件【篇7】

一、學(xué)習(xí)目標(biāo)與自我評估

1掌握利用單位圓的幾何方法作函數(shù)的圖象

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3會用代數(shù)方法求等函數(shù)的周期

4理解周期性的幾何意義

二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”,周期的求解。

三、學(xué)法指導(dǎo)

1、是周期函數(shù)是指對定義域中所有都有

,即應(yīng)是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)

總結(jié):(1)函數(shù)(其中均為常數(shù),且

的周期T=。

(2)函數(shù)(其中均為常數(shù),且

的周期T=。

例3、求證:的周期為。

例4、(1)研究和函數(shù)的圖象,分析其周期性。

(2)求證:的周期為(其中均為常數(shù),

總結(jié):函數(shù)(其中均為常數(shù),且

的周期T=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)

課后思考:能否利用單位圓作函數(shù)的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

1、函數(shù)的周期為()

A、B、C、D、

2、函數(shù)的最小正周期是()

A、B、C、D、

3、函數(shù)的最小正周期是()

A、B、C、D、

4、函數(shù)的周期是()

A、B、C、D、

5、設(shè)是定義域?yàn)镽,最小正周期為的函數(shù),

若,則的值等于()

A、1B、C、0D、

6、函數(shù)的最小正周期是,則

7、已知函數(shù)的最小正周期不大于2,則正整數(shù)

的最小值是

8、求函數(shù)的最小正周期為T,且,則正整數(shù)

的值是

9、已知函數(shù)是周期為6的奇函數(shù),且則

10、若函數(shù),則

11、用周期的定義分析的周期。

12、已知函數(shù),如果使的周期在內(nèi),求

正整數(shù)的值

13、一機(jī)械振動(dòng)中,某質(zhì)子離開平衡位置的位移與時(shí)間之間的

函數(shù)關(guān)系如圖所示:

(1)求該函數(shù)的周期;

(2)求時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。

14、已知是定義在R上的函數(shù),且對任意有

成立,

(1)證明:是周期函數(shù);

(2)若求的值。

高一函數(shù)課件【篇8】

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。

1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;

3.函數(shù)方程思想的幾種重要形式

(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;

(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;

(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;

(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。

高一函數(shù)課件【篇9】

(一)通過具體函數(shù),讓學(xué)生經(jīng)歷奇函數(shù)、偶函數(shù)定義的討論,體驗(yàn)數(shù)學(xué)概念的建立過程,培養(yǎng)其抽象概括能力.

(二)理解、掌握函數(shù)奇偶性的定義,奇函數(shù)和偶函數(shù)圖像的特征,并能初步應(yīng)用定義判斷一些簡單函數(shù)的奇偶性.

(三)在經(jīng)歷概念形成的過程中,培養(yǎng)學(xué)生歸納、抽象概括能力,體驗(yàn)數(shù)學(xué)既是抽象的又是具體的.

這節(jié)內(nèi)容學(xué)生在初中雖沒學(xué)過,但已經(jīng)學(xué)習(xí)過具有奇偶性的具體的函數(shù):正比例函數(shù)y=kx,反比例函數(shù),(k≠0),二次函數(shù)y=ax■,(a≠0),故可在此基礎(chǔ)上,引入奇、偶函數(shù)的概念,便于學(xué)生理解.在引入概念時(shí)始終結(jié)合具體函數(shù)的圖像,增強(qiáng)直觀性,這樣更符合學(xué)生的認(rèn)知規(guī)律,同時(shí)為闡述奇、偶函數(shù)的幾何特征埋下了伏筆.對于概念可從代數(shù)特征與幾何特征兩個(gè)角度去分析,讓學(xué)生理解:奇函數(shù)、偶函數(shù)的定義域是關(guān)于原點(diǎn)對稱的非空數(shù)集;對于有定義域奇函數(shù)y=f(x),一定有f(0)=0;既是奇函數(shù),又是偶函數(shù)的函數(shù)有f(x)=0,x∈R.在此基礎(chǔ)上,讓學(xué)生了解:奇函數(shù)、偶函數(shù)的矛盾概念——非奇非偶函數(shù).關(guān)于單調(diào)性與奇偶性關(guān)系,引導(dǎo)學(xué)生拓展延伸,可以取得理想的效果.

1.觀察如下兩圖(圖略),思考并討論以下問題:

(1)這兩個(gè)函數(shù)圖像有什么共同特征?

(2)相應(yīng)的兩個(gè)函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?

可以看到兩個(gè)函數(shù)的圖像都關(guān)于y軸對稱.從函數(shù)值對應(yīng)表可以看到,當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的兩個(gè)函數(shù)值相同.

2.觀察函數(shù)f(x)=x和f(x)=的.圖像,并完成下面的兩個(gè)函數(shù)值對應(yīng)表,然后說出這兩個(gè)函數(shù)有什么共同特征.

可以看到兩個(gè)函數(shù)的圖像都關(guān)于原點(diǎn)對稱.函數(shù)圖像的這個(gè)特征,反映在解析式上就是:當(dāng)自變量x取一對相反數(shù)時(shí),相應(yīng)的函數(shù)值f(x)也是一對相反數(shù),即對任一x∈R都有f(-x)=-f(x).此時(shí),稱函數(shù)y=f(x)為奇函數(shù).

由上面的分析討論引導(dǎo)學(xué)生建立奇函數(shù)、偶函數(shù)的定義.

1.奇、偶函數(shù)的定義.

如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=-f(x),那么函數(shù)f(x)就叫做奇函數(shù).如果對于函數(shù)f(x)的定義域內(nèi)任意一個(gè)x,都有f(-x)=f(x),那么函數(shù)f(x)就叫做偶函數(shù).

2.提出問題,組織學(xué)生討論.

(1)如果定義在R上的函數(shù)f(x)滿足f(-2)=f(2),那么f(x)是偶函數(shù)嗎?

(2)奇、偶函數(shù)的圖像有什么特征?

(3)奇、偶函數(shù)的定義域有什么特征?

[例題]

1.判斷下列函數(shù)的奇偶性.

注:①規(guī)范解題格式;②對于(5)要注意定義域x∈(-1,1].

2.已知:定義在R上的函數(shù)f(x)是奇函數(shù),當(dāng)x>0時(shí),f(x)=x(1+x),求f(x)的表達(dá)式.

解:(1)任取x0,∴f(-x)=-x(1-x),而f(x)是奇函數(shù),∴f(-x)=-f(x),∴f(x)=x(1-x).

(2)當(dāng)x=0時(shí),f(-0)=-f(0),∴f(0)=-f(0),故f(0)=0.

3.已知:函數(shù)f(x)是偶函數(shù),且在(-∞,0)上是減函數(shù),判斷f(x)在(0,+∞)內(nèi)是增函數(shù),還是減函數(shù),并證明你的結(jié)論.

解:先結(jié)合圖像特征:偶函數(shù)的圖像關(guān)于y軸對稱,猜想f(x)在(0,+∞)內(nèi)是增函數(shù),證明如下:

∴f(x)在(0,+∞)上是增函數(shù).

思考:奇函數(shù)或偶函數(shù)在關(guān)于原點(diǎn)對稱的兩個(gè)區(qū)間上的單調(diào)性有何關(guān)系?

[練習(xí)]

1.已知:函數(shù)f(x)是奇函數(shù),在[a,b]上是增函數(shù)(b>a>0),問f(x)在[-b,-a]上的單調(diào)性如何.

4.設(shè)f(x),g(x)分別是R上的奇函數(shù)和偶函數(shù),并且f(x)+g(x)=x(x+1),求f(x),g(x)的解析式.

1.有既是奇函數(shù),又是偶函數(shù)的函數(shù)嗎?若有,有多少個(gè)?

2.設(shè)f(x),g(x)分別是R上的奇函數(shù),偶函數(shù),試研究:

(1)F(x)=f(x)·g(x)的奇偶性.

(2)G(x)=|f(x)|+g(x)的奇偶性.

3.已知a∈R,f(x)=a-,試確定a的值,使f(x)是奇函數(shù).

4.一個(gè)定義在R上的函數(shù),是否都可以表示為一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和的形式?

高一函數(shù)課件【篇10】

初中數(shù)學(xué)知識少、淺、難度容易、知識面笮。高中數(shù)學(xué)知識廣泛,將對初中的數(shù)學(xué)知識推廣和引伸,也是對初中數(shù)學(xué)知識的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識,以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識同學(xué)們在以后的學(xué)習(xí)中將逐漸學(xué)習(xí)到。

(1)初中課堂教學(xué)量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對知識的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識讓每個(gè)學(xué)生掌握后再進(jìn)行新課。

初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識面廣,知識要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。

其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。

初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識的難度大和知識面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會分類討論。

初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。

初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識的范圍小,知識層次低,知識面笮,對實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識的多元化和廣泛性,將會使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。

高一函數(shù)課件【篇11】

同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動(dòng)?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:

族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。

那么,祥林嫂是如何對待新迫害的呢?

3.高潮:

①祥林嫂為什么又一次來到魯四老爺家?

②有人認(rèn)為,喪夫失子有偶然性,這種看法對不對?

喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。

按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。

③在魯四老爺,人們對待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?

A.魯四老爺?shù)膽B(tài)度:

魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)

B.人們的態(tài)度:

人們叫她的聲調(diào)和先前很不同。

魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會黑暗的程度。

人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。

C.柳媽說鬼:

④祥林嫂是如何對待這如此沉重的打擊的?其結(jié)果如何?

為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:

她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神??!

而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.結(jié)局:

當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:

A.一個(gè)人死了之后,究竟有沒有魂靈的?

B.那么,也就有地獄了?

C.那么,死掉的一家的人,都能見面的?

這是對魂靈的有無表示疑惑。

她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤?;她害怕人死后有靈魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。

從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。

祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動(dòng)?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。

小結(jié):

祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動(dòng)?jì)D女的典型形象。

總之,祥林嫂的悲劇是一個(gè)社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動(dòng)?jì)D女的摧殘和封建思想對當(dāng)時(shí)中國社會的根深蒂固的統(tǒng)治。

第三課時(shí)

本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。

一、檢查作業(yè):

二、分析魯四老爺:

魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級的代表人物,是資產(chǎn)階級民主革命時(shí)期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對一切改革與革命。他思想上反動(dòng),尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。

1.作者是通過什么手法來刻畫這個(gè)人物的呢?

①間接描寫:

通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。

②直接描寫:

A.行動(dòng)描寫:

這表現(xiàn)在祥林嫂被搶走的兩件事上:

當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。

與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。

祥林嫂曾那樣辛勤地為魯家勞動(dòng)過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動(dòng)于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動(dòng)分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動(dòng)?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。

B.語言描寫:

在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動(dòng)、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。

a.祥林嫂被搶前:

b.祥林嫂被搶時(shí):

c.當(dāng)他為尋淘籮,踱到河邊時(shí):

d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):

e.對四嬸的暗暗告誡:

f.祥林嫂死后:

作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。

三、分析我這一形象:

小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。

在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。

四、分析柳媽:

問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?

明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動(dòng)?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。

她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。

高一函數(shù)課件【篇12】

1.2解三角形應(yīng)用舉例第四課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用

2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。

3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,加深對所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目

難點(diǎn):利用正弦定理、余弦定理來求證簡單的證明題

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

[創(chuàng)設(shè)情境]

師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在

ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

師:根據(jù)以前學(xué)過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.講授新課

[范例講解]

例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm

分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。

解:略

例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?

思考:你能把這一實(shí)際問題化歸為一道數(shù)學(xué)題目嗎?

本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。

解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,

cosB==≈0.7532

sinB=0.6578應(yīng)用S=acsinB

S≈681270.6578≈2840.38(m)

答:這個(gè)區(qū)域的面積是2840.38m。

變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S

提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個(gè)數(shù)。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求證:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),用正弦定理來證明

證明:(1)根據(jù)正弦定理,可設(shè)

===k顯然k0,所以

左邊===右邊

(2)根據(jù)余弦定理的推論,

右邊=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊

變式練習(xí)2:判斷滿足sinC=條件的三角形形狀

提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形

Ⅲ.課堂練習(xí)課本第18頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。

Ⅴ.課后作業(yè)

《習(xí)案》作業(yè)七

函數(shù)課件


在教學(xué)過程中,教案課件起著至關(guān)重要的作用,并且每位老師都需要每天撰寫自己的教案課件。教案課件是提高學(xué)生思維能力的有效途徑。為了幫助大家更好地工作和學(xué)習(xí),幼兒教師教育網(wǎng)今天為大家準(zhǔn)備了一篇精選文章,講述的是“函數(shù)課件”。希望這篇文章能夠?qū)δ趯?shí)際工作和學(xué)習(xí)中提供一些參考。如果您需要具體的實(shí)現(xiàn)方案,請與專業(yè)人士進(jìn)行聯(lián)系!

函數(shù)課件【篇1】

本節(jié)課是在學(xué)生學(xué)習(xí)了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學(xué)習(xí)函數(shù)與方程的第一課時(shí),本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點(diǎn)的概念,從而進(jìn)一步探索函數(shù)零點(diǎn)存在性的判定,這些活動(dòng)就是想讓學(xué)生在了解初等函數(shù)的基礎(chǔ)上,利用計(jì)算機(jī)描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進(jìn)一步的認(rèn)識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準(zhǔn)備.

從教材編寫的順序來看,《方程的根與函數(shù)的零點(diǎn)》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學(xué)生學(xué)會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點(diǎn)的關(guān)系、用二分法求方程的近似解,是在建立和運(yùn)用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點(diǎn)的關(guān)系、用二分法求方程的近似解中均蘊(yùn)涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運(yùn)用函數(shù)模型中蘊(yùn)含的“數(shù)學(xué)建模思想”,是本章滲透的主要數(shù)學(xué)思想.

從知識的應(yīng)用價(jià)值來看,通過在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價(jià)值,體驗(yàn)函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學(xué)模型,體會符號化、模型化的思想,體驗(yàn)從系統(tǒng)的角度去思考局部問題的思想.

基于上述分析,確定本節(jié)的教學(xué)重點(diǎn)是:了解函數(shù)零點(diǎn)的概念,體會方程的根與函數(shù)零點(diǎn)之間的聯(lián)系,掌握函數(shù)零點(diǎn)存在性的判斷.

1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,

2.零點(diǎn)知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個(gè)概念。而是理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。

3.通過對現(xiàn)實(shí)問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系.掌握函數(shù)零點(diǎn)存在性的判斷.

4.在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價(jià)值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.

1.零點(diǎn)概念的認(rèn)識.零點(diǎn)的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個(gè)形象的概念,學(xué)生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點(diǎn),但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點(diǎn)的障礙.

2.零點(diǎn)存在性的判斷.正因?yàn)閒(a)·f(b)<0且圖象在區(qū)間上連續(xù)不斷,是函數(shù)f(x)在區(qū)間上有零點(diǎn)的充分而非必要條件,容易引起思維的混亂就是很自然的事了.

3.零點(diǎn)(或零點(diǎn)個(gè)數(shù))的確定.學(xué)生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點(diǎn))就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點(diǎn)問題.這樣就在零點(diǎn)(或零點(diǎn)個(gè)數(shù))的確定上給學(xué)生帶來一定的困難.

基于上述分析,確定本節(jié)課的教學(xué)難點(diǎn)是:準(zhǔn)確認(rèn)識零點(diǎn)的概念,在合情推理中讓學(xué)生體會到判定定理的充分非必要性,能利用適當(dāng)?shù)姆椒ㄅ袛嗔泓c(diǎn)的存在或確定零點(diǎn).

考慮到學(xué)生的知識水平和理解能力,教師可借助計(jì)算機(jī)工具和構(gòu)建現(xiàn)實(shí)生活中的模型,從激勵(lì)學(xué)生探究入手,講練結(jié)合,直觀演示能使教學(xué)更富趣味性和生動(dòng)性.

通過讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價(jià)值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.

變式:解方程3x5+6x-1=0的實(shí)數(shù)根. (一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運(yùn)算,乘方與開方等運(yùn)算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實(shí)數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個(gè)方程的問題。)

設(shè)計(jì)意圖:從學(xué)生的認(rèn)知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動(dòng)問題進(jìn)一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點(diǎn)明本節(jié)課的目標(biāo)。

問題1 求方程x2-2x-3=0的實(shí)數(shù)根,并畫出函數(shù)y=x2-2x-3的圖象;

方程x2-2x-3=0的實(shí)數(shù)根為-1、3。函數(shù)y=x2-2x-3的圖象如圖所示。

問題2 觀察形式上函數(shù)y=x2-2x-3與相應(yīng)方程x2-2x-3=0的聯(lián)系。

函數(shù)y=0時(shí)的表達(dá)式就是方程x2-2x-3=0。

問題3 由于形式上的聯(lián)系,則方程x2-2x-3=0的實(shí)數(shù)根在函數(shù)y=x2-2x-3的圖象中如何體現(xiàn)?

y=0即為x軸,所以方程x2-2x-3=0的實(shí)數(shù)根就是y=x2-2x-3的圖象與x軸的交點(diǎn)橫坐標(biāo)。

設(shè)計(jì)意圖:以學(xué)生熟悉二次函數(shù)圖象和二次方程為平臺,觀察方程和函數(shù)形式上的聯(lián)系,從而得到方程實(shí)數(shù)根與函數(shù)圖象之間的關(guān)系。理解零點(diǎn)是連接函數(shù)與方程的結(jié)點(diǎn)。

初步提出零點(diǎn)的概念:-1、3既是方程x2-2x-3=0的根,又是函數(shù)y=x2-2x-3在y=0時(shí)x的值,也是函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)。-1、3在方程中稱為實(shí)數(shù)根,在函數(shù)中稱為零點(diǎn)。

問題4 函數(shù)y=x2-2x+1和函數(shù)y=x2-2x+3零點(diǎn)分別是什么?

函數(shù)y=x2-2x+1的零點(diǎn)是-1。函數(shù)y=x2-2x+3不存在零點(diǎn)。

提出零點(diǎn)的定義:對于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn).(zero point)

2、函數(shù)零點(diǎn)的判定:

研究方程的實(shí)數(shù)根也就是研究相應(yīng)函數(shù)的零點(diǎn),也就是研究函數(shù)的圖象與x軸的交點(diǎn)情況。 (Ⅰ)

問題5 如果把函數(shù)比作一部電影,那么函數(shù)的零點(diǎn)就像是電影的一個(gè)瞬間,一個(gè)鏡頭。有時(shí)我們會忽略一些鏡頭,但是我們?nèi)匀荒芡茰y出被忽略的片斷?,F(xiàn)在我有兩組鏡頭(如圖),哪一組能說明他的行程一定曾渡過河?(Ⅱ)

第Ⅰ組能說明他的行程中一定曾渡過河,而第Ⅱ組中他的行程就不一定曾渡過河。

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中的問題,讓學(xué)生體會動(dòng)與靜的關(guān)系,系統(tǒng)與局部的關(guān)系。

問題6 將河流抽象成x軸,將前后的兩個(gè)位置視為A、B兩點(diǎn)。請問當(dāng)A、B與x軸怎樣的位置關(guān)系時(shí),AB間的一段連續(xù)不斷的函數(shù)圖象與x軸一定會有交點(diǎn)?

A、B兩點(diǎn)在x軸的兩側(cè)。

設(shè)計(jì)意圖:將現(xiàn)實(shí)生活中的問題抽象成數(shù)學(xué)模型,進(jìn)行合情推理,將原來學(xué)生只認(rèn)為靜態(tài)的函數(shù)圖象,理解為一種動(dòng)態(tài)的過程。

問題7 A、B與x軸的位置關(guān)系,如何用數(shù)學(xué)符號(式子)來表示?

A、B兩點(diǎn)在x軸的兩側(cè)。可以用f(a)·f(b)

設(shè)計(jì)意圖:由原來的圖象語言轉(zhuǎn)化為數(shù)學(xué)語言。培養(yǎng)學(xué)生的觀察能力和提取有效信息的能力。體驗(yàn)語言轉(zhuǎn)化的過程。

問題8 滿足條件的函數(shù)圖象與x軸的交點(diǎn)一定在(a,b)內(nèi)嗎?即函數(shù)的零點(diǎn)一定在(a,b)內(nèi)嗎?

一定在區(qū)間(a,b)上。若交點(diǎn)不在(a,b)上,則它不是函數(shù)圖象。

設(shè)計(jì)意圖:讓學(xué)生體驗(yàn)從現(xiàn)實(shí)生活中抽象成數(shù)學(xué)模型時(shí),需要一定修正。加強(qiáng)學(xué)生對函數(shù)動(dòng)態(tài)的感受,對函數(shù)的定義有進(jìn)一步的理解。

通過上述探究,讓學(xué)生自己概括出零點(diǎn)存在性定理:

一般地,我們有:

如果函數(shù)y=f(x)在區(qū)間上的圖象是連續(xù)不斷的一條曲線并且有f(a)·f(b)

例題1 觀察下表,分析函數(shù)在定義域內(nèi)是否存在零點(diǎn)?

分析:函數(shù)圖象是連續(xù)不斷的,又因?yàn)?,所以在區(qū)間(0,1)上必存在零點(diǎn)。我們也可以通過計(jì)算機(jī)作圖(如圖)幫助了解零點(diǎn)大致的情況。

設(shè)計(jì)意圖:初步應(yīng)用零點(diǎn)的存在性定理來判斷函數(shù)零點(diǎn)的存在性問題。并引導(dǎo)學(xué)生探索判斷函數(shù)零點(diǎn)的方法,通過作出x,的對應(yīng)值表,來尋找函數(shù)值異號的區(qū)間,還可以借助計(jì)算機(jī)來作函數(shù)的圖象分析零點(diǎn)問題。而且對函數(shù)有一個(gè)零點(diǎn)形成直觀認(rèn)識.

例題2 求函數(shù)的零點(diǎn)個(gè)數(shù).

分析:用計(jì)算器或計(jì)算機(jī)作出x,的對應(yīng)值表和圖象。

由表可知,f (2)0,則,這說明函數(shù)在區(qū)間(2,3)內(nèi)有零點(diǎn)。結(jié)合函數(shù)的單調(diào)性,進(jìn)而說明零點(diǎn)是只有唯一一個(gè).

設(shè)計(jì)意圖:學(xué)生應(yīng)用例題1方法來解決例題2的零點(diǎn)存在性問題,并結(jié)合函數(shù)的單調(diào)性,從圖象的直觀上去判斷零點(diǎn)的個(gè)數(shù)問題。

練習(xí):判斷下列函數(shù)是否存在零點(diǎn),指出零點(diǎn)所在的大致區(qū)間?

① f(x)=2xln(x-2)-3;

②f(x)= 2x+2x-6.

通過引導(dǎo)讓學(xué)生回顧零點(diǎn)概念、意義與求法,以及零點(diǎn)存在性判斷,鼓勵(lì)學(xué)生積極回答,然后老師再從數(shù)學(xué)思想方面進(jìn)行總結(jié).

必作題:

1.教材P92習(xí)題3.1(A組)第2題;

2.求下列函數(shù)的零點(diǎn):

3.求下列函數(shù)的零點(diǎn),圖象頂點(diǎn)的坐標(biāo),畫出各自的簡圖,并指出函數(shù)值在哪些區(qū)間上大于零,哪些區(qū)間上小于零:

(1) (2).

4.已知.

(1)為何值時(shí),函數(shù)的圖象與軸有兩個(gè)零點(diǎn);

(2)如果函數(shù)至少有一個(gè)零點(diǎn)在原點(diǎn)右側(cè),求的值.

(1)利用計(jì)算機(jī)探求和時(shí)函數(shù)的零點(diǎn)個(gè)數(shù);

(2)當(dāng)時(shí),函數(shù)的零點(diǎn)是怎樣分布的?

數(shù)學(xué)的學(xué)習(xí),學(xué)生需要費(fèi)很大的心思。畢竟數(shù)學(xué)并不是一門只要會背或者會說或者會寫就可以學(xué)好的學(xué)科,它靈活度比較高。通常學(xué)生在學(xué)習(xí)數(shù)學(xué)花的時(shí)間比較多,但又毫無效果是什么原因呢?是方法不對?還是思路不對?

在數(shù)學(xué)學(xué)習(xí)過程中,常常出現(xiàn)這種現(xiàn)象,學(xué)生在課堂上聽懂了,但課后解題特別是遇到新題型時(shí)便無所適從。這就說明上課聽懂是一回事,而達(dá)到能應(yīng)用知識解決問題是另一回事。

有這種想法的人總會感到失望。每一份綜合試卷,出卷人總要避免考舊題、陳題,盡量從新的角度,新的層面上設(shè)計(jì)問題。但是考查的知識點(diǎn)和數(shù)學(xué)思想方法是恒久不變的。所以多做題,不會碰巧和考題零距離親密接觸,反而會把自己陷入無邊無際的題海之中。解決問題的辦法是從知識點(diǎn)和思想方法的角度分別對所解題目進(jìn)行歸類,總結(jié)解題經(jīng)驗(yàn)的同時(shí),確認(rèn)自己是否真正掌握并確認(rèn)復(fù)習(xí)的重點(diǎn)。

首先有一條定律:高次將次,多元消元,常數(shù)分離,變元集中。圍繞這句話能夠拓展出許多方法:比如解不等式恒成立題中的“常數(shù)分離法”、“換元法”。還有一句很重要的話就是:解題其實(shí)就是轉(zhuǎn)化,將所求與題設(shè)條件靠攏的過程,根據(jù)求證找到題設(shè)條件與之的關(guān)系,進(jìn)而尋找證明方法。

其次便是題型與方法。方法分為數(shù)學(xué)思想與常用解題技巧,這個(gè)可以去書店里找找相關(guān)的書,應(yīng)該很容易就能找到。題型則是分為解析幾何、立體幾何、三角函數(shù)等等,這些多做試卷就能掌握相關(guān)規(guī)律,每道題重要的是看它背后的方法,例如函數(shù)求和題,可以裂項(xiàng)相消,也可以倒序求和,題目是用來鞏固已學(xué)的數(shù)學(xué)知識,當(dāng)某種方法已經(jīng)掌握透了之后,就能去找別的類型的題練習(xí),直到掌握所有方法。

同一道題,不同的學(xué)生從不同的角度去理解,由不同的看法最終匯聚成正確的解題過程,這是解題的必然。無論是推導(dǎo)、還是硬性套用、憑借經(jīng)驗(yàn)做題,都是思路的一種。有的同學(xué)由開始思路不清漸漸轉(zhuǎn)變?yōu)榍宄械耐瑢W(xué)根本沒有思路,這就形成了做題的上的差距。

數(shù)學(xué)解題思想其實(shí)只要掌握一種即可,即必要性思維。什么是必要性思維?必要性思維就是通過所求結(jié)論或者某一限定條件尋求前提的思想。幾乎所有數(shù)學(xué)命題都可以用這一思想進(jìn)行破解。

縱觀近幾年高考數(shù)學(xué)試題,可以看出試題加強(qiáng)了對知識點(diǎn)靈活應(yīng)用的考察。這就對考生的思維能力要求大大加強(qiáng)。

例如:課本在講絕對值和不等式時(shí),根據(jù)a-b≤a+b推出a-b≤a-c+b-c,這里運(yùn)用了插值法a-b=(a-c)-(b-c)≤a-c+b-c這一思維方法,我們要弄清之所以這樣想,之所以得到這個(gè)解法的全部醞釀過程。

以上就是為大家提供的“數(shù)學(xué)解題方法技巧:如何更快答題”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。

高一新生學(xué)習(xí)數(shù)學(xué)該注意什么?

【編者按】數(shù)學(xué)是一個(gè)人的學(xué)習(xí)生涯中所占比重最大的學(xué)科,也是高考科目中最能夠拉開分?jǐn)?shù)層次的.學(xué)科,因此學(xué)好數(shù)學(xué),無論是對高考,還是對以后學(xué)習(xí)工作都起著重要作用。那么高一新生在學(xué)習(xí)上剛剛踏入新階段,如何去除初中時(shí)養(yǎng)成的不適宜高中學(xué)習(xí)的習(xí)慣,又如何掌握正確的學(xué)習(xí)方法呢?我們應(yīng)注意以下三點(diǎn):

(1)注意和初中數(shù)學(xué)知識的銜接。這是一個(gè)十分困難的問題,初中數(shù)學(xué)與高中數(shù)學(xué)的差別非常大,從原本的實(shí)際思維轉(zhuǎn)入抽象思維,需要一個(gè)大幅度轉(zhuǎn)變。這就需要重新整理初中數(shù)學(xué)知識,形成良好的知識基礎(chǔ),在此基礎(chǔ)上,再根據(jù)高中知識特點(diǎn),較快的吸收新的知識,形成新的知識結(jié)構(gòu)。

(2)認(rèn)真理解,反復(fù)推敲思考高中各知識點(diǎn)的涵義,各種表示方法。容易混淆的知識,仔細(xì)辨識、區(qū)別,達(dá)到熟練掌握,逐步建立與高中數(shù)學(xué)結(jié)構(gòu)相適應(yīng)的理論本質(zhì)與思考方法,切忌急于求成。

(3)通過學(xué)習(xí),要努力培養(yǎng)自己觀察,比較抽象,概括能力初步形成運(yùn)用知識準(zhǔn)確地表達(dá)數(shù)學(xué)問題和實(shí)際問題的意識和能力;培養(yǎng)科學(xué)的、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度,為樹立辯證唯物主義科學(xué)的世界觀認(rèn)識世界打下基礎(chǔ)。

我們應(yīng)試時(shí),時(shí)常發(fā)現(xiàn)厭試心理,有時(shí)會有些緊張,這是很正常的。但過分緊張也會導(dǎo)致考不好,所以平時(shí)應(yīng)把練習(xí)當(dāng)作考試,但考試時(shí)則平視為練習(xí),心態(tài)好了,成績自己就上去了。

如何減少解題失誤,這是一個(gè)考高分的關(guān)鍵。失誤少了,分?jǐn)?shù)就會濺漲。這需要學(xué)生的仔細(xì)觀察與認(rèn)真閱讀題目,抓住題目重點(diǎn)、題心,并圍繞重點(diǎn)、題心考慮其他條件與答案。其次,考慮要周全,避免出現(xiàn)遺漏情況,各個(gè)方面都要考慮到,這需要平日思考事物的長期積累。

考試考得不好,這是常遇到的問題,心情沮喪是正常心理,但不能持久下去。要將答案聽徹底,記下,并與自己的解題思路相比較,發(fā)現(xiàn)不同之處,或不要之處并記于心里,這樣對于下次考試則很有好處。

(2) 元素的互異性,

(3) 元素的無序性,

3.集合的表示:{ … } 如:{我校的籃球隊(duì)員},{太平洋,大西洋,印度洋,北冰洋}

(1) 用拉丁字母表示集合:A={我校的籃球隊(duì)員},B={1,2,3,4,5}

2) 描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。{xR x-3>2} ,{x x-3>2}

注意: 有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,記作A B或B A

實(shí)例:設(shè) A={xx2-1=0} B={-1,1} “元素相同則兩集合相等”

②真子集:如果AB,且A B那就說集合A是集合B的真子集,記作A B(或B A)

規(guī)定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

定 義 由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作A B(讀作‘A交B’),即A B={xx A,且x B}.

由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集.記作:A B(讀作‘A并B’),即A B ={xx A,或x B}).

設(shè)S是一個(gè)集合,A是S的一個(gè)子集,由S中所有不屬于A的元素組成的集合,叫做S中子集A的補(bǔ)集(或余集)

A (CuA)= Φ.

在過程中,掌握科學(xué)的,是提高成績的重要條件。以下我分別從、上課、作業(yè)、、、課外學(xué)習(xí)、實(shí)驗(yàn)課等七個(gè)方面,談一下的常規(guī)問題。應(yīng)當(dāng)說明的是,我這里所談的是各科學(xué)習(xí)的一般規(guī)律,不涉及具體學(xué)科。

一、預(yù)習(xí)。預(yù)習(xí)一般是指在講課以前,自己先獨(dú)立地閱讀新課內(nèi)容,做到初步理解,做好上課的準(zhǔn)備。所以,預(yù)習(xí)就是自學(xué)。預(yù)習(xí)要做到下列四點(diǎn):

1、通覽教材,初步理解教材的基本內(nèi)容和思路。

2、預(yù)習(xí)時(shí)如發(fā)現(xiàn)與新課相聯(lián)系的舊掌握得不好,則查閱和補(bǔ)習(xí)舊,給學(xué)習(xí)新打好牢固的基礎(chǔ)。

3、在閱讀新教材過程中,要注意發(fā)現(xiàn)自己難以掌握和理解的地方,以便在時(shí)特別注意。

4、做好預(yù)習(xí)筆記。預(yù)習(xí)的結(jié)果要認(rèn)真記在預(yù)習(xí)筆記上,預(yù)習(xí)筆記一般應(yīng)記載教材的主要內(nèi)容、自己沒有弄懂需要在聽課著重解決的問題、所查閱的舊知識等。

二、上課。教學(xué)是教學(xué)過程中最基本的環(huán)節(jié),不言而喻,上課也應(yīng)是同學(xué)們學(xué)好功課、掌握知識、發(fā)展的決定性一環(huán)。上課要做到:

1、課前準(zhǔn)備好上課所需的課本、筆記本和其他文具,并抓緊時(shí)間簡要回憶和復(fù)習(xí)上節(jié)課所學(xué)的內(nèi)容。

2、要帶著強(qiáng)烈的求知欲上課,希望在課上能向老師學(xué)到新知識,解決新問題。

3、上課時(shí)要集中精力聽講,上課鈴一響,就應(yīng)立即進(jìn)入積極的學(xué)習(xí)狀態(tài),有意識地排除分散注意力的各種因素。

4、聽課要抬頭,眼睛盯著老師的一舉一動(dòng),專心致志聆聽老師的每一句話。要緊緊抓住老師的思路,注意老師敘述問題的邏輯性,問題是怎樣提出來的,以及分析問題和解決問題的方法步驟。

5、如果遇到某一個(gè)問題或某個(gè)問題的一個(gè)環(huán)節(jié)沒有聽懂,不要在課堂上“鉆牛角尖”,而要先記下來,接著往下聽。不懂的問題課后再去鉆研或向老師請教。

6、要努力當(dāng)課堂的主人。要認(rèn)真思考老師提出的每一個(gè)問題,認(rèn)真觀察老師的每一個(gè)演示實(shí)驗(yàn),大膽舉手發(fā)表自己的看法,積極參加課堂討論。

7、要特別注意老師講課的開頭和結(jié)尾。老師的“開場白”往往是概括上節(jié)內(nèi)容,引出本節(jié)的新課題,并提出本節(jié)課的目的要求和要講述的中心問題,起著承上起下的作用。老師的課后總結(jié),往往是一節(jié)課的精要提煉和復(fù)習(xí)提示,是本節(jié)課的高度概括和總結(jié)。

8、要養(yǎng)成記筆記的好習(xí)慣。最好是一邊聽一邊記,當(dāng)聽與記發(fā)生矛盾時(shí),要以聽為主,下課后再補(bǔ)上筆記。記筆記要有重點(diǎn),要把老師板書的知識提綱、補(bǔ)充的課外知識、典型題目的解題步驟和課堂上沒有聽懂的問題記下來,高二,供課后復(fù)習(xí)時(shí)參考。

三、作業(yè)。作業(yè)是學(xué)習(xí)過程中一個(gè)重要環(huán)節(jié)。通過作業(yè)不僅可以及時(shí)鞏固當(dāng)天所學(xué)知識,加深對知識的理解,更重要的是把學(xué)過的知識加以運(yùn)用,以形成技能技巧,從而發(fā)展自己的,培養(yǎng)自己的能力。作業(yè)必須做到:

1、先看書后作業(yè),看書和作業(yè)相結(jié)合。只有先弄懂課本的基本原理和法則,才能順利地完成作業(yè),減少作業(yè)中的錯(cuò)誤,也可以達(dá)到鞏固知識的目的。

2、注意審題。要搞清題目中所給予的條件,明確題目的要求,應(yīng)用所學(xué)的知識,找到解決問題的途徑和方法。

3、態(tài)度要認(rèn)真,推理要嚴(yán)謹(jǐn),養(yǎng)成“言必有據(jù)”的習(xí)慣。準(zhǔn)確運(yùn)用所學(xué)過的定律、定理、公式、概念等。作業(yè)之后,認(rèn)真檢查驗(yàn)算,避免不應(yīng)有的錯(cuò)誤發(fā)生。

4、作業(yè)要獨(dú)立完成。只有經(jīng)過自己動(dòng)腦思考動(dòng)手操作,才能促進(jìn)自己對知識的消化和理解,才能培養(yǎng)鍛煉自己的能力;同時(shí)也能檢驗(yàn)自己掌握的知識是否準(zhǔn)確,從而克服學(xué)習(xí)上的薄弱環(huán)節(jié),逐步形成扎實(shí)的基礎(chǔ)。

5、認(rèn)真更正錯(cuò)誤。作業(yè)經(jīng)老師批改后,要仔細(xì)看一遍,對于作業(yè)中出現(xiàn)的錯(cuò)誤,要認(rèn)真改正。要懂得,出錯(cuò)的地方,正是暴露自己的知識和能力弱點(diǎn)的地方。經(jīng)過更正,就可以及時(shí)彌補(bǔ)自己知識上的缺陷。

6、作業(yè)要規(guī)范。解題時(shí)不要輕易落筆,要在深思熟慮后一次寫成,切忌寫了又改,改了又擦,使作業(yè)涂改過多。書寫要工整,解題步驟既要簡明、有條理,又要完整無缺。作業(yè)時(shí),各科都有各自的格式,要按照各學(xué)科的作業(yè)規(guī)范去做。

7、作業(yè)要保存好,定期將作業(yè)分門別類進(jìn)行整理,復(fù)習(xí)時(shí),可隨時(shí)拿來參考。

四、復(fù)習(xí)。復(fù)習(xí)的主要任務(wù)是達(dá)到對知識的深入理解和掌握,在理解和掌握的過程中提高運(yùn)用知識的技能技巧,使知識融匯貫通。同時(shí)還要通過歸納、整理,使知識系統(tǒng)化,真正成為自己知識鏈條的一個(gè)有機(jī)組成部分。復(fù)習(xí)要做到:

1、當(dāng)天的功課當(dāng)天復(fù)習(xí),并且要同時(shí)復(fù)習(xí)頭一天學(xué)習(xí)和復(fù)習(xí)過的內(nèi)容,使新舊知識聯(lián)系起來。對老師講授的主要內(nèi)容,在全面復(fù)習(xí)的基礎(chǔ)上,抓住重點(diǎn)和關(guān)鍵,特別是聽課中存在的疑難問題更應(yīng)徹底解決。重點(diǎn)內(nèi)容要熟讀牢記,對基本要領(lǐng)和定律等能準(zhǔn)確闡述,并能真正理解它的意義;對基本公式應(yīng)會自行推導(dǎo),曉得它的來龍去脈;同時(shí)要搞清楚知識前后之間的聯(lián)系,注意總結(jié)知識的規(guī)律性。

2、單元復(fù)習(xí)。在課程進(jìn)行完一個(gè)單元以后,要把全單元的知識要點(diǎn)進(jìn)行一次全面復(fù)習(xí),重點(diǎn)領(lǐng)會各知識要點(diǎn)之間的聯(lián)系,使知識系統(tǒng)化和結(jié)構(gòu)化。有些需要的知識,要在理解的基礎(chǔ)上熟練地。

3、期中復(fù)習(xí)。期試前,要把上半學(xué)期學(xué)過的內(nèi)容進(jìn)行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時(shí),在全面復(fù)習(xí)的前提下,特別應(yīng)著重弄清各單元知識之間的聯(lián)系。

4、期末復(fù)習(xí)。期末考試前,要對本學(xué)期學(xué)過的內(nèi)容進(jìn)行系統(tǒng)復(fù)習(xí)。復(fù)習(xí)時(shí)力求達(dá)到“透徹理解、牢固掌握、靈活運(yùn)用”的目的。

5、假期復(fù)習(xí)。每年的和,除完成各科作業(yè)外,要把以前所學(xué)過的內(nèi)容進(jìn)行全面復(fù)習(xí),重點(diǎn)復(fù)習(xí)自己掌握得不太好的部分。這樣可以避免邊學(xué)邊忘,造成總復(fù)習(xí)時(shí)負(fù)擔(dān)過重的現(xiàn)象。

6、在達(dá)到上面要求的基礎(chǔ)上,學(xué)有余力的同學(xué),可在老師的指導(dǎo)下,適當(dāng)閱讀一些課外參考書或做一些習(xí)題,加深對有關(guān)知識的理解和記憶。

五、考試??荚囀菍W(xué)習(xí)過程的重要環(huán)節(jié)。通過考試可以了解自己的學(xué)習(xí)狀況,以便總結(jié)經(jīng)驗(yàn)教訓(xùn),改進(jìn)學(xué)習(xí)方法,為以后的學(xué)習(xí)明確努力方向。考試時(shí)應(yīng)做到:

1、要正確對待考試??荚囀菣z查學(xué)習(xí)效果的一種方法,考得好,可以促進(jìn)自己進(jìn)一步努力學(xué)習(xí),考得不好,也可以促使自己認(rèn)真分析原因,找出存在的問題,以便今后更有針對性地學(xué)習(xí)。所以,考試并不可怕,絕不應(yīng)當(dāng)產(chǎn)生畏考,造成情緒緊張,影響水平的正常發(fā)揮。

2、做好考試前的準(zhǔn)備。首先是對各科功課進(jìn)行系統(tǒng)認(rèn)真的復(fù)習(xí),這是考出好成績的基礎(chǔ)。另外,考試前和考試期間要注意勞逸結(jié)合,保證充足的睡眠和休息,保持充沛的精力,這是取得優(yōu)異成績的必要條件。

3、答卷時(shí)應(yīng)注意的主要問題是: ①認(rèn)真審題。拿到后,對每一個(gè)題目要認(rèn)真閱讀,看清題目的要求,找出已知條件和要求的結(jié)論,然后再動(dòng)手答題。②一時(shí)不會做的題目可以先放一放,等把會做的題目做完了,再去解決遺留問題。③仔細(xì)檢查,更正錯(cuò)誤。答完以后,如果還有時(shí)間,就要抓緊時(shí)間進(jìn)行檢查和驗(yàn)證。先檢查容易的、省時(shí)間的、錯(cuò)誤率高的題目,后檢查難的、費(fèi)時(shí)間的、錯(cuò)誤率低的題目。④卷面要整潔,書寫要工整,答題步驟要完整。

4、重視考后分析。拿到老師批閱的試卷后,不僅要看成績,而且要對進(jìn)行逐一分析。首先要把錯(cuò)題改正過來,把錯(cuò)處鮮明地標(biāo)示出來,引起自己的注意,以便復(fù)習(xí)時(shí)查對。然后分析丟分的原因,并進(jìn)行分類統(tǒng)計(jì)??纯匆?qū)忣}、運(yùn)算、表達(dá)、原理、思路、馬虎等因素各扣了多少分;經(jīng)過分析統(tǒng)計(jì),找出自己學(xué)習(xí)上存在的問題。對做對了的題目也要進(jìn)行分析,檢查自己對題目的表達(dá)是否嚴(yán)密,解題方法是否簡便等。

5、各科試卷要分類保存,以便復(fù)習(xí)時(shí)參考。

6、杜絕各種作弊現(xiàn)象。

六、課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和擴(kuò)展,二者是相互聯(lián)系、相互滲透的整體。在搞好課內(nèi)學(xué)習(xí)的基礎(chǔ)上,適當(dāng)進(jìn)行課外學(xué)習(xí),可以開闊自己的知識領(lǐng)域,發(fā)展個(gè)人的、愛好和特長,同時(shí)對課內(nèi)學(xué)習(xí)也會起到有效的促進(jìn)作用。課外學(xué)習(xí)應(yīng)注意:

1、可根據(jù)自己的學(xué)習(xí)情況,有目的地選擇學(xué)習(xí)內(nèi)容,原則是有利于鞏固基礎(chǔ)知識,彌補(bǔ)自己的學(xué)習(xí)弱點(diǎn)。

2、可以根據(jù)自己的特長和愛好,選擇一些有關(guān)學(xué)科的課外讀物學(xué)習(xí)。

3、課外閱讀一定要從自己的實(shí)際出發(fā),量力而行,寧可少而精,也不多而濫,切忌好高鶩遠(yuǎn)、貪多求全。

七、實(shí)驗(yàn)課。實(shí)驗(yàn)是理論聯(lián)系實(shí)際的重要手段,實(shí)驗(yàn)的目的是加深對理論的理解和有效地?cái)U(kuò)大知識領(lǐng)域,培養(yǎng)觀察能力、判斷能力、形象和動(dòng)手操作的技能技巧,培養(yǎng)嚴(yán)肅認(rèn)真的科學(xué)態(tài)度。實(shí)驗(yàn)課要做到:

1、實(shí)驗(yàn)前做好預(yù)習(xí),明確實(shí)驗(yàn)的目的要求、實(shí)驗(yàn)原理及實(shí)驗(yàn)方法、步驟等。

2、注意熟悉實(shí)驗(yàn)用儀器設(shè)備的名稱、功能和操作方法。

3、實(shí)驗(yàn)要自己動(dòng)手操作,仔細(xì)觀察實(shí)驗(yàn)現(xiàn)象,認(rèn)真測定數(shù)據(jù),做好記錄。同時(shí)要分析出現(xiàn)誤差的原因。嚴(yán)格遵守操作規(guī)程,愛護(hù)儀器設(shè)備,注意安全。

“充要條件”是數(shù)學(xué)中極其重要的一個(gè)概念。

(1)先看“充分條件和必要條件”

當(dāng)命題“若p則q”為真時(shí),可表示為p=>q,則我們稱p為q的充分條件,q是p的必要條件。這里由p=>q,得出p為q的充分條件是容易理解的。

但為什么說q是p的必要條件呢?

事實(shí)上,與“p=>q”等價(jià)的逆否命題是“非q=>非p”。它的意思是:若q不成立,則p一定不成立。這就是說,q對于p是必不可少的,因而是必要的。

(2)再看“充要條件”

若有p=>q,同時(shí)q=>p,則p既是q的充分條件,又是必要條件。簡稱為p是q的充要條件。記作pq

數(shù)學(xué)中,只有A是B的充要條件時(shí),才用A去定義B,因此每個(gè)定義中都包含一個(gè)充要條件。如“兩組對邊分別平行的四邊形叫做平行四邊形”這一定義就是說,一個(gè)四邊形為平行四邊形的充要條件是它的兩組對邊分別平行。

顯然,一個(gè)定理如果有逆定理,那么定理、逆定理合在一起,可以用一個(gè)含有充要條件的語句來表示。

“充要條件”有時(shí)還可以改用“當(dāng)且僅當(dāng)”來表示,其中“當(dāng)”表示“充分”?!皟H當(dāng)”表示“必要”。

(4)一般地,定義中的條件都是充要條件,判定定理中的條件都是充分條件,性質(zhì)定理中的“結(jié)論”都可作為必要條件。

以上就是為大家提供的“高中數(shù)學(xué)學(xué)習(xí)方法:理解“充要條件”具體概念”希望能對考生產(chǎn)生幫助,更多資料請咨詢中考頻道。

中總有那么一兩道問題難度系數(shù)很低的,問題難,以拉開來不同考生的差距。遇到難題一時(shí)想不出來,可以考慮換一種,換一種思路,如果仍然沒有頭緒,不妨先放一放,記下題號,等后面的解答完了再回來看看,你可能會獲得新的解題。最后如果仍然沒有想出來的也不能放棄,是選擇題就要猜測答案了,填空題也不能空著,猜測答案往上寫,是大題,就要分步寫,只要與問題有關(guān),能寫多少寫多少。

遇到了難題,我該怎么辦?

會做的題目要力求做對、做全、得,而更多的問題是對不能完整完成的題目如何分段得分。下面有兩種常用方法。

一、面對一個(gè)疑難問題,一時(shí)間想不出方法時(shí),可以將它劃分為幾個(gè)子問題,然后在解決會解決的部分,即能解決到什么程度就解決到什么程度,能演算幾步就寫幾步。如從最初的把文字語言譯成符號語言,把條件和目標(biāo)譯成表達(dá)式,設(shè)應(yīng)用題的未知數(shù),設(shè)軌跡題的動(dòng)點(diǎn)坐標(biāo),依題意正確畫出圖形等,都能得分。而且可望在上述處理中,可能一時(shí)獲得,因而獲得解題方法。

二。有些問題好幾問,每問都很難,比如前面的小問你解答不出,但后面的小問如果根基前面的結(jié)論你能夠解答出來,這時(shí)候不妨先解答后面的,此時(shí)可以引用前面的結(jié)論,這樣仍然可以得分。如果稍后想出了前面的解答方法,可以補(bǔ)上:“事實(shí)上,第一問可以如下證明”。

從題目的條件出發(fā),通過正確的運(yùn)算或推理,直接求得結(jié)論,再與選擇支對照來確定選擇支。

在幾個(gè)選擇支中,排除不符合要求的選擇支,以確定符合要求的選擇支。

就是取滿足條件的特例(包括取特殊值、特殊點(diǎn)、以特殊圖形代替一般圖形等),并將得出的結(jié)論與四個(gè)選項(xiàng)進(jìn)行比較,若出現(xiàn)矛盾,則否定,可能會否定三個(gè)選項(xiàng);若結(jié)論與某一選項(xiàng)相符,則肯定,可能會一次,這種方法可以彌補(bǔ)其它方法的不足。

函數(shù)課件【篇2】

解析:設(shè)f(x)=lg x +x-2,則f(1.75)=f74=lg 74-140,f(2)=lg 20.

2.函數(shù)f(x)=x2+2x-3,x0,-2+lnx,x0的零點(diǎn)個(gè)數(shù)為()

解析::x0時(shí)由x2+2x-3=0x=-3;x0時(shí)由-2+lnx=0x=e2.

解析:因?yàn)閒(0)=-10,f(1)=e-10,所以零點(diǎn)在區(qū)間(0,1)上,選C.

解析:由4x-2x+1-3=0(2x+1)(2x-3)=02x=3, x=log23.

6.函數(shù)f(x)=(x-1)(x2-3x+1)的零點(diǎn)是__________.

7.若函數(shù)y=x2-ax+2有一個(gè)零點(diǎn)為1,則a等于__________.

8.已知函數(shù)f(x)=logax+x-b(a0且a1),當(dāng)234時(shí),函數(shù)f(x)的零點(diǎn)為x0(n,n+1)(nN*),則n=________.

解析:根據(jù)f(2)=loga2+2-blogaa+2-3=0,

f(3)=loga3+3-blogaa+3-4=0,

則f(x)在區(qū)間(-,+)上的圖象是一條連續(xù)不斷的曲線.

當(dāng)x=0時(shí),f(x)=-10.當(dāng)x=1時(shí),f(x)=10.

f(0)f(1)0,故在(0,1)內(nèi)至少有一個(gè)x0,當(dāng)x=x0時(shí),f(x)=0.即至少有一個(gè)x0,滿足01,且f(x0)=0,故方程x2x=1至少有一個(gè)小于1的正根.

函數(shù)課件【篇3】

教學(xué)目標(biāo):

(一)教學(xué)知識點(diǎn):1.對數(shù)函數(shù)的概念;2.對數(shù)函數(shù)的圖象和性質(zhì).

(二)能力訓(xùn)練要求:1.理解對數(shù)函數(shù)的概念;2.掌握對數(shù)函數(shù)的圖象和性質(zhì).

(三)德育滲透目標(biāo):1.用聯(lián)系的觀點(diǎn)分析問題;2.認(rèn)識事物之間的互相轉(zhuǎn)化.

由學(xué)生的預(yù)習(xí),可以直接回答“對數(shù)函數(shù)的概念”

由指數(shù)、對數(shù)的定義及指數(shù)函數(shù)的'概念,我們進(jìn)行類比,可否猜想有:

2.求指數(shù)函數(shù)的反函數(shù).

①;

所以函數(shù)與指數(shù)函數(shù)互為反函數(shù).

這節(jié)課我們所要研究的便是指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).

因?yàn)閷?shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù).所以與圖象關(guān)于直線對稱.

因此,我們只要畫出和圖象關(guān)于直線對稱的曲線,就可以得到的圖象.

研究指數(shù)函數(shù)時(shí),我們分別研究了底數(shù)和兩種情形.

那么我們可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.

還可以畫出與圖象關(guān)于直線對稱的曲線得到的圖象.

請同學(xué)們作出與的草圖,并觀察它們具有一些什么特征?

3.圖象的加深理解:

與圖象關(guān)于X軸對稱;與圖象關(guān)于X軸對稱.

一般地,與圖象關(guān)于X軸對稱.

(2)時(shí),函數(shù)為減函數(shù),

4.練習(xí):

(1)如圖:曲線分別為函數(shù),,,,的圖像,試問的大小關(guān)系如何?

這節(jié)課我們主要介紹了指數(shù)函數(shù)的反函數(shù)——對數(shù)函數(shù).并且研究了對數(shù)函數(shù)的圖象和性質(zhì).

函數(shù)課件【篇4】

二次函數(shù)復(fù)習(xí)課件

二次函數(shù)是我們在數(shù)學(xué)學(xué)習(xí)中經(jīng)常會遇到的一個(gè)重要概念。它在解決實(shí)際問題中有著廣泛的應(yīng)用,并且在數(shù)學(xué)建模中也扮演著重要的角色。本文將詳細(xì)介紹二次函數(shù)的定義、特征以及應(yīng)用等方面的內(nèi)容,以幫助讀者更好地理解和掌握二次函數(shù)的知識。

首先,我們來了解二次函數(shù)的定義。二次函數(shù)是指具有以下形式的函數(shù):f(x) = ax^2 + bx + c,其中a、b、c為實(shí)數(shù)且a ≠ 0。這里的a決定了二次函數(shù)的開口方向,當(dāng)a > 0時(shí),二次函數(shù)開口向上;當(dāng)a

其次,我們來探討二次函數(shù)的特征。二次函數(shù)最重要的特征之一就是頂點(diǎn)坐標(biāo)。對于一般形式的二次函數(shù)f(x) = ax^2 + bx + c,它的頂點(diǎn)坐標(biāo)為(-b/2a, f(-b/2a))。頂點(diǎn)坐標(biāo)有著很重要的幾何意義,它代表了二次函數(shù)的最值點(diǎn),也就是函數(shù)圖像的最高點(diǎn)或最低點(diǎn)。

此外,二次函數(shù)還有著其他一些重要的性質(zhì)。例如,二次函數(shù)的零點(diǎn)是指函數(shù)圖像與x軸相交的點(diǎn),求解二次函數(shù)的零點(diǎn)可以使用因式分解、配方法、求根公式等方法。另外,二次函數(shù)還可以通過平移、伸縮、翻轉(zhuǎn)等變換來產(chǎn)生不同的函數(shù)圖像,這些變換對應(yīng)著二次函數(shù)的參數(shù)a、b、c的取值。通過靈活運(yùn)用這些性質(zhì),我們可以更好地理解和分析二次函數(shù)的圖像。

最后,我們來了解一下二次函數(shù)在實(shí)際問題中的應(yīng)用。二次函數(shù)的應(yīng)用非常廣泛,尤其在物理、經(jīng)濟(jì)、生物等領(lǐng)域,有著重要的作用。例如,拋物線的運(yùn)動(dòng)軌跡可以用二次函數(shù)來描述;經(jīng)濟(jì)學(xué)中的成本、收益等問題也可以用二次函數(shù)來建模;生物學(xué)中的種群增長、病毒傳播等問題也可以采用二次函數(shù)來描述。因此,掌握二次函數(shù)的知識可以幫助我們更好地理解和解決實(shí)際問題。

總結(jié)起來,二次函數(shù)是數(shù)學(xué)學(xué)習(xí)中一個(gè)重要的概念,具有廣泛的應(yīng)用價(jià)值。它的定義、特征以及應(yīng)用等方面的內(nèi)容我們都進(jìn)行了詳細(xì)的介紹。通過學(xué)習(xí)和掌握二次函數(shù)的知識,我們可以更好地理解和解決實(shí)際問題,也能在數(shù)學(xué)建模中運(yùn)用二次函數(shù)來描述和分析各種問題。希望本文對讀者的學(xué)習(xí)和理解有所幫助。

函數(shù)課件【篇5】

今天我的說課題目是人教A版必修1第一章第二節(jié)《函數(shù)及其表示》。

對于這節(jié)課,我將以“教什么,怎么教,為什么這么教”為思路,從教材分析、目標(biāo)分析、教學(xué)法分析、教學(xué)過程 分析和評價(jià)五個(gè)方面來談?wù)勎覍滩牡睦斫夂徒虒W(xué)設(shè)計(jì),敬請各位專家、評委批評指正。

函數(shù)是中學(xué)數(shù)學(xué)中最重要的基本概念之一,函數(shù)的學(xué)習(xí)大致可分為三個(gè)階段。第一階段在以為教育階段,學(xué)習(xí)了函數(shù)的描述性概念,接觸了正比例函數(shù)、反比例函數(shù)、一次函數(shù)、二次函數(shù)等,本章學(xué)習(xí)的函數(shù)的概念、基本性質(zhì)與后續(xù)將要學(xué)習(xí)的基本初等函數(shù)(i)和(ii)是函數(shù)學(xué)習(xí)的第二階段,是對函數(shù)概念的再認(rèn)識階段;第三階段在選修系列導(dǎo)數(shù)及其應(yīng)用的學(xué)習(xí),使函數(shù)學(xué)習(xí)的進(jìn)一步深化和提高。因此函數(shù)及其表述這一節(jié)在高中數(shù)學(xué)中,起著承上啟下的作用,函數(shù)的思想貫穿高中數(shù)學(xué)的始終,學(xué)好這章不僅在知識方面,更重要的是在函數(shù)思想、方法方面,將會讓學(xué)生在今后的學(xué)習(xí)、工作和生活中受益無窮。

本小結(jié)介紹了函數(shù)概念,及其表示方法。我將本小節(jié)分為兩課時(shí),第一課時(shí)完成函數(shù)概念的教學(xué),第二課時(shí)完成函數(shù)圖象的教學(xué)。這里我主要談?wù)労瘮?shù)概念的教學(xué)。

函數(shù)概念部分分用三個(gè)實(shí)際例子設(shè)計(jì)教學(xué)情境,讓學(xué)生探尋變量和變量對應(yīng)關(guān)系,結(jié)合初中學(xué)習(xí)的函數(shù)理論,在集合論的基礎(chǔ)上,促使學(xué)生建構(gòu)出函數(shù)概念,體驗(yàn)結(jié)合舊知識,探索新知識、研究新問題的快樂。

(1) 在初中,學(xué)生已經(jīng)學(xué)習(xí)過函數(shù)的概念,并且知道韓式是變量間的相互依賴關(guān)系

(2) 學(xué)生思維活躍,積極性高,已經(jīng)步入對數(shù)學(xué)問題的合作探究能力

根據(jù)《函數(shù)的概念》在教材中的地位與作用,結(jié)合學(xué)情分析,本節(jié)教學(xué)應(yīng)實(shí)現(xiàn)如下教學(xué)目標(biāo):

進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型。能用集合與對應(yīng)的語言刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用

了解構(gòu)成函數(shù)的要素,理解函數(shù)定義域和值域的概念,并會求一些簡單函數(shù)的'定義域。

引導(dǎo)學(xué)生觀察,探尋變量和變量的對應(yīng)關(guān)系,通過歸納、抽象、概括,自主建構(gòu)函數(shù)概念,體驗(yàn)舊知識探索新知識,研究新問題的快樂

通過對函數(shù)概念形成的探究過程培養(yǎng)學(xué)生發(fā)現(xiàn)問題,探索問題,不斷超越的創(chuàng)新品質(zhì)

重點(diǎn):體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,正確理解函數(shù)的概念。難點(diǎn):函數(shù)概念及符號y=f(x)的理解

函數(shù)課件【篇6】

本次說課主要從五個(gè)部分進(jìn)行,分別是教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析和教學(xué)設(shè)計(jì)。

首先是教材分析:

我所使用的教材選自人教20xx年版的《全日制普通高級中學(xué)教科書數(shù)學(xué)第一冊(上)》,《反函數(shù)》函數(shù)部分的一個(gè)重難點(diǎn),也是研究兩個(gè)函數(shù)相互關(guān)系的重要內(nèi)容,而反函數(shù)的概念又是其中的抽象難理解部分,因此反函數(shù)概念的學(xué)習(xí)有助于學(xué)生進(jìn)一步加深對函數(shù)的認(rèn)識和理解。

接著是學(xué)情分析:

高一的學(xué)生在學(xué)習(xí)反函數(shù)之前,已經(jīng)對函數(shù)的概念、表示法,映射等內(nèi)容有了一定的認(rèn)識和了解,那么有了這些儲備知識,學(xué)生在本節(jié)課的學(xué)習(xí)中可以在教師的引導(dǎo)下進(jìn)行思考和理解,從而能較好地完成對本節(jié)課的學(xué)習(xí)。

接下來的教學(xué)目標(biāo)分析是從知識與技能、過程與方法、情感與態(tài)度入手的:

知識與技能:讓學(xué)生學(xué)生了解反函數(shù)的概念;通過本節(jié)課的學(xué)習(xí)會求一些簡單函數(shù)的反函數(shù)過程與方法:教學(xué)上使用引導(dǎo)、發(fā)現(xiàn)法,這主要通過從具體到抽象、從特殊到一般的過渡方式來實(shí)現(xiàn)。

情感與態(tài)度(也就是德育目標(biāo)):通過本節(jié)課的學(xué)習(xí),能使學(xué)生發(fā)現(xiàn)函數(shù)內(nèi)部因素相互聯(lián)系,從而培養(yǎng)他們善于發(fā)現(xiàn)分析的能力,使他們學(xué)會以發(fā)現(xiàn)分析的目光去關(guān)注數(shù)學(xué),以聯(lián)系發(fā)展的態(tài)度去學(xué)習(xí)數(shù)學(xué)。

第四部分是教學(xué)重難點(diǎn)分析

本節(jié)課的教學(xué)重點(diǎn)放在反函數(shù)的概念、反函數(shù)的求法上,而由于反函數(shù)的概念相對抽象難理解,所以教學(xué)難點(diǎn)自然落在了反函數(shù)的概念理解。

下面我對第五部分的教學(xué)設(shè)計(jì)進(jìn)行詳細(xì)展開:我的整個(gè)教學(xué)過程分成五個(gè)環(huán)節(jié)

一、新課引入

由于反函數(shù)的概念比較抽象難理解,在概念講解前先以具體例子入手逐步引導(dǎo),這樣比較符合學(xué)生的接受規(guī)律。

聯(lián)系函數(shù)的三要素,通過給出的兩對函數(shù)之間三要素變化的比較,讓學(xué)生對反函數(shù)首先有了一個(gè)大概的認(rèn)識,然后再對反函數(shù)下嚴(yán)格的定義并進(jìn)行詳細(xì)的講解。

二、概念講解

由于教材中給出的反函數(shù)的概念較長且較抽象,會給學(xué)生在理解上產(chǎn)生一定的難度,故引導(dǎo)學(xué)生從另外的角度分三步完成對反函數(shù)概念的理解,這樣較易于學(xué)生接受和理解。

1.由函數(shù)式y(tǒng)f(x) xA yC,得到式子x(y)

2.根據(jù)函數(shù)的概念去說明x(y)是一個(gè)函數(shù),其中定義域?yàn)镃,值域?yàn)锳.

3.下結(jié)論說明函數(shù)x(y)是函數(shù)yf(x)的反函數(shù),并記作xf1(y),一般互換x和y,寫作yf1(x).

三、通過問題的討論加深學(xué)生對反函數(shù)的認(rèn)識和理解

1.所有函數(shù)都有反函數(shù)嗎?

通過兩個(gè)具體的函數(shù)(在講課的課件中有詳細(xì)給出)的異同,引導(dǎo)分析發(fā)現(xiàn)并不是所有的函數(shù)都有反函數(shù)。

2.互為反函數(shù)的函數(shù)有什么關(guān)系?

通過引入部分例子分析,結(jié)合反函數(shù)的概念,引導(dǎo)學(xué)生從從函數(shù)的三要素出發(fā)去描述互為反函數(shù)的兩函數(shù)之間的關(guān)系:

(1)對應(yīng)法則互逆(2)定義域與值域互換3.yf1(x)的反函數(shù)是什么?

1在回答了第二個(gè)問題的基礎(chǔ)上,引導(dǎo)學(xué)生利用以上結(jié)論發(fā)現(xiàn)yf(x)的反函數(shù)恰好是yf(x),即有yf(x)與yf1(x)互為反函數(shù)。

四、例題、聯(lián)系相結(jié)合,歸納求反函數(shù)的方法

首先分析講解例題中的(1)、(2),再讓學(xué)生結(jié)合反函數(shù)概念的分步理解思考?xì)w納,嘗試從解題過程中總結(jié)出求已知函數(shù)反函數(shù)的一般方法。

1.找原函數(shù)的值域;

2.由原函數(shù)式解出x(y);

3.互換x和y的位置;

4.標(biāo)注反函數(shù)的定義域。

簡化為一句話:一找、二解、三換、四標(biāo)。

本次課堂不再安排別的練習(xí)題,而讓學(xué)生對照求法步驟,自行完成(3)、(4)的求解作為課堂練習(xí)。

五、課堂小結(jié)、布置作業(yè)

本節(jié)課所布置的作業(yè)是求已知函數(shù)的反函數(shù),主要為了鞏固學(xué)生對本節(jié)課知識的學(xué)習(xí)并加強(qiáng)對反函數(shù)求法的使用。

本節(jié)課的整個(gè)課堂設(shè)計(jì),希望能從從新課引入到概念講解、從概念學(xué)習(xí)到深入學(xué)習(xí)理解,實(shí)現(xiàn)從從具體到抽象、從特殊到一般的過渡方式。我覺得這樣的設(shè)計(jì),符合學(xué)生學(xué)習(xí)的循序漸進(jìn)的接受規(guī)律,在教學(xué)過程中可以貫穿著教師引導(dǎo)學(xué)生討論學(xué)習(xí)的主線,體現(xiàn)了教師教學(xué)的輔助作用與學(xué)生學(xué)習(xí)的主體地位。

函數(shù)課件【篇7】

各位專家、各位老師:

大家好!

今天我說課的題目是《函數(shù)的概念》,本課題是人教A版必修1中1、2的內(nèi)容,計(jì)劃安排兩個(gè)課時(shí),本課時(shí)的內(nèi)容為:函數(shù)的概念、三要素及簡單函數(shù)的定義域及值域的求法。下面我將以“學(xué)什么、怎么學(xué)、學(xué)了有何用”為思路,從教材、教法、學(xué)法、教學(xué)評價(jià)、教學(xué)過程設(shè)計(jì)、板書設(shè)計(jì)等幾個(gè)方面對本節(jié)課的教學(xué)加以說明。

一、教學(xué)目標(biāo)

1、課程標(biāo)準(zhǔn)

課節(jié)內(nèi)容的課標(biāo)要求是:

(1)通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域;了解映射的概念。

(2)在實(shí)際情景中,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒ǎㄈ鐖D像法、列表法、解析法)表示函數(shù)。

(3)通過具體實(shí)例,了解簡單的分段函數(shù),并能簡單應(yīng)用。

(4)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性、最大(?。┲导捌鋷缀我饬x;結(jié)合具體函數(shù),了解奇偶性的含義。

(5)學(xué)會運(yùn)用函數(shù)圖像理解和研究函數(shù)的性質(zhì)。

2、課標(biāo)解讀

關(guān)于函數(shù)內(nèi)容的整體定位和基本要求解讀:

(1)把函數(shù)作為刻畫現(xiàn)實(shí)世界中一類重要變化規(guī)律的模型來學(xué)習(xí),是一種通過某一事物的變化信息可推知另一事物信息的對應(yīng)關(guān)系的數(shù)學(xué)模型;

(2)強(qiáng)調(diào)對函數(shù)本質(zhì)的認(rèn)識和理解,因此要求在高中數(shù)學(xué)學(xué)習(xí)中多次接觸、螺旋上升;

(3)關(guān)注背景、應(yīng)用、增加了函數(shù)模型及其應(yīng)用;

(4)削弱和淡化了一些內(nèi)容,如函數(shù)的定義域、值域、反函數(shù)、復(fù)合函數(shù)等;

(5)注重思想和聯(lián)系——增加了函數(shù)與方程、用二分法求方程的近似根;

(6)合理地使用信息技術(shù),旨在幫助學(xué)生更好地認(rèn)識和理解函數(shù)及其性質(zhì)。

【依據(jù)意圖】

(1)教材如此要求的根本目的是希望幫助學(xué)生更好地從整體上認(rèn)識和理解函數(shù)的本質(zhì),而真正理解函數(shù)概念是不容易的。因此,不要在過于細(xì)枝末節(jié)的非本質(zhì)問題上作過多的訓(xùn)練,有了定義域和對應(yīng)關(guān)系,值域自然就定了。此外,“課標(biāo)”建議先講函數(shù)再講映射,也是為了幫助學(xué)生把注意力集中在函數(shù)的本質(zhì)理解。

(2)希望通過方程根與函數(shù)零點(diǎn)的內(nèi)在聯(lián)系,加強(qiáng)對函數(shù)概念、函數(shù)思想及函數(shù)這一主線在高中數(shù)學(xué)中的地位作用的認(rèn)識和理解。并通過用二分法求方程近似根將函數(shù)思想以及方程的根與函數(shù)零點(diǎn)之間的聯(lián)系具體化。

(3)二分法是求方程近似根的常用方法,更為一般、簡單,能很好地體現(xiàn)函數(shù)思想,“大綱”只是用“三個(gè)二”解決根的分布問題。

(4)現(xiàn)代信息技術(shù)不能替代艱苦的學(xué)習(xí)和人腦精密的思考,信息技術(shù)只是作為達(dá)到目的的一種手段,一種快速計(jì)算的工具。

3、教材分析

(1)地位作用

函數(shù)內(nèi)容是高中數(shù)學(xué)學(xué)習(xí)的一條主線,它貫穿整個(gè)高中數(shù)學(xué)學(xué)習(xí)中,其重要性體現(xiàn)在以下幾個(gè)方面:

1、函數(shù)是高中數(shù)學(xué)七大主干知識之一,又是溝通代數(shù)﹑方程﹑不等式﹑數(shù)列、三角函數(shù)、解析幾何、導(dǎo)數(shù)等內(nèi)容的橋梁,同時(shí)也是今后進(jìn)一步學(xué)習(xí)高等數(shù)學(xué)的基礎(chǔ);

2、函數(shù)的學(xué)習(xí)過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學(xué)習(xí)可以提高了學(xué)生的數(shù)學(xué)思維能力;

3、這一節(jié)所學(xué)習(xí)的函數(shù)概念既是對初中所學(xué)函數(shù)概念的一次升華和再認(rèn)識、對集合語言的一次重要應(yīng)用;又是以后繼續(xù)學(xué)習(xí)函數(shù)的性質(zhì)、數(shù)列等等知識的必備理論基礎(chǔ),在函數(shù)學(xué)習(xí)中是承上啟下的關(guān)鍵章節(jié)。

(2)內(nèi)容與課時(shí)劃分

本課題是高中數(shù)學(xué)人教A版必修1中1、2節(jié),計(jì)劃教學(xué)2個(gè)課時(shí),第一課時(shí)內(nèi)容包括函數(shù)的概念、函數(shù)的三要素、簡單函數(shù)的定義域及值域的求法;第二課時(shí)內(nèi)容為:區(qū)間表示、較復(fù)雜函數(shù)的定義域及值域的求法、分段函數(shù)、函數(shù)圖象等。本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課。概念是數(shù)學(xué)的基礎(chǔ),只有對概念做到深刻理解,才能正確靈活地加以應(yīng)用。

4、學(xué)情分析

(1)學(xué)生在初中已經(jīng)在初中學(xué)習(xí)過函數(shù)的概念。

(2)本班級學(xué)生個(gè)體差異較明顯。

5、教學(xué)目標(biāo)

【依據(jù)意圖】:教學(xué)目標(biāo)的設(shè)計(jì),要簡潔明了,具有較強(qiáng)的可操作性,容易檢測目標(biāo)的達(dá)成度,同時(shí)也要體現(xiàn)出新課標(biāo)下對素質(zhì)教育的要求。基于以上分析作為依據(jù),課時(shí)目標(biāo)分解如下:

【課時(shí)分解目標(biāo)】

1、能夠列舉生活中具有函數(shù)關(guān)系的實(shí)例;

2、能用集合與對應(yīng)的語言描述函數(shù)的定義,能對具體函數(shù)指出定義域、對應(yīng)法則、值域;

3、會求一些簡單函數(shù)(帶根號,分式)的定義域和值域;

4、能夠從函數(shù)的三要素的角度去判定兩個(gè)函數(shù)是否是同一個(gè)函數(shù)。

二、教學(xué)重難點(diǎn)

重點(diǎn):讓學(xué)生體會函數(shù)是描述變量之間的相互依賴關(guān)系的重要數(shù)學(xué)模型,正確理解形成函數(shù)的概念。

難點(diǎn):引導(dǎo)學(xué)生從具體實(shí)例抽象出函數(shù)概念。

[意圖依據(jù)]:本課時(shí)是概念課,重在概念的理解和形成,但教師應(yīng)把重點(diǎn)放在讓學(xué)生形成概念的過程中,聯(lián)系舊知、突破難點(diǎn)、生長新知。為此通過教學(xué)目標(biāo)和難重點(diǎn)的展示,讓學(xué)生明確本節(jié)課的任務(wù)及精髓,帶著目標(biāo)去學(xué)習(xí),才能達(dá)到事半功倍的效果。

三、教法

問題式教學(xué)法(實(shí)例情境、啟發(fā)引導(dǎo)、合作交流、歸納抽象)

由于本課題是從集合與對應(yīng)的角度揭示函數(shù)的本質(zhì),無論難度還是跨度都有質(zhì)的飛躍。根據(jù)學(xué)生的心理特征和認(rèn)知規(guī)律,我通過以問題為主線,以學(xué)生為主體,以教師為主導(dǎo)的教學(xué)理念。采用一系列的設(shè)問、引導(dǎo)、啟發(fā)、發(fā)現(xiàn),讓學(xué)生歸納、概括出函數(shù)概念的本質(zhì),并靈活應(yīng)用多媒體、黑板呈現(xiàn)、展示、交流。

[意圖依據(jù)]:函數(shù)的`概念的教學(xué)要注重以下幾個(gè)方面:

(1)把集合作為一種語言;

(2)對函數(shù)本質(zhì)的理解不能一步到位,要注重螺旋上升;

(3)重視信息技術(shù)的使用。為此,教師要在課堂上搭建一個(gè)平臺,通過展示實(shí)例、學(xué)生舉例、典例分析、小結(jié)歸納等環(huán)節(jié)穿插若干問題,引起思考,達(dá)成教學(xué)目標(biāo)。

四、學(xué)法

自主探究、合作交流、展示互評

我們知道越是基礎(chǔ)性的概念,其統(tǒng)攝性就越強(qiáng),學(xué)生從中領(lǐng)悟到的數(shù)學(xué)就越本質(zhì);但事物總有兩面性,這些概念的理解和掌握往往難度大、時(shí)間長,需要更多的經(jīng)驗(yàn)積累.因此本節(jié)課在學(xué)法上我重視學(xué)生在列舉大量實(shí)際背景的前提下對所給出實(shí)例觀察,類比,歸納,分析,探究,合作,提煉,感悟函數(shù)概念的“本來面目”,以此培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和分析解決問題的能力;同時(shí)在預(yù)習(xí)環(huán)節(jié)有學(xué)生的自主學(xué)習(xí)、在互動(dòng)環(huán)節(jié)有學(xué)生的合作交流、在課后拓展環(huán)節(jié)有學(xué)生的探究學(xué)習(xí)。這樣做,增加了學(xué)生主動(dòng)參與的機(jī)會,增強(qiáng)了參與意識,教給學(xué)生獲取知識的途徑以及思考問題的方法,使學(xué)生真正成為教學(xué)的主體。也只有這樣做,才能使學(xué)生“學(xué)”有所“思”,“思”有所“獲”,“獲”有所“用”。也恰好能夠體現(xiàn)我以“學(xué)什么、怎么學(xué)、學(xué)了有何用”來設(shè)計(jì)本課題的整體思路。

[意圖依據(jù)]:本課時(shí)是以問題為主線的教學(xué)過程,著重讓學(xué)生經(jīng)過對大量實(shí)例的剖析、了解、歸納而形成概念。在這個(gè)過程中,教師的作用是引導(dǎo),經(jīng)過一系列問題的提出、解決讓學(xué)生在思考、交流的基礎(chǔ)上層層深入的理解函數(shù)概念。

五、教學(xué)過程設(shè)計(jì)

本節(jié)內(nèi)容的教學(xué)過程我設(shè)計(jì)為以下逐層推進(jìn)六個(gè)步驟:

1、課前預(yù)習(xí)、生成問題

2、創(chuàng)境設(shè)問、引入課題

3、觀察分析、探索新知

4、思考辨析、深刻理解

5、提煉總結(jié)、分享收獲

6、布置作業(yè)、拓展延伸

函數(shù)課件【篇8】

本節(jié)課是在學(xué)生學(xué)習(xí)了《基本初等函數(shù)(Ⅰ)》的基礎(chǔ)上,學(xué)習(xí)函數(shù)與方程的第一課時(shí),本節(jié)課中通過對二次函數(shù)圖象的繪制、分析,得到零點(diǎn)的概念,從而進(jìn)一步探索函數(shù)零點(diǎn)存在性的判定,這些活動(dòng)就是想讓學(xué)生在了解初等函數(shù)的基礎(chǔ)上,利用計(jì)算機(jī)描繪函數(shù)的圖象,通過對函數(shù)與方程的探究,對函數(shù)有進(jìn)一步的認(rèn)識,解決方程根的存在性問題,為下一節(jié)《用二分法求方程的近似解》做準(zhǔn)備.

從教材編寫的順序來看,《方程的根與函數(shù)的零點(diǎn)》是必修1第三章《函數(shù)的應(yīng)用》一章的開始,其目的是使學(xué)生學(xué)會用二分法求方程近似解的方法,從中體會函數(shù)與方程之間的聯(lián)系.利用函數(shù)模型解決問題,作為一條主線貫穿了全章的始終,而方程的根與函數(shù)的零點(diǎn)的關(guān)系、用二分法求方程的近似解,是在建立和運(yùn)用函數(shù)模型的大背景下展開的.方程的根與函數(shù)的零點(diǎn)的關(guān)系、用二分法求方程的近似解中均蘊(yùn)涵了“函數(shù)與方程的思想”和“數(shù)形結(jié)合的思想”,建立和運(yùn)用函數(shù)模型中蘊(yùn)含的“數(shù)學(xué)建模思想”,是本章滲透的主要數(shù)學(xué)思想.

從知識的應(yīng)用價(jià)值來看,通過在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)學(xué)中的轉(zhuǎn)化思想的意義和價(jià)值,體驗(yàn)函數(shù)是描述宏觀世界變化規(guī)律的基本數(shù)學(xué)模型,體會符號化、模型化的思想,體驗(yàn)從系統(tǒng)的角度去思考局部問題的思想.

基于上述分析,確定本節(jié)的教學(xué)重點(diǎn)是:了解函數(shù)零點(diǎn)的概念,體會方程的根與函數(shù)零點(diǎn)之間的聯(lián)系,掌握函數(shù)零點(diǎn)存在性的判斷.

1.通過對二次函數(shù)圖象的描繪,了解函數(shù)零點(diǎn)的概念,滲透由具體到抽象思想,領(lǐng)會函數(shù)零點(diǎn)與相應(yīng)方程實(shí)數(shù)根之間的關(guān)系,

2.零點(diǎn)知識是陳述性知識,關(guān)鍵不在于學(xué)生提出這個(gè)概念。而是理解提出零點(diǎn)概念的作用,溝通函數(shù)與方程的關(guān)系。

3.通過對現(xiàn)實(shí)問題的分析,體會用函數(shù)系統(tǒng)的角度去思考方程的思想,使學(xué)生理解動(dòng)與靜的辨證關(guān)系.掌握函數(shù)零點(diǎn)存在性的判斷.

4.在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)形結(jié)合思想和轉(zhuǎn)化思想的意義和價(jià)值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.

1.零點(diǎn)概念的認(rèn)識.零點(diǎn)的概念是在分析了眾多圖象的基礎(chǔ)上,由圖象與軸的位置關(guān)系得到的一個(gè)形象的概念,學(xué)生可能會設(shè)法畫出圖象找到所有任意函數(shù)的可能存在的所有零點(diǎn),但是并不是所有函數(shù)的圖象都能具體的描繪出,所以在概念的接受上有一點(diǎn)的障礙.

2.零點(diǎn)存在性的判斷.正因?yàn)閒(a)·f(b)<0且圖象在區(qū)間上連續(xù)不斷,是函數(shù)f(x)在區(qū)間上有零點(diǎn)的充分而非必要條件,容易引起思維的混亂就是很自然的事了.

3.零點(diǎn)(或零點(diǎn)個(gè)數(shù))的確定.學(xué)生會作二次函數(shù)的圖象,但是要作出一般的函數(shù)圖象(或圖象的交點(diǎn))就比較困難,而在這一節(jié)課最重要的恰恰就是利用函數(shù)圖象來研究函數(shù)的零點(diǎn)問題.這樣就在零點(diǎn)(或零點(diǎn)個(gè)數(shù))的確定上給學(xué)生帶來一定的.困難.

基于上述分析,確定本節(jié)課的教學(xué)難點(diǎn)是:準(zhǔn)確認(rèn)識零點(diǎn)的概念,在合情推理中讓學(xué)生體會到判定定理的充分非必要性,能利用適當(dāng)?shù)姆椒ㄅ袛嗔泓c(diǎn)的存在或確定零點(diǎn).

考慮到學(xué)生的知識水平和理解能力,教師可借助計(jì)算機(jī)工具和構(gòu)建現(xiàn)實(shí)生活中的模型,從激勵(lì)學(xué)生探究入手,講練結(jié)合,直觀演示能使教學(xué)更富趣味性和生動(dòng)性.

通過讓學(xué)生觀察、討論、辨析、畫圖,親身實(shí)踐,在函數(shù)與方程的聯(lián)系中體驗(yàn)數(shù)形結(jié)合思想、轉(zhuǎn)化思想的意義和價(jià)值,發(fā)展學(xué)生對變量數(shù)學(xué)的認(rèn)識,體會函數(shù)知識的核心作用.

變式:解方程3x5+6x-1=0的實(shí)數(shù)根. (一次、二次、三次、四次方程的解都可以通過系數(shù)的四則運(yùn)算,乘方與開方等運(yùn)算來表示,但高于四次的方程不能用公式求解。大家課后去閱讀本節(jié)后的“閱讀與思考”,還有如lnx+2x-6=0的實(shí)數(shù)根很難下手,我們尋求新的角度——函數(shù)來解決這個(gè)方程的問題。)

設(shè)計(jì)意圖:從學(xué)生的認(rèn)知沖突中,引發(fā)學(xué)生的好奇心和求知欲,推動(dòng)問題進(jìn)一步的探究。通過簡單的引導(dǎo),讓學(xué)生課后自己閱讀相關(guān)內(nèi)容,培養(yǎng)他的自學(xué)能力和更廣泛的興趣。開門見山的提出函數(shù)思想解決方程根的問題,點(diǎn)明本節(jié)課的目標(biāo)。

函數(shù)課件【篇9】

一、教學(xué)目標(biāo)

1.知識與技能

(1)能夠借助三角函數(shù)的定義及單位圓中的三角函數(shù)線推導(dǎo)三角函數(shù)的誘導(dǎo)公式。

(2)能夠運(yùn)用誘導(dǎo)公式,把任意角的三角函數(shù)的化簡、求值問題轉(zhuǎn)化為銳角三角函數(shù)的化簡、求值問題。

2.過程與方法

(1)經(jīng)歷由幾何直觀探討數(shù)量關(guān)系式的過程,培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)能力和概括能力。

(2)通過對誘導(dǎo)公式的探求和運(yùn)用,培養(yǎng)化歸能力,提高學(xué)生分析問題和解決問題的能力。

3.情感、態(tài)度、價(jià)值觀

(1)通過對誘導(dǎo)公式的探求,培養(yǎng)學(xué)生的探索能力、鉆研精神和科學(xué)態(tài)度。

(2)在誘導(dǎo)公式的探求過程中,運(yùn)用合作學(xué)習(xí)的方式進(jìn)行,培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作的精神。

二、教學(xué)重點(diǎn)與難點(diǎn)

教學(xué)重點(diǎn):探求π-a的誘導(dǎo)公式。π+a與-a的誘導(dǎo)公式在小結(jié)π-a的誘導(dǎo)公式發(fā)現(xiàn)過程的基礎(chǔ)上,教師引導(dǎo)學(xué)生推出。

教學(xué)難點(diǎn):π+a,-a與角a終邊位置的幾何關(guān)系,發(fā)現(xiàn)由終邊位置關(guān)系導(dǎo)致(與單位圓交點(diǎn))的坐標(biāo)關(guān)系,運(yùn)用任意角三角函數(shù)的定義導(dǎo)出誘導(dǎo)公式的“研究路線圖”。

三、教學(xué)方法與教學(xué)手段

問題教學(xué)法、合作學(xué)習(xí)法,結(jié)合多媒體課件

四、教學(xué)過程

角的概念已經(jīng)由銳角擴(kuò)充到了任意角,前面已經(jīng)學(xué)習(xí)過任意角的`三角函數(shù),那么任意角的三角函數(shù)值怎么求呢?先看一個(gè)具體的問題。

(一)問題提出

如何將任意角三角函數(shù)求值問題轉(zhuǎn)化為0°~360°角三角函數(shù)求值問題。

【問題1】求390°角的正弦、余弦值、一般地,由三角函數(shù)的定義可以知道,終邊相同的角的同一三角函數(shù)值相等,三角函數(shù)看重的就是終邊位置關(guān)系。即有:sin(a+k·360°)=sinα,

cos(a+k·360°)=cosα,(k∈Z)tan(a+k·360°)=tanα。

這組公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈Z)(公式如何利用對稱推導(dǎo)出角π-a與角a的三角函數(shù)之間的關(guān)系。

由上一組公式,我們知道,終邊相同的角的同一三角函數(shù)值一定相等。反過來呢?如果兩個(gè)角的三角函數(shù)值相等,它們的終邊一定相同嗎?比如說:

【問題2】你能找出和30°角正弦值相等,但終邊不同的角嗎?

角π-a與角a的終邊關(guān)于y軸對稱,有sin(π-a)=sina,

cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。

〖思考〗請大家回顧一下,剛才我們是如何獲得這組公式(公式二)的?因?yàn)榕c角a終邊關(guān)于y軸對稱是角π-a,,利用這種對稱關(guān)系,得到它們的終邊與單位圓的交點(diǎn)的縱坐標(biāo)相等,橫坐標(biāo)互為相反數(shù)。于是,我們就得到了角π-a與角a的三角函數(shù)值之間的關(guān)系:正弦值相等,余弦值互為相反數(shù),進(jìn)而,就得到我們研究三角函數(shù)誘導(dǎo)公式的路線圖:角間關(guān)系→對稱關(guān)系→坐標(biāo)關(guān)系→三角函數(shù)值間關(guān)系。

(三)自主探究

如何利用對稱推導(dǎo)出π+a,-a與a的三角函數(shù)值之間的關(guān)系。

剛才我們利用單位圓,得到了終邊關(guān)于y軸對稱的角π-a與角a的三角函數(shù)值之間的關(guān)系,下面我們還可以研究什么呢?

【問題3】兩個(gè)角的終邊關(guān)于x軸對稱,你有什么結(jié)論?兩個(gè)角的終邊關(guān)于原點(diǎn)對稱呢?

角-a與角a的終邊關(guān)于x軸對稱,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。

角π+a與角a終邊關(guān)于原點(diǎn)O對稱,有:sin(π+a)=-sina,

cos(π+a)=-cosa,(公式四)tan(π+a)=tana。

上面的公式一~四都稱為三角函數(shù)的誘導(dǎo)公式。

(四)簡單應(yīng)用

例求下列各三角函數(shù)值:

(1)sinp;(2)cos(-60°);(3)tan(-855°)(五)回顧反思

【問題4】回顧一下,我們是怎樣獲得誘導(dǎo)公式的?研究的過程中,你有哪些體會?知識上,學(xué)會了四組誘導(dǎo)公式;思想方法層面:誘導(dǎo)公式體現(xiàn)了由未知轉(zhuǎn)化為已知的化歸思想;誘導(dǎo)公式所揭示的是終邊具有某種對稱關(guān)系的兩個(gè)角三角函數(shù)之間的關(guān)系。主要體現(xiàn)了化歸和數(shù)形結(jié)合的數(shù)學(xué)思想。具體可以表示如下:

(六)分層作業(yè)

1、閱讀課本,體會三角函數(shù)誘導(dǎo)公式推導(dǎo)過程中的思想方法;2、必做題課本23頁133、選做題

(1)你能由公式二、三、四中的任意兩組公式推導(dǎo)到另外一組公式嗎?

(2)角α和角β的終邊還有哪些特殊的位置關(guān)系,你能探究出它們的三角函數(shù)值之間的關(guān)系嗎?

函數(shù)課件【篇10】

一、教材分析

1、教材的地位與作用:《同角三角函數(shù)的基本關(guān)系》是學(xué)習(xí)三角函數(shù)定義后安排的一節(jié)繼續(xù)深入學(xué)習(xí)的內(nèi)容,是求三角函數(shù)值,化簡三角函數(shù)式,證明三角恒等式的基本工具,是整個(gè)三角函數(shù)的基礎(chǔ),起承上啟下的作用,同時(shí),它體現(xiàn)的數(shù)學(xué)思想方法在整個(gè)中學(xué)學(xué)習(xí)中起重要作用。

2、教學(xué)目標(biāo)的確定及依據(jù)

A、知識與技能目標(biāo):通過觀察猜想出兩個(gè)公式,運(yùn)用數(shù)形結(jié)合的思想讓學(xué)生掌握公式的推導(dǎo)過程,理解同角三角函數(shù)的基本關(guān)系式,掌握基本關(guān)系式在兩個(gè)方面的應(yīng)用:

1)已知一個(gè)角的一個(gè)三角函數(shù)值能求這個(gè)角的其他三角函數(shù)值;

2)證明簡單的三角恒等式。

B、過程與方法:培養(yǎng)學(xué)生觀察——猜想——證明的科學(xué)思維方式;通過公式的推導(dǎo)過程培養(yǎng)學(xué)生用舊知識解決新問題的思想;通過求值、證明來培養(yǎng)學(xué)生邏輯推理能力;通過例題與練習(xí)提高學(xué)生動(dòng)手能力、分析問題解決問題的能力以及其知識遷移能力。

C、情感、態(tài)度與價(jià)值觀:經(jīng)歷數(shù)學(xué)研究的過程,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣。

3、教學(xué)重點(diǎn)和難點(diǎn)

重點(diǎn):同角三角函數(shù)基本關(guān)系式的推導(dǎo)及應(yīng)用。

難點(diǎn):同角三角函數(shù)函數(shù)基本關(guān)系在解題中的靈活選取及使用公式時(shí)由函數(shù)值正、負(fù)號的選取而導(dǎo)致的角的范圍的討論。

二、學(xué)情分析:

學(xué)生剛開始接觸三角函數(shù)的內(nèi)容,學(xué)習(xí)了任意角的三角函數(shù),對這一方面的內(nèi)容既感到新鮮又感到陌生,很有好奇心,躍躍欲試,學(xué)習(xí)熱情高漲。

三、教法分析與學(xué)法分析:

1、教法分析:采取誘思探究性教學(xué)方法,在教學(xué)中提出問題,創(chuàng)設(shè)情景引導(dǎo)學(xué)生主動(dòng)觀察、思考、類比、討論、總結(jié)、證明,讓學(xué)生做學(xué)習(xí)的主人,在主動(dòng)探究中汲取知識,提高能力。

2、學(xué)法分析:從學(xué)生原有的知識和能力出發(fā),在教師的帶領(lǐng)下,通過合作交流,共同探索,逐步解決問題.數(shù)學(xué)學(xué)習(xí)必須注重概念、原理、公式、法則的形成過程,突出數(shù)學(xué)本質(zhì)。

四、教學(xué)過程設(shè)計(jì)

例1、設(shè)計(jì)意圖:已知一個(gè)角的某一個(gè)三角函數(shù)值,便可運(yùn)用基本關(guān)系式求出其它三角函數(shù)值。在求值中,確定角的終邊位置是關(guān)鍵和必要的。有時(shí),由于角的終邊位置的不確定,因此解的情況不止一種。本題主要利用的數(shù)學(xué)解題思想是:分類討論

例2、設(shè)計(jì)意圖:

(1)分子、分母是正余弦的一次(或二次)齊次式,注意所求值式的分子、分母均為一次齊次式,把分子、分母同除以 ,將分子、分母轉(zhuǎn)化為 的代數(shù)式;還可以利用商數(shù)關(guān)系解決。

(2)“化1法”,可利用平方關(guān)系 ,將分子、分母都變?yōu)槎锡R次式,再利用商數(shù)關(guān)系化歸為 的分式求值;

五、教學(xué)反思:

如此設(shè)計(jì)教學(xué)過程,既復(fù)習(xí)了上一節(jié)的內(nèi)容,又充分利用舊知識帶出新知識,讓學(xué)生明白到數(shù)學(xué)的知識是相互聯(lián)系的,所以每一節(jié)內(nèi)容都應(yīng)該把它牢固掌握;在公式的推導(dǎo)中,教師是用創(chuàng)設(shè)問題的形式引導(dǎo)學(xué)生去發(fā)現(xiàn)關(guān)系式,多讓學(xué)生動(dòng)手去計(jì)算,體現(xiàn)了&qut;教師為引導(dǎo),學(xué)生為主體,體驗(yàn)為紅線,探索得材料,研究獲本質(zhì),思維促發(fā)展&qut;的教學(xué)思想。通過兩種不同的例題的對比,讓學(xué)生能夠明白到關(guān)系式中的開方,是需要考慮正負(fù)號,而正負(fù)號是與角的象限有關(guān),角的象限題目可以直接給出來,但有時(shí)是需要已知條件來推出角可能所在的象限,通過分析,把本節(jié)課的教學(xué)難點(diǎn)解決了。

由于課堂在完成例題及變式時(shí)要給予學(xué)生充分的時(shí)間思考與嘗試,故對學(xué)生的檢測只能安排在課后的作業(yè)中,作業(yè)可以檢測學(xué)生對本節(jié)課內(nèi)容掌握的情況,能否靈活運(yùn)用知識進(jìn)行合理的遷移,可以發(fā)現(xiàn)學(xué)生在解題中存在的問題,下節(jié)課教師再根據(jù)學(xué)生完成的情況加以評講,并設(shè)計(jì)相應(yīng)的訓(xùn)練題,使學(xué)生的認(rèn)識再上一個(gè)臺階。

函數(shù)課件【篇11】

教學(xué)目標(biāo):

1.在初中學(xué)習(xí)一次函數(shù)、二次函數(shù)的性質(zhì)的基礎(chǔ)上,進(jìn)一步感知函數(shù)的單調(diào)性,并能結(jié)合圖形,認(rèn)識函數(shù)的單調(diào)性;

2.通過函數(shù)的單調(diào)性的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,并對學(xué)生進(jìn)行初步的辯證唯物論的教育;

3.通過函數(shù)的單調(diào)性的教學(xué),讓學(xué)生學(xué)會理性地認(rèn)識與描述生活中的增長、遞減等現(xiàn)象.

教學(xué)重點(diǎn):

用圖象直觀地認(rèn)識函數(shù)的單調(diào)性,并利用函數(shù)的單調(diào)性求函數(shù)的值域.

教學(xué)過程:

一、問題情境

如圖(課本37頁圖2-2-1),是氣溫關(guān)于時(shí)間t的函數(shù),記為=f (t),觀察這個(gè)函數(shù)的圖象,說出氣溫在哪些時(shí)間段內(nèi)是逐漸升高的或是下降的?

問題:怎樣用數(shù)學(xué)語言刻畫上述時(shí)間段內(nèi)“隨時(shí)間的增大氣溫逐漸升高”這一特征?

二、學(xué)生活動(dòng)

1.結(jié)合圖2―2―1,說出該市一天氣溫的變化情況;

2.回憶初中所學(xué)的有關(guān)函數(shù)的性質(zhì),并畫圖予以說明;

3.結(jié)合右側(cè)四幅圖,解釋函數(shù)的單調(diào)性.

三、數(shù)學(xué)建構(gòu)

1.增函數(shù)與減函數(shù):

一般地,設(shè)函數(shù)=f(x)的定義域?yàn)锳,區(qū)間IA.

如果對于區(qū)間I內(nèi)的任意兩個(gè)值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)<f(x2),那么就說=f(x)在區(qū)間I是單調(diào)增函數(shù),區(qū)間I稱為=f(x)的`單調(diào)增區(qū)間.

如果對于區(qū)間I內(nèi)的任意兩個(gè)值x1,x2,當(dāng)x1<x2時(shí),都有f(x1)>f(x2),那么就說=f(x)在區(qū)間I是單調(diào)減函數(shù),區(qū)間I稱為=f(x)的單調(diào)減區(qū)間.

2.函數(shù)的單調(diào)性與單調(diào)區(qū)間:

如果函數(shù)=f(x)在區(qū)間I是單調(diào)增函數(shù)或單調(diào)減函數(shù),那么就說函數(shù)=f(x)在區(qū)間I上具有單調(diào)性.

單調(diào)增區(qū)間與單調(diào)減區(qū)間統(tǒng)稱為單調(diào)區(qū)間.

注:一般所說的函數(shù)的單調(diào)性,就是要指出函數(shù)的單調(diào)區(qū)間,并說明在區(qū)間上是單調(diào)增函數(shù)還是單調(diào)減函數(shù).

四、數(shù)學(xué)運(yùn)用

例1 畫出下列函數(shù)的圖象,結(jié)合圖象說出函數(shù)的單調(diào)性.

1.=x2+2x-12.=2x

例2 求證:函數(shù)f(x)=-1x-1在區(qū)間(-∞,0)上是單調(diào)增函數(shù).

練習(xí):說出下列函數(shù)的單調(diào)性并證明.

1.=-x2+22.=2x+1

五、回顧小結(jié)

利用圖形,感知函數(shù)的單調(diào)性→給出單調(diào)性的嚴(yán)格意義上的定義→證明一個(gè)函數(shù)的單調(diào)性.

六、作業(yè)

課堂作業(yè):課本44頁1,3兩題.

函數(shù)課件【篇12】

正比例函數(shù)是本章的重點(diǎn)內(nèi)容,是學(xué)生在初中階段第一次接觸的函數(shù),這部分內(nèi)容的學(xué)習(xí)是在學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)的概念及圖像的基礎(chǔ)之上進(jìn)行的。它是對前面所學(xué)知識的應(yīng)用,又為后面學(xué)習(xí)做好鋪墊。因此,本節(jié)課的知識起到了承上啟下的作用。

學(xué)習(xí)本節(jié)課之前,學(xué)生已經(jīng)學(xué)習(xí)了變量和函數(shù)等知識。在描點(diǎn)法的學(xué)習(xí)中初步感受了通過描點(diǎn)法畫出圖象,并感知其增感性的過程,為本節(jié)課新知識的學(xué)習(xí)做好準(zhǔn)備,所以本節(jié)課的學(xué)習(xí)問題不大。

知識技能:1、初步理解正比例函數(shù)的概念及其圖象的特征。2、能畫出正比例函數(shù)的圖象。3、能夠判斷兩個(gè)變量是否構(gòu)成正比例函數(shù)關(guān)系。

數(shù)學(xué)思考:1、通過“燕鷗飛行路程問題”的研究,體會建立函數(shù)模型的.思想。2、通過正比例函數(shù)圖像的學(xué)習(xí)和探究,感知數(shù)行結(jié)合思想。

解決問題:1、能夠要求運(yùn)用“列表法”和“兩點(diǎn)法”作正比率函數(shù)的圖象。2、會利用正比例函數(shù)解決簡單的數(shù)學(xué)問題。

情感態(tài)度:1、結(jié)合描點(diǎn)作圖,培養(yǎng)學(xué)生認(rèn)真、細(xì)心、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度和學(xué)習(xí)習(xí)慣。2、通過正比率函數(shù)概念的引入,使學(xué)生進(jìn)一步認(rèn)識數(shù)學(xué)是由于人們需要而產(chǎn)生的,與現(xiàn)實(shí)世界密切相關(guān)。同時(shí)滲透熱愛自然和生活的教育。

高一函數(shù)課件11篇


每一位教師都需要撰寫教案和課件,以便上好課。然而,這并不是隨便寫寫就可以的。學(xué)生在課堂上的反應(yīng)各不相同,這可以幫助教師制定不同的教學(xué)策略。今天幼兒教師教育網(wǎng)為大家推薦一篇關(guān)于“高一函數(shù)課件”的精選文章。非常感謝您的閱讀,希望我們的網(wǎng)站能給您帶來愉悅并令您心生收藏!

高一函數(shù)課件 篇1

教學(xué)目標(biāo):

(1)能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

(2)注重學(xué)生參與,聯(lián)系實(shí)際,豐富學(xué)生的感性認(rèn)識,培養(yǎng)學(xué)生的良好的學(xué)習(xí)習(xí)慣

重點(diǎn)難點(diǎn):

能夠根據(jù)實(shí)際問題,熟練地列出二次函數(shù)關(guān)系式,并求出函數(shù)的自變量的取值范圍。

教學(xué)過程:

一、試一試

1.設(shè)矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進(jìn)而得出矩形的面積ym2.試將計(jì)算結(jié)果填寫在下表的空格中,

AB長x(m)123456789

BC長(m)12

面積y(m2)48

2.x的值是否可以任意取?有限定范圍嗎?

3.我們發(fā)現(xiàn),當(dāng)AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個(gè)函數(shù)的關(guān)系式,

對于1.,可讓學(xué)生根據(jù)表中給出的AB的長,填出相應(yīng)的BC的長和面積,然后引導(dǎo)學(xué)生觀察表格中數(shù)據(jù)的變化情況,提出問題:(1)從所填表格中,你能發(fā)現(xiàn)什么?(2)對前面提出的問題的解答能作出什么猜想?讓學(xué)生思意見,達(dá)成共識:當(dāng)AB的長為5cm,BC的長為10m時(shí),圍成的矩形面積最大;最大面積為50m2。

對于2,可讓學(xué)生分組討論、交流,然后意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0

高一函數(shù)課件 篇2

一、說教材

(一)地位與重要性

函數(shù)的最值是《高中數(shù)學(xué)》一年級第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對立統(tǒng)一的觀點(diǎn),本節(jié)課對初高中知識的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。

(二)教學(xué)目標(biāo)

知識與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。

情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性,樹立學(xué)好數(shù)學(xué)的信心。

過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。

科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。

(三)教學(xué)重難點(diǎn)

重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。

難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。

二、說教法與學(xué)法

在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識,根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗(yàn)作為新知識的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識主動(dòng)納入已建構(gòu)好的知識體系,真正做到“學(xué)會學(xué)習(xí)”。

三、說教學(xué)過程

(一)課題引入

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?

學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。

教學(xué)手段:用PPT展示題目

教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評。

學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆

教學(xué)手段:實(shí)物投影儀

(二)新知教學(xué)

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

一、函數(shù)最大值和最小值的概念

通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。

學(xué)生口述師板書。

一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。

二、例題講練

例1、求二次函數(shù)的最大值或者最小值:

師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請學(xué)生板演。

學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。

培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識未知的認(rèn)識規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。

突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對稱軸與所給區(qū)間的關(guān)系。

教學(xué)方式:講練結(jié)合

例2、在的條件下,求函數(shù)的最大值和最小值。

教師引導(dǎo)學(xué)生逐步深入思考:

1、定義域與函數(shù)最值是什么關(guān)系?

2、轉(zhuǎn)化后要研究的函數(shù)是什么?

教學(xué)方式:學(xué)生自主探究

高一函數(shù)課件 篇3

1.2解三角形應(yīng)用舉例第四課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法進(jìn)一步解決有關(guān)三角形的問題,掌握三角形的面積公式的簡單推導(dǎo)和應(yīng)用

2、本節(jié)課補(bǔ)充了三角形新的面積公式,巧妙設(shè)疑,引導(dǎo)學(xué)生證明,同時(shí)總結(jié)出該公式的特點(diǎn),循序漸進(jìn)地具體運(yùn)用于相關(guān)的題型。另外本節(jié)課的證明題體現(xiàn)了前面所學(xué)知識的生動(dòng)運(yùn)用,教師要放手讓學(xué)生摸索,使學(xué)生在具體的論證中靈活把握正弦定理和余弦定理的特點(diǎn),能不拘一格,一題多解。只要學(xué)生自行掌握了兩定理的特點(diǎn),就能很快開闊思維,有利地進(jìn)一步突破難點(diǎn)。

3、讓學(xué)生進(jìn)一步鞏固所學(xué)的知識,加深對所學(xué)定理的理解,提高創(chuàng)新能力;進(jìn)一步培養(yǎng)學(xué)生研究和發(fā)現(xiàn)能力,讓學(xué)生在探究中體驗(yàn)愉悅的成功體驗(yàn)

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):推導(dǎo)三角形的面積公式并解決簡單的相關(guān)題目

難點(diǎn):利用正弦定理、余弦定理來求證簡單的證明題

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

[創(chuàng)設(shè)情境]

師:以前我們就已經(jīng)接觸過了三角形的面積公式,今天我們來學(xué)習(xí)它的另一個(gè)表達(dá)公式。在

ABC中,邊BC、CA、AB上的高分別記為h、h、h,那么它們?nèi)绾斡靡阎吅徒潜硎荆?/p>

生:h=bsinC=csinBh=csinA=asinCh=asinB=bsinaA

師:根據(jù)以前學(xué)過的三角形面積公式S=ah,應(yīng)用以上求出的高的公式如h=bsinC代入,可以推導(dǎo)出下面的三角形面積公式,S=absinC,大家能推出其它的幾個(gè)公式嗎?

生:同理可得,S=bcsinA,S=acsinB

Ⅱ.講授新課

[范例講解]

例1、在ABC中,根據(jù)下列條件,求三角形的面積S(精確到0.1cm)

(1)已知a=14cm,c=24cm,B=150;

(2)已知B=60,C=45,b=4cm;

(3)已知三邊的長分別為a=3cm,b=4cm,c=6cm

分析:這是一道在不同已知條件下求三角形的面積的問題,與解三角形問題有密切的關(guān)系,我們可以應(yīng)用解三角形面積的知識,觀察已知什么,尚缺什么?求出需要的元素,就可以求出三角形的面積。

解:略

例2、如圖,在某市進(jìn)行城市環(huán)境建設(shè)中,要把一個(gè)三角形的區(qū)域改造成室內(nèi)公園,經(jīng)過測量得到這個(gè)三角形區(qū)域的三條邊長分別為68m,88m,127m,這個(gè)區(qū)域的面積是多少?(精確到0.1cm)?

思考:你能把這一實(shí)際問題化歸為一道數(shù)學(xué)題目嗎?

本題可轉(zhuǎn)化為已知三角形的三邊,求角的問題,再利用三角形的面積公式求解。

解:設(shè)a=68m,b=88m,c=127m,根據(jù)余弦定理的推論,

cosB==≈0.7532

sinB=0.6578應(yīng)用S=acsinB

S≈681270.6578≈2840.38(m)

答:這個(gè)區(qū)域的面積是2840.38m。

變式練習(xí)1:已知在ABC中,B=30,b=6,c=6,求a及ABC的面積S

提示:解有關(guān)已知兩邊和其中一邊對角的問題,注重分情況討論解的個(gè)數(shù)。

答案:a=6,S=9;a=12,S=18

例3、在ABC中,求證:

(1)

(2)++=2(bccosA+cacosB+abcosC)

分析:這是一道關(guān)于三角形邊角關(guān)系恒等式的證明問題,觀察式子左右兩邊的特點(diǎn),用正弦定理來證明

證明:(1)根據(jù)正弦定理,可設(shè)

===k顯然k0,所以

左邊===右邊

(2)根據(jù)余弦定理的推論,

右邊=2(bc+ca+ab)

=(b+c-a)+(c+a-b)+(a+b-c)=a+b+c=左邊

變式練習(xí)2:判斷滿足sinC=條件的三角形形狀

提示:利用正弦定理或余弦定理,“化邊為角”或“化角為邊”(解略)直角三角形

Ⅲ.課堂練習(xí)課本第18頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理或余弦定理將已知條件轉(zhuǎn)化為只含邊的式子或只含角的三角函數(shù)式,然后化簡并考察邊或角的關(guān)系,從而確定三角形的形狀。特別是有些條件既可用正弦定理也可用余弦定理甚至可以兩者混用。

Ⅴ.課后作業(yè)

《習(xí)案》作業(yè)七

高一函數(shù)課件 篇4

1.2解三角形應(yīng)用舉例第二課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題

2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。

3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識及觀察、歸納、類比、概括的能力

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題

難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶兀拷裉煳覀兙蛠砉餐接戇@方面的問題

Ⅱ.講授新課

[范例講解]

例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。

分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。

解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)

師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?

若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?

生:需求出BD邊。

師:那如何求BD邊呢?

生:可首先求出AB邊,再根據(jù)BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根據(jù)正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

將測量數(shù)據(jù)代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度約為150米.

思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)

解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度約為1047米

Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理和余弦定理來解題時(shí),要學(xué)會審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>

Ⅴ.課后作業(yè)

作業(yè):《習(xí)案》作業(yè)五

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.

(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.

(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).

(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.

2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.

學(xué)過什么函數(shù)?

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).

(板書)2.2函數(shù)

一、函數(shù)的概念

高一函數(shù)課件 篇5

說教學(xué)目標(biāo)

熟練地掌握二次函數(shù)的最值及其求法。

說教學(xué)重點(diǎn)

二次函數(shù)的的最值及其求法。

說教學(xué)難點(diǎn)

二次函數(shù)的最值及其求法。

說教學(xué)過程

一、引入

二次函數(shù)的最值:

二、例題分析:

例1:求二次函數(shù)的最大值以及取得最大值時(shí)的值。

變題1:

變題2:求函數(shù)的最大值。

變題3:求函數(shù)的最大值。

例2:已知的最大值為3,最小值為2,求的取值范圍。

例3:若,是二次方程的兩個(gè)實(shí)數(shù)根,求的最小值。

三、隨堂練習(xí):

1、若函數(shù)在上有最小值,最大值2,若,則=________,=________。

2、已知,是關(guān)于的一元二次方程的兩實(shí)數(shù)根,則的最小值是()

A、0 B、1 C、-1 D、2

3、求函數(shù)在區(qū)間上的最大值。

四、回顧小結(jié)

本節(jié)課了以下內(nèi)容:

1、二次函數(shù)的的最值及其求法。

課后作業(yè)

班級:()班姓名__________

一、基礎(chǔ)題:

1、函數(shù)

A、有最大值6 B、有最小值6 C、有最大值10 D、有最大值2

2、函數(shù)的最大值是4,且當(dāng)=2時(shí),=5,則=______,=_______。

二、提高題:

3、試求關(guān)于的函數(shù)在上的最大值,高三。

4、已知函數(shù)當(dāng)時(shí),取最大值為2,求實(shí)數(shù)的值。

5、已知是方程的兩實(shí)根,求的最大值和最小值。

三、題:

已知函數(shù),其中,求該函數(shù)的最大值與最小值,并求出函數(shù)取最大值和最小值時(shí)所對應(yīng)的自變量的值。

高一函數(shù)課件 篇6

【內(nèi)容】建立函數(shù)模型刻畫現(xiàn)實(shí)問題

【內(nèi)容解析】函數(shù)模型本身就來源于現(xiàn)實(shí),并用于解決實(shí)際問題,所以本節(jié)內(nèi)容是通過對展現(xiàn)的實(shí)例進(jìn)行分析與探究使得學(xué)生能有更多的機(jī)會從實(shí)際問題中發(fā)現(xiàn)或建立數(shù)學(xué)模型,并能體會數(shù)學(xué)在實(shí)際問題中的應(yīng)用價(jià)值,同時(shí)本課題是學(xué)生在初中學(xué)習(xí)了函數(shù)的圖象和性質(zhì)的基礎(chǔ)上剛上高中進(jìn)行的一節(jié)探究式課堂教學(xué)。在一個(gè)具體問題的解決過程中,學(xué)生可以從理解知識升華到熟練應(yīng)用知識,使他們能辯證地看待知識理解與知識應(yīng)用間的關(guān)系,與所學(xué)的函數(shù)知識前后緊緊相扣,相輔相成。;另一方面,函數(shù)模型本身就是與實(shí)際問題結(jié)合在一起的,空講理論只能導(dǎo)致學(xué)生不能真正理解函數(shù)模型的應(yīng)用和在應(yīng)用過程中函數(shù)模型的建立與解決問題的過程,而從簡單、典型、學(xué)生熟悉的函數(shù)模型中挖掘、提煉出來的思想和方法,更容易被學(xué)生接受。同時(shí),應(yīng)盡量讓學(xué)生在簡單的實(shí)例中學(xué)習(xí)并感受函數(shù)模型的選擇與建立。因?yàn)榻⒑瘮?shù)模型離不開函數(shù)的圖象及數(shù)據(jù)表格,所以會有一定量的原始數(shù)據(jù)的處理,這可能會用到電腦和計(jì)算器以及圖形工具,而我們的教學(xué)應(yīng)更加關(guān)注的是通過實(shí)際問題的分析過程來選擇適當(dāng)?shù)暮瘮?shù)模型和函數(shù)模型的構(gòu)建過程。在這個(gè)過程中,要使學(xué)生著重體會的是模型的建立,同時(shí)體會模型建立的可操作性、有效性等特點(diǎn),學(xué)習(xí)模型的建立以解決實(shí)際問題,培養(yǎng)發(fā)展有條理的思維和表達(dá)能力,提高邏輯思維能力。

【教學(xué)目標(biāo)】

1體現(xiàn)建立函數(shù)模型刻畫現(xiàn)實(shí)問題的基本過程.

2了解函數(shù)模型的廣泛應(yīng)用

3通過學(xué)生進(jìn)行操作和探究提高學(xué)生發(fā)現(xiàn)問題、分析問題、解決實(shí)際問題的能力

4提高學(xué)生探究學(xué)習(xí)新知識的興趣,培養(yǎng)學(xué)生,勇于探索的科學(xué)態(tài)度

【重點(diǎn)】了解并建立函數(shù)模型刻畫現(xiàn)實(shí)問題的基本過程,了解函數(shù)模型的廣泛應(yīng)用

【難點(diǎn)】建立函數(shù)模型刻畫現(xiàn)實(shí)問題中數(shù)據(jù)的處理

【教學(xué)目標(biāo)解析】通過對全班學(xué)生中抽樣得出的樣本進(jìn)行分析和處理,,使學(xué)生認(rèn)識到本節(jié)課的重點(diǎn)是利用函數(shù)建??坍嫭F(xiàn)實(shí)問題的基本過程和提高解決實(shí)際問題的能力,在引導(dǎo)突出重點(diǎn)的同時(shí)能過學(xué)生的小組合作探究來突破本節(jié)課的難點(diǎn),這樣,在小組合作學(xué)習(xí)與探究過程中實(shí)現(xiàn)教學(xué)目標(biāo)中對知識和能力的要求目標(biāo)1,2,3在如何用函數(shù)建??坍嫭F(xiàn)實(shí)問題的基本過程中讓學(xué)生親身體驗(yàn)函數(shù)應(yīng)用的廣泛性,同時(shí)提高學(xué)生探究學(xué)習(xí)新知識的興趣,培養(yǎng)學(xué)生主動(dòng)參與、自主學(xué)習(xí)、勇于探索的科學(xué)態(tài)度,從而實(shí)現(xiàn)教學(xué)目標(biāo)中的德育目標(biāo)目標(biāo)4

【學(xué)生學(xué)習(xí)中預(yù)期的問題及解決方案預(yù)設(shè)】

①描點(diǎn)的規(guī)范性;②實(shí)際操作的速度;③解析式的計(jì)算速度④計(jì)算結(jié)束后不進(jìn)行檢驗(yàn)

針對上述可能出現(xiàn)的問題,我在課前課上處理是,課前給學(xué)生準(zhǔn)備一些坐標(biāo)紙來提高描點(diǎn)的規(guī)范性,同時(shí)讓學(xué)生使用計(jì)算器利用小組討論來進(jìn)行多人合作以期提高相應(yīng)計(jì)算速度,在解析式得出后引導(dǎo)學(xué)生得出的標(biāo)準(zhǔn)應(yīng)該是只有一個(gè)的較好的,不能有很多的標(biāo)準(zhǔn),這樣以期引導(dǎo)學(xué)生想到對結(jié)果進(jìn)行篩選從而引出檢驗(yàn).

【教學(xué)用具】多媒體輔助教學(xué)ppt、計(jì)算機(jī)。

【教學(xué)過程】

教學(xué)前言:

函數(shù)模型是應(yīng)用最廣泛的數(shù)學(xué)模型之一,許多實(shí)際問題一旦認(rèn)定是函數(shù)關(guān)系,就可以通過研究函數(shù)的性質(zhì)把握問題,使問題得到解決.

【教學(xué)過程】

教學(xué)前言:

函數(shù)模型是應(yīng)用最廣泛的數(shù)學(xué)模型之一,許多實(shí)際問題一旦認(rèn)定是函數(shù)關(guān)系,就可以通過研究函數(shù)的性質(zhì)把握問題,使問題得到解決.

教學(xué)內(nèi)容師生活動(dòng)設(shè)計(jì)意圖

探究新知引入:

教師:大家覺得我胖嗎?

學(xué)生回答

教師:我們在街上見到一個(gè)人總是會判斷這個(gè)人的胖瘦,我們衡量一個(gè)人的胖瘦一般是以自己或是他人為標(biāo)準(zhǔn)的,那么我們還見過一些用來計(jì)算人胖瘦的式子,目前全世界都使用體重指數(shù)BMI來衡量一個(gè)人胖或不胖:

體重/身高?以米為單位BMI在18.5-22.5時(shí)屬正常范圍,BMI大于22.5為超重,BMI大于30為肥胖。

教師在黑板上計(jì)算一下自己的結(jié)果。那既然能用一個(gè)式子來計(jì)算,說明我們可以把這個(gè)問題用數(shù)學(xué)知識來解決,要得到這個(gè)式子之類的標(biāo)準(zhǔn),我們能用一個(gè)人的身高和體重來確定嗎?

學(xué)生回答

教師:當(dāng)然是找的人越多越好,那我們在課上先少找?guī)讉€(gè)人來研究一下吧,每個(gè)小組選一個(gè)同學(xué)說一下你的身高和體重吧

學(xué)生說,教師把相關(guān)數(shù)據(jù)填在用ppT展示的一張表格上

教師:好,有了這些數(shù)據(jù)我們就可以來研究了,那接下來我們怎么來處理剛收集到的這些數(shù)據(jù)呢?

學(xué)生回答預(yù)期:畫散點(diǎn)圖——連線——找函數(shù)

教師:好,大家按小組先畫圖連線然后討論一下你們小組認(rèn)為哪個(gè)函數(shù)的圖像符合

學(xué)生活動(dòng)并回答

教師:好,那大家分一下工,你們幾個(gè)小組來計(jì)算這個(gè)函數(shù)解析式,那幾個(gè)小組來計(jì)算那個(gè)函數(shù)解析式……

學(xué)生分小組活動(dòng)……

教師:把學(xué)生算出的式子寫在黑板上大家計(jì)算出的解析式為什么會不完全相同呢?

學(xué)生回答

教師:我們計(jì)算的函數(shù)解析式是不是都可以用來刻畫這個(gè)問題呢?

學(xué)生回答

教師:我們要怎么樣來檢驗(yàn)?zāi)?

學(xué)生回答代入其它的點(diǎn)來驗(yàn)證

教師:那大家來檢驗(yàn)一下哪個(gè)模型更符合數(shù)據(jù)情況

學(xué)生分小組進(jìn)行檢驗(yàn)

教師:好了,我們利用剛才收集的數(shù)據(jù)通過我們的努力得出了一個(gè)式子,它也就是符合大家的情況的一個(gè)胖瘦的標(biāo)準(zhǔn),既是我們班的一個(gè)標(biāo)準(zhǔn),能用來衡量其它班的同學(xué)嗎?那我們來計(jì)算一下老師的結(jié)果是什么樣的.

教師:可見用世界肥胖標(biāo)準(zhǔn)對老師的體重進(jìn)行的評價(jià)和所建立的數(shù)學(xué)模型計(jì)算的結(jié)果是基本一致的。由此可見,所建立的模型是大體符合實(shí)際情況,看來老師是真得要下定決心減肥了.

教師由生活中常見到的現(xiàn)象引出問題,并引導(dǎo)學(xué)生進(jìn)行思考

學(xué)生合作探究、動(dòng)手實(shí)踐,借助小組利用數(shù)據(jù)表格來確定可行的函數(shù)模型,并展示自己的結(jié)果

教師引導(dǎo)學(xué)生對結(jié)果進(jìn)行檢驗(yàn)

學(xué)生通過計(jì)算器與作圖,利用小組合作在完成任務(wù)的同時(shí)形成本節(jié)重點(diǎn)并突破難點(diǎn)

通過日常生活的例子引出本節(jié)主要內(nèi)容,來提高學(xué)生本節(jié)課學(xué)習(xí)的興趣,提高小組學(xué)習(xí)的效率

學(xué)生利用小組合作在完成任務(wù)的同時(shí)形成本節(jié)重點(diǎn)的框架:函數(shù)刻畫實(shí)際問題的基本過程.從而實(shí)現(xiàn)教學(xué)目標(biāo)1,3,4

課堂小結(jié)

教師:我們一起來回憶一下剛才解決問題的過程引導(dǎo)學(xué)生集體回答

得出:函數(shù)建模刻畫現(xiàn)實(shí)問題的基本過程:教師用ppT展示

教師:

①下面大家把自己的數(shù)據(jù)輸入計(jì)算一下你的情況是什么樣的

②大家在課下可以利用研究性學(xué)習(xí)的時(shí)間,調(diào)查一下全年級的同學(xué)的身高和體重來研究一下,并進(jìn)一步體會函數(shù)建模來刻畫現(xiàn)實(shí)問題的基本過程

教師用ppT展示函數(shù)建??坍嫭F(xiàn)實(shí)問題的基本過程

教師留下一個(gè)擴(kuò)展性作業(yè),讓學(xué)生課后完成

學(xué)生通過探究從而鞏固教學(xué)目標(biāo)1,2,3,4.并形成本節(jié)重點(diǎn).

把問題進(jìn)行拓展,讓學(xué)生去親身體會函數(shù)建模刻畫現(xiàn)實(shí)問題的基本過程,從而鞏固了本節(jié)教學(xué)目標(biāo)

課后反思

高一函數(shù)課件 篇7

同情他的人,也把他推向深淵,這更顯示出悲劇的可悲。柳媽正是這樣一個(gè)同情祥林嫂而又給她痛苦的人。

第四課時(shí)

本課時(shí)重點(diǎn)分析寫作特點(diǎn)。

一、檢查作業(yè):

二、分析、討論寫作特點(diǎn):

1.精當(dāng)?shù)沫h(huán)境描寫。

作者巧妙地把祥林嫂悲劇性格上的幾次重大變化,都集中在魯鎮(zhèn)祝福的特定的環(huán)境里,三次有關(guān)祝福的描寫,不但表現(xiàn)了祥林嫂悲劇的典型環(huán)境,而且也印下祥林嫂悲慘一生的足跡。

①第一次是描寫鎮(zhèn)上各家準(zhǔn)備祝福的情景。

祝福是魯鎮(zhèn)年終的大典,富人們要在這一天迎接福神,拜求來年一年的好運(yùn)氣,以便繼續(xù)他們貪得無厭的幸福生活,而制作福禮卻要像祥林嫂一樣的女人臂膊在水里浸得通紅,沒日沒夜地付出自己的艱辛,可見富人們所祈求的幸福,是建立在榨取這些廉價(jià)奴隸的血汗之上的。這樣通過環(huán)境描寫就揭露了人與人之間的矛盾沖突,預(yù)示了祥林嫂悲劇的社會性。同時(shí),通過年年如此,家家如此,今年自然也如此的描寫,也顯示了辛亥革命以后中國農(nóng)村的狀況:階級關(guān)系依舊,風(fēng)俗習(xí)慣依舊;人們的思想意識依舊。一句話,封建勢力和封建迷信思想對農(nóng)村的統(tǒng)治依舊。這樣,通過環(huán)境描寫,就揭示出祥林嫂悲劇的社會根源,預(yù)示了祥林嫂悲劇的必然性。

②第二次是對魯四老爺家祝福的描寫。

祝福本身就是舊社會最富有特色的封建迷信活動(dòng),所以在祝福時(shí)封建宗法思想和反動(dòng)的理學(xué)觀念也表現(xiàn)得最為強(qiáng)烈,在魯四老爺不準(zhǔn)敗壞風(fēng)俗的祥林嫂沾手的告誡下,祥林嫂失去了祝福的權(quán)力。她為了求取這點(diǎn)權(quán)力,用歷來積存的工錢捐了一條贖罪的門檻,但所得到的仍是你放著罷,祥林嫂。這樣一句喝令,就粉碎了她生前免于侮辱,死后免于痛苦的愿望,她的一切掙扎的希望都在這一句喝令中破滅了。就這樣,魯四老爺在祝福的時(shí)刻憑著封建宗法思想和封建禮教的淫威,把祥林嫂一步步逼上死亡的道路。

特定的環(huán)境描寫,推動(dòng)了情節(jié)的發(fā)展,同時(shí)也增加了人物形象的真實(shí)感與感染力。

③第三次是結(jié)尾通過我的感受對祝福景象的描寫。

祥林嫂死的慘象和天地圣眾預(yù)備給魯鎮(zhèn)的人們以無限的幸福的氣氛,形成鮮明的對照,深化了對舊社會殺人本質(zhì)的揭露,同時(shí)在布局上也起到了首尾呼應(yīng),使小說結(jié)構(gòu)更臻完善的作用。

2.富有特色的人物刻畫:

①肖像描寫:

三次變化:

②畫眼睛(眼神):

3.倒敘的手法:

三、小結(jié):

以《祝?!窞轭}的意義:

1.小說起于祝福,結(jié)于祝福,中間一再寫到祝福,情節(jié)的發(fā)展與祝福有著密切的關(guān)系。

2.封建勢力通過祝福殺害了祥林嫂,祥林嫂又死于天地圣眾預(yù)備給魯鎮(zhèn)的人們以無限的幸福的祝福聲中。通過這個(gè)標(biāo)題,就把兇人的愚頑的歡呼和悲慘的弱者的不幸,鮮明地?cái)[到讀者的面前,形成強(qiáng)烈的對比,在表現(xiàn)主題方面更增強(qiáng)了祥林嫂遭遇的悲劇性。

魯迅作品的拋錨式教學(xué)初探

黃曉莉

拋錨式教學(xué)(AnchoredInstruction)模式是建立在建構(gòu)主義學(xué)習(xí)理論下的一種重要的教學(xué)模式。建構(gòu)主義學(xué)習(xí)理論認(rèn)為,學(xué)習(xí)過程不是學(xué)習(xí)者被動(dòng)地接受知識,而是積極地建構(gòu)知識的過程。建構(gòu)主義學(xué)習(xí)活動(dòng)強(qiáng)調(diào)以學(xué)習(xí)者為中心,引發(fā)學(xué)習(xí)者的學(xué)習(xí)興趣和動(dòng)機(jī),促使他們進(jìn)行真實(shí)的學(xué)習(xí)。所謂拋錨式教學(xué),是要求教學(xué)建立在有感染力的真實(shí)事件或真實(shí)問題的基礎(chǔ)上,通過學(xué)生間的互動(dòng)、交流,憑借學(xué)生的主動(dòng)學(xué)習(xí)、生成學(xué)習(xí),親身體驗(yàn)從識別目標(biāo)、提出目標(biāo)到達(dá)到目標(biāo)的全過程。這類真實(shí)事例或問題就作為錨,而建立和確定這些事件或問題就可形象地比喻為拋錨。一旦這類事件或問題被確定了,整個(gè)學(xué)習(xí)內(nèi)容和學(xué)習(xí)進(jìn)程也就像輪船被錨固定一樣而被確定了。

在中學(xué)語文教材中,魯迅的作品占有非常重要的地位。回顧語文教材編選魯迅作品的歷史,可以清楚地看出,近80年來,特別是五四運(yùn)動(dòng)之后,不論中國社會的政治和經(jīng)濟(jì)形勢發(fā)生了多么深刻的變化,也不論人們的思想觀念和價(jià)值取向表現(xiàn)出怎樣多元化的傾向,中學(xué)語文教材中魯迅作品的地位越來越重要,其作品數(shù)量也漸為古今中外名家之首。但由于魯迅的作品既富于思想深度,又比較重視行文的技巧,在實(shí)際教學(xué)過程中,教師們普遍認(rèn)為魯迅的文章往往比較難教,學(xué)生則覺得較難理解。而運(yùn)用拋錨式教學(xué),則可以有效地解決這個(gè)問題。

一、魯迅作品的思想內(nèi)涵和語言藝術(shù)特點(diǎn)

魯迅小說及其它作品,是思想內(nèi)容和藝術(shù)形式的完美的統(tǒng)一體。對魯迅作品的理解,很大程度上取決于對其作品的思想性和文法特點(diǎn)的理解和把握。

(一)魯迅作品的思想內(nèi)涵

魯迅作品有著深刻的思想內(nèi)涵。其具體表現(xiàn)在:

1.對傳統(tǒng)文化的反省

魯迅是第一個(gè)告別傳統(tǒng)文化的文人。他超越了歷史和價(jià)值,超越了感情與理智,對傳統(tǒng)文化思想進(jìn)了整體反省。比如,魯迅的小說集中地、真實(shí)地反映了傳統(tǒng)文化的背景下的中國近代農(nóng)村的社會現(xiàn)實(shí),在其小說的寧靜、平淡中透露出遮掩不住的沉悶和令人窒息的氣息。

2.重視人文性與思想性

沒有人文背景的文章,在魯迅的作品里幾乎是沒有的。魯迅在傳統(tǒng)文化的廣闊背景之上,表現(xiàn)了社會的變遷,意識的騷動(dòng)與沉寂,人物的喜怒哀樂、悲歡離合。作者深深地切入傳統(tǒng)文化穩(wěn)定結(jié)構(gòu)的內(nèi)核,探究人物活動(dòng)的內(nèi)在因素,揭示傳統(tǒng)文化下人物、社會、歷史的必然。

3.強(qiáng)烈的時(shí)代責(zé)任感和社會責(zé)任感

魯迅的許多作品,表現(xiàn)了他強(qiáng)烈的時(shí)代責(zé)任感和社會責(zé)任感。他揭露反動(dòng)軍閥的兇殘卑劣及其走狗文人的陰險(xiǎn)無恥,激勵(lì)人們繼續(xù)戰(zhàn)斗。這是魯迅先生一貫精神的表露。

(二)魯迅作品的語言藝術(shù)特點(diǎn)

魯迅的許多作品用筆深刻冷雋,句法簡潔生動(dòng),體裁新穎獨(dú)創(chuàng),堪稱是語言藝術(shù)的典范。

1.嫻熟的文法

魯迅的小說已形成了他的風(fēng)格。他比較喜歡用倒敘的方法,常以此切入正題。這種方法完全打破了傳統(tǒng)章回小說的老套路,避免了小說敘事中的拖沓與冗長,而直接把讀者引入了作者的敘述空間,更便于作品主題思想的揭露。

2.細(xì)膩的描寫和合理的剪裁

魯迅作品的敘述極有條理,凡與主題無關(guān)的內(nèi)容他絕不提及,但又十分注意使主題在含蘊(yùn)百迭中得到升華。但凡文中的故事,一定是很完整的,其細(xì)節(jié)的刻劃也非常細(xì)膩。比如:阿Q干什么活,祥林嫂怎么死的,孔乙己如何隱身而亡,迅哥兒的故鄉(xiāng)又是如何變化的等等,沒有不認(rèn)真雕鑿的。

3.體裁的多樣性與靈活性

魯迅在文藝創(chuàng)新中,作過了各種嘗試:超現(xiàn)實(shí)主義的日記形式(《狂人日記》)、象征主義(《藥》)、簡短復(fù)述(《一件小事》)、持續(xù)獨(dú)白(《頭發(fā)的故事》)、集體的諷刺(《風(fēng)波》)、自傳體小說(《故鄉(xiāng)》)、諧謔史詩(《阿Q正傳》)、反諷(《傷逝》)等等,圍繞敘述這個(gè)核心表現(xiàn)出了高度靈活性,充分體現(xiàn)了文學(xué)大師熟稔的寫作技巧。

4.追求簡潔生動(dòng)的文字效果

魯迅作品的遣詞造句與眾不同,用字造句都經(jīng)過深思熟慮、千錘百煉,這正是他的作品具有深厚的吸引力的一個(gè)重要原因。這里既有魯迅字斟句酌的文字運(yùn)用的態(tài)度問題,也有他對文字表達(dá)的刻意追求。例如,他最恨的是那些以道學(xué)先生自命的人,所以他描寫腦筋簡單的鄉(xiāng)下人時(shí)用筆比較寬容;但一寫到《阿Q正傳》里的趙太爺、《祝福》里的魯四老爺?shù)鹊?,便針針見血,絲毫不肯容情了。他寫《阿Q正傳》看起來是為了痛陳阿Q這類人,想淋漓盡致地將他的丑態(tài)形容一下。然而在讀到阿Q被槍斃這段情節(jié)時(shí),我們就能從字里行間里覺得真正可惡的還是那些趙太爺、錢舉人、把總老爺這些土豪劣紳,阿Q不過做了他們的犧牲品罷了。

二、魯迅作品教學(xué)中的拋錨式教學(xué)策略

上文談到,魯迅的作品由于其獨(dú)有的特點(diǎn),使得其教學(xué)有一定的難度。如何以學(xué)生為主體,以教師為主導(dǎo),把一篇難度較大的文章化繁為簡傳輸給學(xué)生,使他們既能接受到語言的能力訓(xùn)練,又能使其從中感受到文學(xué)作品的藝術(shù)魅力,這確實(shí)需要我們進(jìn)行多方面的思考。在教學(xué)中,我發(fā)現(xiàn)拋錨式教學(xué)是一個(gè)比較好的策略。其主要的方法,就是從組織有感染力的真實(shí)事件或真實(shí)問題入手來展開教學(xué),鼓勵(lì)學(xué)生自主學(xué)習(xí)和協(xié)作學(xué)習(xí),并在此過程中尋求對作品的理解。

高一函數(shù)課件 篇8

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議

高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對底數(shù)

時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

的樣子,不能有一點(diǎn)差異,諸如

,

等都不是指數(shù)函數(shù).

(2)對底數(shù)

的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

高一函數(shù)課件 篇9

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。

1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;

3.函數(shù)方程思想的幾種重要形式

(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;

(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;

(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;

(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。

高一函數(shù)課件 篇10

1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。

2、函數(shù)定義域的解題思路:

⑴ 若x處于分母位置,則分母x不能為0。

⑵ 偶次方根的被開方數(shù)不小于0。

⑶ 對數(shù)式的真數(shù)必須大于0。

⑷ 指數(shù)對數(shù)式的底,不得為1,且必須大于0。

⑸ 指數(shù)為0時(shí),底數(shù)不得為0。

⑹ 如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。

⑺ 實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義。

⑴ 觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運(yùn)算得到的函數(shù)。

⑵ 圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。

⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。

⑷ 代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。

⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。

6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的映射。

⑴ 集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中對應(yīng)的象可以是同一個(gè)。

⑶ 不要求集合B中的每一個(gè)元素在集合A中都有原象。

⑴ 在定義域的不同部分上有不同的解析式表達(dá)式。

⑵ 各部分自變量和函數(shù)值的取值范圍不同。

⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。

8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。

高一函數(shù)課件 篇11

一、學(xué)習(xí)目標(biāo)與自我評估

1掌握利用單位圓的幾何方法作函數(shù)的圖象

2結(jié)合的圖象及函數(shù)周期性的定義了解三角函數(shù)的周期性,及最小正周期

3會用代數(shù)方法求等函數(shù)的周期

4理解周期性的幾何意義

二、學(xué)習(xí)重點(diǎn)與難點(diǎn)

“周期函數(shù)的概念”,周期的求解。

三、學(xué)法指導(dǎo)

1、是周期函數(shù)是指對定義域中所有都有

,即應(yīng)是恒等式。

2、周期函數(shù)一定會有周期,但不一定存在最小正周期。

四、學(xué)習(xí)活動(dòng)與意義建構(gòu)

五、重點(diǎn)與難點(diǎn)探究

例1、若鐘擺的高度與時(shí)間之間的函數(shù)關(guān)系如圖所示

(1)求該函數(shù)的周期;

(2)求時(shí)鐘擺的高度。

例2、求下列函數(shù)的周期。

(1)(2)

總結(jié):(1)函數(shù)(其中均為常數(shù),且

的周期T=。

(2)函數(shù)(其中均為常數(shù),且

的周期T=。

例3、求證:的周期為。

例4、(1)研究和函數(shù)的圖象,分析其周期性。

(2)求證:的周期為(其中均為常數(shù),

總結(jié):函數(shù)(其中均為常數(shù),且

的周期T=。

例5、(1)求的周期。

(2)已知滿足,求證:是周期函數(shù)

課后思考:能否利用單位圓作函數(shù)的圖象。

六、作業(yè):

七、自主體驗(yàn)與運(yùn)用

1、函數(shù)的周期為()

A、B、C、D、

2、函數(shù)的最小正周期是()

A、B、C、D、

3、函數(shù)的最小正周期是()

A、B、C、D、

4、函數(shù)的周期是()

A、B、C、D、

5、設(shè)是定義域?yàn)镽,最小正周期為的函數(shù),

若,則的值等于()

A、1B、C、0D、

6、函數(shù)的最小正周期是,則

7、已知函數(shù)的最小正周期不大于2,則正整數(shù)

的最小值是

8、求函數(shù)的最小正周期為T,且,則正整數(shù)

的值是

9、已知函數(shù)是周期為6的奇函數(shù),且則

10、若函數(shù),則

11、用周期的定義分析的周期。

12、已知函數(shù),如果使的周期在內(nèi),求

正整數(shù)的值

13、一機(jī)械振動(dòng)中,某質(zhì)子離開平衡位置的位移與時(shí)間之間的

函數(shù)關(guān)系如圖所示:

(1)求該函數(shù)的周期;

(2)求時(shí),該質(zhì)點(diǎn)離開平衡位置的位移。

14、已知是定義在R上的函數(shù),且對任意有

成立,

(1)證明:是周期函數(shù);

(2)若求的值。

高一函數(shù)課件收藏


在進(jìn)行學(xué)生授課前,教師通常會提前準(zhǔn)備好教案課件,相信大家對此并不陌生。編寫完整的教案有助于完成授課任務(wù),但如何制作牢靠的課件教案呢?不妨來查閱一下欄目小編整理的“高一函數(shù)課件”知識點(diǎn)總結(jié),希望對你有所幫助,并歡迎與朋友分享!

高一函數(shù)課件(篇1)

一、教材分析

本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。

托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識世界和預(yù)測未來的重要工具。

函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。

二、學(xué)生學(xué)習(xí)情況分析

函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對函數(shù)的認(rèn)識分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識正比例、反比例、一次和二次函數(shù);(二)高中用集合與對應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。

1.有利條件

現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。

初中用運(yùn)動(dòng)變化的觀點(diǎn)對函數(shù)進(jìn)行定義的,它反映了歷史上人們對它的一種認(rèn)識,而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的基礎(chǔ)。

2.不利條件

用集合與對應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。

三、教學(xué)目標(biāo)分析

課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會求一些簡單函數(shù)的定義域和值域.

1.知識與能力目標(biāo):

⑴能從集合與對應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;

⑵理解函數(shù)的三要素的含義及其相互關(guān)系;

⑶會求簡單函數(shù)的定義域和值域

2.過程與方法目標(biāo):

⑴通過豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;

⑵在函數(shù)實(shí)例中,通過對關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.

3.情感、態(tài)度與價(jià)值觀目標(biāo):

感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。

四、教學(xué)重點(diǎn)、難點(diǎn)分析

1.教學(xué)重點(diǎn):對函數(shù)概念的理解,用集合與對應(yīng)的語言來刻畫函數(shù);

重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對函數(shù)概念有了更深一層的認(rèn)識,也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。

突出重點(diǎn):重點(diǎn)的突出依賴于對函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。

2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號“y=f(x)”的含義的理解.

難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對符號y=f(x)的理解會受到以前知識的負(fù)遷移。

突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對抽象符號的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。

五、教法與學(xué)法分析

1.教法分析

本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識遷移法和知識對比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。

2.學(xué)法分析

在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識。

高一函數(shù)課件(篇2)

教學(xué)目標(biāo):

掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識.

教學(xué)重點(diǎn):

二倍角公式的推導(dǎo)及簡單應(yīng)用.

教學(xué)難點(diǎn):

理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).

教學(xué)過程:

Ⅰ.課題導(dǎo)入

前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請同學(xué)們試推.

先回憶和角公式

sin(α+β)=sinαcosβ+cosαsinβ

當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα

即:sin2α=2sinαcosα(S2α)

cos(α+β)=cosαcosβ-sinαsinβ

當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α

即:cos2α=cos2α-sin2α(C2α)

tan(α+β)=tanα+tanβ1-tanαtanβ

當(dāng)α=β時(shí),tan2α=2tanα1-tan2α

Ⅱ.講授新課

同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α

同學(xué)們是否也考慮到了呢?

另外運(yùn)用這些公式要注意如下幾點(diǎn):

(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2+kπ及α≠π4+kπ2(k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2+kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4+kπ2,k∈Z時(shí)tan2α的值不存在).

當(dāng)α=π2+kπ(k∈Z)時(shí),雖然tanα的值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:

即:tan2α=tan2(π2+kπ)=tan(π+2kπ)=tanπ=0

(2)在一般情況下,sin2α≠2sinα

例如:sinπ3=32≠2sinπ6=1;只有在一些特殊的情況下,才有可能成立

高一函數(shù)課件(篇3)

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)目標(biāo)

1.使學(xué)生掌握指數(shù)函數(shù)的概念,圖象和性質(zhì).

(1)能根據(jù)定義判斷形如什么樣的函數(shù)是指數(shù)函數(shù),了解對底數(shù)的限制條件的合理性,明確指數(shù)函數(shù)的定義域.

(2)能在基本性質(zhì)的指導(dǎo)下,用列表描點(diǎn)法畫出指數(shù)函數(shù)的圖象,能從數(shù)形兩方面認(rèn)識指數(shù)函數(shù)的性質(zhì).

(3)能利用指數(shù)函數(shù)的性質(zhì)比較某些冪形數(shù)的大小,會利用指數(shù)函數(shù)的圖象畫出形如

的圖象.

2.通過對指數(shù)函數(shù)的概念圖象性質(zhì)的學(xué)習(xí),培養(yǎng)學(xué)生觀察,分析歸納的能力,進(jìn)一步體會數(shù)形結(jié)合的思想方法.

3.通過對指數(shù)函數(shù)的研究,讓學(xué)生認(rèn)識到數(shù)學(xué)的應(yīng)用價(jià)值,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.使學(xué)生善于從現(xiàn)實(shí)生活中數(shù)學(xué)的發(fā)現(xiàn)問題,解決問題.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教學(xué)建議

高一數(shù)學(xué)指數(shù)函數(shù)教案:教材分析

(1)指數(shù)函數(shù)是在學(xué)生系統(tǒng)學(xué)習(xí)了函數(shù)概念,基本掌握了函數(shù)的性質(zhì)的基礎(chǔ)上進(jìn)行研究的,它是重要的基本初等函數(shù)之一,作為常見函數(shù),它既是函數(shù)概念及性質(zhì)的第一次應(yīng)用,也是今后學(xué)習(xí)對數(shù)函數(shù)的基礎(chǔ),同時(shí)在生活及生產(chǎn)實(shí)際中有著廣泛的應(yīng)用,所以指數(shù)函數(shù)應(yīng)重點(diǎn)研究.

(2)本節(jié)的教學(xué)重點(diǎn)是在理解指數(shù)函數(shù)定義的基礎(chǔ)上掌握指數(shù)函數(shù)的圖象和性質(zhì).難點(diǎn)是對底數(shù)

時(shí),函數(shù)值變化情況的區(qū)分.

(3)指數(shù)函數(shù)是學(xué)生完全陌生的一類函數(shù),對于這樣的函數(shù)應(yīng)怎樣進(jìn)行較為系統(tǒng)的理論研究是學(xué)生面臨的重要問題,所以從指數(shù)函數(shù)的研究過程中得到相應(yīng)的結(jié)論固然重要,但更為重要的是要了解系統(tǒng)研究一類函數(shù)的方法,所以在教學(xué)中要特別讓學(xué)生去體會研究的方法,以便能將其遷移到其他函數(shù)的研究.

高一數(shù)學(xué)指數(shù)函數(shù)教案:教法建議

(1)關(guān)于指數(shù)函數(shù)的定義按照課本上說法它是一種形式定義即解析式的特征必須是

的樣子,不能有一點(diǎn)差異,諸如

,

等都不是指數(shù)函數(shù).

(2)對底數(shù)

的限制條件的理解與認(rèn)識也是認(rèn)識指數(shù)函數(shù)的重要內(nèi)容.如果有可能盡量讓學(xué)生自己去研究對底數(shù),指數(shù)都有什么限制要求,教師再給予補(bǔ)充或用具體例子加以說明,因?yàn)閷@個(gè)條件的認(rèn)識不僅關(guān)系到對指數(shù)函數(shù)的認(rèn)識及性質(zhì)的分類討論,還關(guān)系到后面學(xué)習(xí)對數(shù)函數(shù)中底數(shù)的認(rèn)識,所以一定要真正了解它的由來.

關(guān)于指數(shù)函數(shù)圖象的繪制,雖然是用列表描點(diǎn)法,但在具體教學(xué)中應(yīng)避免描點(diǎn)前的盲目列表計(jì)算,也應(yīng)避免盲目的連點(diǎn)成線,要把表列在關(guān)鍵之處,要把點(diǎn)連在恰當(dāng)之處,所以應(yīng)在列表描點(diǎn)前先把函數(shù)的性質(zhì)作一些簡單的討論,取得對要畫圖象的存在范圍,大致特征,變化趨勢的大概認(rèn)識后,以此為指導(dǎo)再列表計(jì)算,描點(diǎn)得圖象.

高一函數(shù)課件(篇4)

函數(shù)思想在解題中的應(yīng)用主要表現(xiàn)在兩個(gè)方面:一是借助有關(guān)初等函數(shù)的性質(zhì),解有關(guān)求值、解(證)不等式、解方程以及討論參數(shù)的取值范圍等問題:二是在問題的研究中,通過建立函數(shù)關(guān)系式或構(gòu)造中間函數(shù),把所研究的問題轉(zhuǎn)化為討論函數(shù)的有關(guān)性質(zhì),達(dá)到化難為易,化繁為簡的目的。函數(shù)與方程的思想是中學(xué)數(shù)學(xué)的基本思想,也是歷年高考的重點(diǎn)。

1.函數(shù)的思想,是用運(yùn)動(dòng)和變化的觀點(diǎn),分析和研究數(shù)學(xué)中的數(shù)量關(guān)系,建立函數(shù)關(guān)系或構(gòu)造函數(shù),運(yùn)用函數(shù)的圖像和性質(zhì)去分析問題、轉(zhuǎn)化問題,從而使問題獲得解決。

2.方程的思想,就是分析數(shù)學(xué)問題中變量間的等量關(guān)系,建立方程或方程組,或者構(gòu)造方程,通過解方程或方程組,或者運(yùn)用方程的性質(zhì)去分析、轉(zhuǎn)化問題,使問題獲得解決。方程思想是動(dòng)中求靜,研究運(yùn)動(dòng)中的等量關(guān)系;

3.函數(shù)方程思想的幾種重要形式

(1)函數(shù)和方程是密切相關(guān)的,對于函數(shù)y=f(x),當(dāng)y=0時(shí),就轉(zhuǎn)化為方程f(x)=0,也可以把函數(shù)式y(tǒng)=f(x)看做二元方程y-f(x)=0。

(2)函數(shù)與不等式也可以相互轉(zhuǎn)化,對于函數(shù)y=f(x),當(dāng)y>0時(shí),就轉(zhuǎn)化為不等式f(x)>0,借助于函數(shù)圖像與性質(zhì)解決有關(guān)問題,而研究函數(shù)的性質(zhì),也離不開解不等式;

(3)數(shù)列的通項(xiàng)或前n項(xiàng)和是自變量為正整數(shù)的函數(shù),用函數(shù)的觀點(diǎn)處理數(shù)列問題十分重要;

(4)函數(shù)f(x)=(1+x)^n(n∈N*)與二項(xiàng)式定理是密切相關(guān)的,利用這個(gè)函數(shù)用賦值法和比較系數(shù)法可以解決很多二項(xiàng)式定理的問題;

(5)解析幾何中的許多問題,例如直線和二次曲線的位置關(guān)系問題,需要通過解二元方程組才能解決,涉及到二次方程與二次函數(shù)的有關(guān)理論;

(6)立體幾何中有關(guān)線段、角、面積、體積的計(jì)算,經(jīng)常需要運(yùn)用布列方程或建立函數(shù)表達(dá)式的方法加以解決。

高一函數(shù)課件(篇5)

一、說教材

(一)地位與重要性

函數(shù)的最值是《高中數(shù)學(xué)》一年級第一學(xué)期的內(nèi)容,是函數(shù)基本性質(zhì)的重要部分。在實(shí)際問題的解決過程中,建立了變量間的函數(shù)關(guān)系后,求最值培養(yǎng)了學(xué)生運(yùn)用基礎(chǔ)理論研究具體問題的能力,這也是學(xué)習(xí)數(shù)學(xué)的目的之一。函數(shù)最值的教學(xué)在培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想同時(shí)也可以使學(xué)生養(yǎng)成嚴(yán)謹(jǐn)思維的學(xué)習(xí)習(xí)慣。函數(shù)的思想是一種重要的數(shù)學(xué)思想,它體現(xiàn)了運(yùn)動(dòng)變化和對立統(tǒng)一的觀點(diǎn),本節(jié)課對初高中知識的銜接起到了承上啟下的作用。函數(shù)的最值問題與不等式、方程、參數(shù)范圍的探求及解析幾何等知識綜合在一起往往能編擬綜合性較強(qiáng)的新型題目,可以綜合考查學(xué)生應(yīng)用函數(shù)知識分析解決問題的能力,從而成為高考的高檔解答題,是高考測試的熱點(diǎn)之一。

(二)教學(xué)目標(biāo)

知識與能力目標(biāo):掌握求二次函數(shù)最值的常用方法——配方法,培養(yǎng)學(xué)生數(shù)形結(jié)合、化歸的數(shù)學(xué)思想和運(yùn)用基礎(chǔ)理論研究解決具體問題的能力。

情感目標(biāo):經(jīng)歷和體驗(yàn)數(shù)學(xué)活動(dòng)的過程以及數(shù)學(xué)在現(xiàn)實(shí)生活中的作用,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)知識的積極性,樹立學(xué)好數(shù)學(xué)的信心。

過程目標(biāo):通過課堂學(xué)習(xí)活動(dòng)培養(yǎng)學(xué)生相互間的合作交流,且在相互交流的過程中養(yǎng)成學(xué)生表述、抽象、總結(jié)的思維習(xí)慣,進(jìn)而獲得成功的體驗(yàn)。

科研目標(biāo):在教師指導(dǎo)下學(xué)生經(jīng)歷和體驗(yàn)探究過程的方法。

(三)教學(xué)重難點(diǎn)

重點(diǎn):配方法、數(shù)形結(jié)合求二次函數(shù)的最值。

難點(diǎn):二次函數(shù)在閉區(qū)間上的最值。

二、說教法與學(xué)法

在初中學(xué)生已經(jīng)學(xué)習(xí)過二次函數(shù)的知識,根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際水平,本節(jié)課主要采用探究式教學(xué)法和講練結(jié)合法進(jìn)行教學(xué)。教學(xué)過程也是一個(gè)學(xué)生主動(dòng)建構(gòu)的過程,教師不能無視學(xué)生已有的經(jīng)驗(yàn),企圖從外部將新知識強(qiáng)行裝入學(xué)生的頭腦,而是要把學(xué)生現(xiàn)有的知識經(jīng)驗(yàn)作為新知識的生長點(diǎn),引導(dǎo)學(xué)生從原有的知識經(jīng)驗(yàn)中“生長”及發(fā)現(xiàn)新的知識經(jīng)驗(yàn)。在本堂課學(xué)習(xí)中,學(xué)生發(fā)揮主體作用,主動(dòng)地思考探究求解最值的最優(yōu)策略,并歸納出自己的解題方法,將知識主動(dòng)納入已建構(gòu)好的知識體系,真正做到“學(xué)會學(xué)習(xí)”。

三、說教學(xué)過程

(一)課題引入

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

例:動(dòng)物園要建造一面靠墻的2間面積相同的長方形熊貓居室,如果可供建造圍墻的材料長是30米,那么寬為多少米時(shí)才能使所建造的熊貓居室面積最大?熊貓居室的最大面積是多少平方米?

學(xué)生通過此例感受到在實(shí)際問題中需要解決函數(shù)的最值問題,從而引發(fā)學(xué)習(xí)本節(jié)內(nèi)容的興趣。

教學(xué)手段:用PPT展示題目

教師引導(dǎo)學(xué)生討論解答,并個(gè)別答疑、點(diǎn)撥,收集學(xué)生的解法,挑出若干答案在實(shí)物投影儀上進(jìn)行展示,并進(jìn)行點(diǎn)評。

學(xué)生的解法主要為函數(shù)最值法和利用基本不等式求最值,由學(xué)生評價(jià)兩種方法,為閉區(qū)間上二次函數(shù)的最值教學(xué)打下伏筆

教學(xué)手段:實(shí)物投影儀

(二)新知教學(xué)

環(huán)節(jié)

教學(xué)過程

設(shè)計(jì)說明

課題講解

一、函數(shù)最大值和最小值的概念

通過引例最值的求解,引導(dǎo)學(xué)生闡述函數(shù)最大值和最小值的概念。

學(xué)生口述師板書。

一般地,設(shè)函數(shù)在處的函數(shù)值是.如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最小值,記作;如果對于定義域內(nèi)任意,不等式都成立,那么叫做函數(shù)的最大值記作。

二、例題講練

例1、求二次函數(shù)的最大值或者最小值:

師生共同完成一例,高一學(xué)生要養(yǎng)成規(guī)范的書寫格式和習(xí)慣,其余題目請學(xué)生板演。

學(xué)生根據(jù)已有的能力和經(jīng)驗(yàn),動(dòng)手得出答案,教師點(diǎn)評。提醒注意當(dāng)取何值時(shí),函數(shù)取到最值。

培養(yǎng)學(xué)生闡述、分析、理解概念的能力,引入最大值概念的過程是遵循由已知去認(rèn)識未知的認(rèn)識規(guī)律進(jìn)行設(shè)計(jì)的,現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識結(jié)構(gòu)。讓學(xué)生從求實(shí)際問題的最大值入手,由熟悉的二次函數(shù)圖象的頂點(diǎn)所具有的特點(diǎn)出發(fā),得到求二次函數(shù)最大值(最小值)的方法。

突出學(xué)生的主體地位,發(fā)揮教師的主導(dǎo)作用,培養(yǎng)思維的嚴(yán)謹(jǐn)性以及轉(zhuǎn)化能力,通過區(qū)間的變化讓學(xué)生充分感受到二次函數(shù)的最值的求解要討論對稱軸與所給區(qū)間的關(guān)系。

教學(xué)方式:講練結(jié)合

例2、在的條件下,求函數(shù)的最大值和最小值。

教師引導(dǎo)學(xué)生逐步深入思考:

1、定義域與函數(shù)最值是什么關(guān)系?

2、轉(zhuǎn)化后要研究的函數(shù)是什么?

教學(xué)方式:學(xué)生自主探究

高一函數(shù)課件(篇6)

一考綱要求。

1.利用計(jì)算工具,比較指數(shù)函數(shù)、對數(shù)函數(shù)以及冪函數(shù)增長差異;結(jié)合實(shí)例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義。

2.搜集一些社會生活中普遍使用的函數(shù)模型(指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、分段函數(shù)等)的實(shí)例,了解函數(shù)模型的廣泛應(yīng)用。

二.高考趨勢。

函數(shù)知識應(yīng)用十分廣泛,利用函數(shù)知識解應(yīng)用問題是數(shù)學(xué)應(yīng)用題的主要類型之一,也是高考考查的重點(diǎn)內(nèi)容。

三.要點(diǎn)回顧

解應(yīng)用題,首先應(yīng)通過審題,分析原型結(jié)構(gòu),深刻認(rèn)識問題的實(shí)際背景,確定主要矛盾,提出必要的假設(shè),將應(yīng)用問題轉(zhuǎn)化為數(shù)學(xué)問題求解;然后,經(jīng)過檢驗(yàn),求出應(yīng)用問題的解。其解題步驟如下:1.審題2.建模(列數(shù)學(xué)關(guān)系式)3.合理求解純數(shù)學(xué)問題。4.解釋并回答實(shí)際問題。

四.基礎(chǔ)訓(xùn)練。

1.在一定的范圍內(nèi),某種產(chǎn)品的購買量噸與單價(jià)元之間滿足一次函數(shù)關(guān)系,如果購買1000噸,每噸為800元,購買2000噸,每噸700元,那么客戶購買400噸,單價(jià)應(yīng)該是

2.根據(jù)市場調(diào)查,某商品在最近10天內(nèi)的價(jià)格與時(shí)間滿足關(guān)系銷售量與時(shí)間滿足關(guān)系則這種商品的日銷售額的值為.

3.某分公司經(jīng)銷某種品牌產(chǎn)品,每件產(chǎn)品的成本為3元,并且每件產(chǎn)品需向公司交元的管理費(fèi),預(yù)計(jì)當(dāng)每件產(chǎn)品的售價(jià)為元(9時(shí),一年的銷售量為萬件。則分公司一年的利潤L元與每件產(chǎn)品的售價(jià)的函數(shù)關(guān)系式為.

4.有一批材料可以建成200的圍墻,如果用此材料在一邊靠墻的地方圍成一塊矩形場地,中間用同樣的材料隔成三個(gè)面積相等的矩形(如圖所示),則圍成矩形場地面積為(圍墻厚度不計(jì))。

5.某建筑商場國慶期間搞促銷活動(dòng),規(guī)定:顧客購物總金額不超過800元,不享受任何折扣,如果顧客購物總金額超過800元,則超過800元部分享受一定的折扣優(yōu)惠,按右表折扣分別累計(jì)計(jì)算。

可以享受折扣優(yōu)惠金額折扣率不超過500元的部分5%超過500元的部分10%某人在此商場購物總金額為元,可以獲得的折扣金額為元,則關(guān)于的解析式為;若元,則此人購物總金額為元。

6.在邊長為4的正方形ABCD的邊上有一點(diǎn)p沿著折線BCDA,由B點(diǎn)(起點(diǎn))向A點(diǎn)(終點(diǎn))移動(dòng),設(shè)p點(diǎn)移動(dòng)的路程為,的面積與點(diǎn)p移動(dòng)的路程間的函數(shù)關(guān)系式為

五.例題精講。

例1.某村計(jì)劃建造一個(gè)室內(nèi)面積為800的矩形蔬菜溫室,在溫室內(nèi),沿左、右兩側(cè)與后側(cè)內(nèi)墻各保留1寬的通道,沿前側(cè)內(nèi)墻保留3寬的空地,當(dāng)矩形溫室的邊長各為多少時(shí),蔬菜的種植面積?種植面積是多少?

例2.某租賃公司擁有汽車100輛,當(dāng)每輛車的月租金為3000元時(shí),可全部租出當(dāng)每輛車的月租金每增加50元時(shí),未租出車將增加一輛,租出的車每輛每月需要維護(hù)費(fèi)150元,未租出的車每輛每月需要維護(hù)費(fèi)50元,兩者都由租賃公司支付。

1當(dāng)每輛車的月租金定為3600元時(shí),能租出多少輛車?

2當(dāng)每輛車的月租金定為多少元時(shí),公司的月收益?月收益是多少?

例3.某城市現(xiàn)有人口100萬人,如果每年自然增長率為1.2﹪,試解答下面問題

1寫出城市人口總數(shù)(萬人)與年份(年)的函數(shù)關(guān)系式

2計(jì)算xx以后該城市人口總數(shù)(精確到0.1萬人)

3計(jì)算大約多少年以后該城市人口將達(dá)到120萬人(精確到1年)

六.鞏固練習(xí):.

1.鐵路機(jī)車運(yùn)行1小時(shí)所需的成本由兩部分組成:固定部分元,變動(dòng)部分(元)與運(yùn)行速度(千米/小時(shí))的平方成正比,比例系數(shù)為,如果機(jī)車勻速從甲站開往乙站,甲,乙兩站間的距離為500千米,則機(jī)車從甲站運(yùn)行到乙站的總成本與機(jī)車的速度之間的函數(shù)關(guān)系為

2.某公司有60萬元資金,計(jì)劃投資甲,乙兩個(gè)項(xiàng)目,按要求,對項(xiàng)目甲的投資不小于對項(xiàng)目乙投資的倍,且對每個(gè)項(xiàng)目的投資不少于5萬元,對項(xiàng)目甲投資1萬元可獲得0.4萬元的利潤,對項(xiàng)目乙投資1萬元可獲得0.6萬元的利潤,該公司正確規(guī)劃后,在這兩個(gè)項(xiàng)目上共可獲得的利潤為

3.將進(jìn)貨單價(jià)為80元的商品按90元一個(gè)出售時(shí),能賣出400個(gè),已知該商品每個(gè)上漲1元,其銷售量就減少20個(gè),為獲得利潤,售價(jià)應(yīng)定為

4.某地每年消耗木材約20萬立方米,沒立方米木料價(jià)格為240元,為了減少木材消耗,決定按木料價(jià)格的%征收木材稅,這樣每年木材消耗量減少萬立方米,為了既減少木材消耗又保證稅金收入每年不少于90萬元,則的取值范圍為

5.已知鐳經(jīng)過100年剩留原來質(zhì)量的95.76%,設(shè)質(zhì)量為1的鐳經(jīng)過年后的剩留質(zhì)量為,則與之間的函數(shù)關(guān)系為

6.某公司一年共購買某種貨物400噸,每次購買噸,運(yùn)費(fèi)為4萬元/噸,一年總儲存費(fèi)用4萬元,要使一年的總運(yùn)費(fèi)與總儲存費(fèi)用之和最小,則=

7.用總長為14.8的鋼條做一個(gè)長方體容器的框架,如果所做容器有一邊比另一邊長0.5,則它的容積為

8.某工廠生產(chǎn)某種產(chǎn)品,已知該產(chǎn)品的月生產(chǎn)量(噸)與每噸產(chǎn)品的價(jià)格(元/噸)之間的關(guān)系式為:,且生產(chǎn)噸的成本為(元),問該產(chǎn)品每月生產(chǎn)噸才能使利潤達(dá)到,利潤是萬元

9.有甲,乙兩種產(chǎn)品經(jīng)營銷售這兩種商品所獲得的利潤依次是和(萬元)它們與投入的資金(萬元)的關(guān)系,有經(jīng)驗(yàn)公式,。今有3萬元資金投入經(jīng)營甲、乙兩種商品,為了獲得利潤,對甲、乙兩種商品的資金投入分別應(yīng)是多少?最多能獲得多大的利潤?

高一函數(shù)課件(篇7)

同一只封建宗法制度的黑手,伸出了兩條繩索,捆住了婦女的脖子,朝著相反的方向緊勒,要把勞動(dòng)?jì)D女置于死地而后快。祥林嫂當(dāng)時(shí)就處在這種極端悲慘的境地中:

族權(quán)迫使她寡而再嫁,夫權(quán)又視此為奇恥大辱,使她忍辱含冤,永遠(yuǎn)生活在恥辱之中。祥林嫂以后的悲劇,都是由此而引起的。

那么,祥林嫂是如何對待新迫害的呢?

3.高潮:

①祥林嫂為什么又一次來到魯四老爺家?

②有人認(rèn)為,喪夫失子有偶然性,這種看法對不對?

喪夫失子似乎有偶然性,然而隱藏在偶然性背后的,是那起決定作用的必然性。祥林嫂的丈夫死于舊社會中蔓延著的傳染病傷寒,阿毛死于祥林嫂的貧困、勞碌。(若不是忙著打柴摘茶養(yǎng)蠶,能讓年僅兩三歲的孩子去剝豆嗎?)因此,實(shí)質(zhì)上,是罪惡的政權(quán)奪走了祥林嫂的丈夫和兒子的生命,使她陷于嫁而再寡的境地。作者開始把批判的筆觸由封建夫權(quán)、族權(quán)擴(kuò)展到封建政權(quán)。

按照封建宗法觀念,婦女出嫁從夫,夫死從子,一旦喪夫失子,則連在家庭中生存的權(quán)利都被剝奪了。因此,大伯來收屋使祥林嫂走投無路,只好再一次來到魯家。她到魯家后,又遭受了更大的打擊。

③在魯四老爺,人們對待祥林嫂這個(gè)嫁而再寡的不幸女人態(tài)度如何?

A.魯四老爺?shù)膽B(tài)度:

魯四老爺站在頑固維護(hù)封建宗法制度的立場上,從精神上殘酷地虐殺她。他暗暗地告誡四嬸的那段話,就是置祥林嫂于死地而又不露一絲血痕的軟刀子。(通過四嬸先后喊出三句你放著罷,殺人不見血地葬送了祥林嫂的性命。)

B.人們的態(tài)度:

人們叫她的聲調(diào)和先前很不同。

魯迅用他那犀利的筆鋒,從廣闊的領(lǐng)域里揭示了封建社會黑暗的程度。

人們對祥林嫂的態(tài)度,使她感到痛苦與迷惑。她不時(shí)地向人們訴說著自己不幸的遭遇,她的精神卻慘遭蹂躪。而柳媽的說鬼又給祥林嫂新的打擊。

C.柳媽說鬼:

④祥林嫂是如何對待這如此沉重的打擊的?其結(jié)果如何?

為了爭得做人的權(quán)利,為了求得一線生存的希望,她在竭盡全力地反抗著:

她背著沉重的精神包袱,整日勞碌著,以便積夠十二元鷹洋,用捐門檻的方法去擺脫人們在陽世、陰世間給她設(shè)下的罪名,她忍受著咬嚙人心的嘲笑和侮辱,在無邊的寂寞和悲哀中,默默干了一年,這是何等堅(jiān)韌的反抗精神??!

而反抗的結(jié)果,出乎柳媽、祥林嫂的預(yù)想,這血淋淋的事實(shí)深刻地說明了:祥林嫂是無法贖罪的,祥林嫂陷入了求生不得,欲死不能的境地。

4.結(jié)局:

當(dāng)祥林嫂被折磨得像木偶人,喪失了當(dāng)牛做馬的條件后,魯四老爺就一腳把她踢出門外,使她終于成了只有那眼珠間或一輪,還可以表示她是一個(gè)活物的僵尸。即使這樣,她在臨死前,還向我提出了三個(gè)問題:

A.一個(gè)人死了之后,究竟有沒有魂靈的?

B.那么,也就有地獄了?

C.那么,死掉的一家的人,都能見面的?

這是對魂靈的有無表示疑惑。

她希望人死后有靈魂,因?yàn)樗肟匆娮约旱膬鹤樱凰ε氯怂篮笥徐`魂,因?yàn)樗ε略陉庨g被鋸成兩半。這種疑惑是她對自己命運(yùn)的疑惑,但也正是這種疑惑,這種無法解脫的矛盾,使她在臨死前受到了極大的精神折磨,最后,悲慘地死去。

從祥林嫂一生的悲慘遭遇中,可以清楚地看到,封建的宗法制度正是用政權(quán)、族權(quán)、神權(quán)、夫權(quán)這四條繩索把祥林嫂活活地勒死的。

祥林嫂一生的悲慘遭遇,正是舊中國千百萬勞動(dòng)?jì)D女悲慘遭遇的真實(shí)寫照。作者正是通過塑造祥林嫂這一典型人物,對吃人的封建制度和封建禮教進(jìn)行深刻的揭露和有力地抨擊的。

小結(jié):

祥林嫂是生活在舊中國的一個(gè)被踐踏、被愚弄、被迫害、被鄙視的勤勞、善良、質(zhì)樸、頑強(qiáng)的勞動(dòng)?jì)D女的典型形象。

總之,祥林嫂的悲劇是一個(gè)社會悲劇,造成這一悲劇的根源是封建禮教對中國勞動(dòng)?jì)D女的摧殘和封建思想對當(dāng)時(shí)中國社會的根深蒂固的統(tǒng)治。

第三課時(shí)

本課時(shí)重點(diǎn)分析魯四老爺、我和柳媽的形象。

一、檢查作業(yè):

二、分析魯四老爺:

魯四老爺是當(dāng)時(shí)農(nóng)村中地主階級的代表人物,是資產(chǎn)階級民主革命時(shí)期地主階級知識分子的典型形象。他政治上迂腐、保守,頑固地維護(hù)舊有的封建制度,反對一切改革與革命。他思想上反動(dòng),尊崇理學(xué)和孔孟之道。自覺維護(hù)封建制度和封建禮教。他是造成祥林嫂悲劇的一個(gè)重要人物。

1.作者是通過什么手法來刻畫這個(gè)人物的呢?

①間接描寫:

通過魯四老爺?shù)臅筷愒O(shè)的描寫,點(diǎn)明了魯四老爺?shù)纳矸郑ǖ刂麟A級、封建理學(xué)的衛(wèi)道士),揭露了他的丑惡本質(zhì),從而揭示出他成為殺害祥林嫂的劊子手的深刻的階級根源和思想根源。

②直接描寫:

A.行動(dòng)描寫:

這表現(xiàn)在祥林嫂被搶走的兩件事上:

當(dāng)婆婆一邊搶人一邊來領(lǐng)工錢時(shí),魯四老爺把祥林嫂一文還沒有的工錢全交給了婆婆。

與此相對照的是對被壓迫的寡婦祥林嫂的冷酷無情。

祥林嫂曾那樣辛勤地為魯家勞動(dòng)過,可當(dāng)她遭到惡運(yùn)時(shí),魯家卻無動(dòng)于衷,連祥林嫂走沒走、怎么走的,都毫不過問,只是到了正午,四嬸肚子餓了,這才想起了祥林嫂淘米時(shí)拿走米和淘籮,于是傾巢出動(dòng)分頭尋淘籮;連平時(shí)擺派頭、端架子的魯四老爺都踱出門外,直到河邊,等看見米和淘籮平平正正的放在岸上,旁邊還有一株菜時(shí),這才放心。這場虛驚,入木三分地揭露了:在封建統(tǒng)治者的眼里,一個(gè)勞動(dòng)?jì)D女的命運(yùn)都不如一個(gè)淘籮、一點(diǎn)米、一株菜,魯四老爺冷酷殘忍的嘴臉躍然紙上。

B.語言描寫:

在祥林嫂的問題上,魯四老爺一共開過六次口,說了百十來個(gè)字,卻就把他反動(dòng)、頑固、虛偽自私、陰險(xiǎn)狠毒的性格特征,把他殺害祥林嫂的罪行,揭露得淋漓盡致。

a.祥林嫂被搶前:

b.祥林嫂被搶時(shí):

c.當(dāng)他為尋淘籮,踱到河邊時(shí):

d.緊接著,午飯之后,衛(wèi)婆子又來時(shí):

e.對四嬸的暗暗告誡:

f.祥林嫂死后:

作為這六次開口背景的是魯四老爺虛偽寒暄后的大罵其新黨,它恰恰深刻地揭示了那六次開口的根源。

三、分析我這一形象:

小說中的我是一個(gè)具有進(jìn)步思想的小資產(chǎn)階級知識分子的形象。我有反封建的思想傾向,憎惡魯四老爺,同情祥林嫂。對祥林嫂提出的魂靈的有無的問題,之所以作了含糊的回答,有其善良的一面;同時(shí)也反映了我的軟弱和無能。

在小說的結(jié)構(gòu)上,我又起著線索的作用。祥林嫂一生的悲慘遭遇都是通過我的所見所聞來展現(xiàn)的。我是事件的見證人。

四、分析柳媽:

問:有人認(rèn)為柳媽是幫助魯四老爺殺害祥林嫂的兇手。你是怎樣來看待這一問題呢?

明確:柳媽和祥林嫂一樣都是舊社會的受害者。雖然她臉上已經(jīng)打皺,眼睛已經(jīng)干枯,可是在年節(jié)時(shí)還要給地主去幫工,可見,她也是一個(gè)受壓迫的勞動(dòng)?jì)D女。但是,由于她受封建迷信思想和封建禮教的毒害很深,相信天堂、地獄之類邪說和餓死事小,失節(jié)事大的理學(xué)信條,所以她對祥林嫂改嫁時(shí)頭上留下的傷疤,采取奚落的態(tài)度。至于她講陰司故事給祥林嫂聽,也完全出于善意,主觀愿望還是想為祥林嫂尋求贖罪的辦法,救她跳出苦海,并非要置祥林嫂于死地,只是結(jié)果適得其反。

她的主觀愿望和客觀效果的矛盾說明柳媽是以剝削階級統(tǒng)治人民的思想──封建禮教和封建迷信思想為指導(dǎo),來尋求解救祥林嫂的藥方的,這不但不會產(chǎn)生療效的效果,反而給自己的姐妹造成了難以支持的精神重壓,把祥林嫂推向更恐怖的深淵之中。

高一函數(shù)課件(篇8)

教學(xué)目的:

1.訓(xùn)練按一定目的從課文中篩選信息的能力。

2.理解辯證立論,重點(diǎn)突出,廣征博引,逐層深人的寫法。

3.認(rèn)識治學(xué)中占有材料與鉆研理論的關(guān)系;樹立實(shí)踐第一的辯證唯物主義觀點(diǎn)。

教學(xué)設(shè)想:

1.解讀,關(guān)鍵要抓住“虛”與“實(shí)”的關(guān)系,理清課文的脈絡(luò),重點(diǎn)認(rèn)識圍繞基本觀點(diǎn)立論辯證,廣征博引、層層深人的論述特點(diǎn),理清文章觀點(diǎn)與材料之間的關(guān)系,把握課文的重點(diǎn)。

2.安排二課時(shí)。

教學(xué)過程及步驟:

一、開場白:

1980年10月22日,中國語言學(xué)會成立。呂叔湘先了題為《把我國語言科學(xué)推向前進(jìn)》的講話。全文分“中和外的關(guān)系”、“虛和實(shí)的關(guān)系”、“動(dòng)和靜的關(guān)系”、“通和專的關(guān)系”四個(gè)部分,分別論述了語言研究工作中需要處理好的四對關(guān)系。是其中的第二部分。題目是選作教材時(shí)編者加的。文章雖然“主要談漢語研究”,但正如作者所言“在不同程度上也適用于其他方面”,對于一般治學(xué)和研究問題,對于中職學(xué)生的學(xué)習(xí),包括.寫作時(shí)處理好選材與立意的關(guān)系,都具有重要的指導(dǎo)意義。

二、作者簡介:

呂叔湘(1904—1998),江蘇丹陽人。當(dāng)代著名語言學(xué)家、語文教育家,先后擔(dān)任中國社會科學(xué)院語言研究所研究員、所長,兼任《中國語文》雜志主編,全國文字改革研究會主席,中國語言學(xué)會會長,語文出版社社長,并擔(dān)任全國政協(xié)第二、三屆委員,全國人大第三、四、五、六屆代表,五屆常委,法制委員會委員。他于1926年畢業(yè)于國立東南大學(xué),曾任過中學(xué)教員。1936年留學(xué)英國,1938年回國。先后任云南大學(xué)文史系副教授、華西協(xié)和大學(xué)中國文化研究所研究員、金陵大學(xué)文化研究所研究員兼中央大學(xué)中文系教授、開明書店編輯。建國后任清華大學(xué)中文系教授,1952年到中國社會科學(xué)院語言研究所工作。他幾十年來一直從事語文教學(xué)和研究,重點(diǎn)研究漢語語法,對我國語言學(xué)的發(fā)展作出了重要貢獻(xiàn)。主要著作有《中國文法要略》、《語法修辭講話》、《現(xiàn)代漢語八百詞》等。他治學(xué)嚴(yán)謹(jǐn),著述材料豐富,引證充分,闡述詳盡,見解精辟。他還寫有許多普及性語文讀物,通俗實(shí)用,生動(dòng)有趣。

三、分析課文:

全文共11段,可分為三個(gè)部分。

第一部分(第1~2段):系全文的總綱,提出論題并表明了觀點(diǎn):理論從事例中來,事例從觀察中來、從實(shí)驗(yàn)中來。文章首句提出論題,緊接著以兩個(gè)設(shè)問表明了觀點(diǎn)。在接下來的闡述中,作者以語言學(xué)研究為例說明了理論來自于事例,事例來自于觀察和實(shí)驗(yàn)的道理。文章的第2段運(yùn)用古人做學(xué)問、國外各種學(xué)派林立和“禪宗和尚”的例子闡述對前人的理論也要靠觀察來驗(yàn)證的道理。在論述中,作者既承認(rèn)“前人的理論是我們的財(cái)富”,又指出“前人的理論無論多么重要”,都“要用自己的觀察來驗(yàn)證”;既肯定了講“家法”的好處,又指出其缺點(diǎn),全面辯證,客觀公允,令人信服。這一段是對第1段的進(jìn)一步強(qiáng)調(diào)和補(bǔ)充。

第二部分(第3~6段):具體闡述理論和事實(shí)的辯證關(guān)系并指出了具體的處理方法。第3段從事實(shí)對理論的作用角度舉出“反切”、“等韻”和“文字學(xué)”等理論的形成作為例證,指出事實(shí)能夠決定理論。第4段從比較理論和事實(shí)輕重的角度,運(yùn)用達(dá)爾文物種起源理論的形成和明朝兩位理學(xué)家的故事作為論據(jù),指出沒有事實(shí)作基礎(chǔ),理論就靠不住,更加突出了事實(shí)對理論的決定性作用。第5段是從理論對事實(shí)的作用角度,肯定了理論能引導(dǎo)人去發(fā)現(xiàn)事實(shí)的作用。運(yùn)用了門捷列夫元素周期表填寫等例子。第6段具體提出處理二者關(guān)系的方法,特別強(qiáng)調(diào)“不可走極端”。這一部分的論述強(qiáng)調(diào)了事實(shí)對理論的決定性作用,其目的在于糾正現(xiàn)實(shí)中存在的重理論輕事實(shí)的認(rèn)識。可貴的是作者“矯枉”而不“過正”,沒有偏執(zhí)一端,沒有抹殺理論在治學(xué)中的作用,而是在輕重有別、詳略有致、突出重點(diǎn)的同時(shí),兼顧到了事物的各個(gè)方面,從而顯得全面周到,辯證科學(xué)。作者對問題認(rèn)識的深刻性和完整性由此可見一斑。

第三部分(第7~11段):著重論述觀察和實(shí)驗(yàn)方面的有關(guān)問題。文章聯(lián)系實(shí)際,在分析重理論輕事例的原因、指出其危害的同時(shí),闡述了觀察和實(shí)驗(yàn)必須具備的精神和態(tài)度,強(qiáng)調(diào)要親自去觀察、實(shí)驗(yàn),收集事例。第7段對重理論輕事例的錯(cuò)誤傾向提出批評,引用了饒?jiān)L┙淌诘脑捵鳛檎摀?jù),切合實(shí)際,富于針對性。第8段運(yùn)用“有限與無眼”的故事和葉斯丕森的例子闡述觀察、實(shí)驗(yàn)“不容易”的一個(gè)原因,指出觀察、實(shí)驗(yàn)不能懶惰,必須具備換而不舍的精神。第9段闡述了觀察、實(shí)驗(yàn)“不容易”的另一個(gè)原因,指出觀察、實(shí)驗(yàn)不能有成見,必須有客觀的態(tài)度。第10段收束上文,進(jìn)一步指出不愿觀察實(shí)驗(yàn)的害處。第11段指出觀察、實(shí)驗(yàn)必須自己去做,徹底堵住了不愿觀察、實(shí)驗(yàn)者的退路。這一部分是第二部分論述的具體化和深化。

四、.總結(jié)全文:

文章緊緊圍繞治學(xué)過程中“虛與實(shí)”也就是理論和事例的關(guān)系問題,運(yùn)用大量典型、生動(dòng)的事實(shí)和理論材料,進(jìn)行了全面透徹的論述。明確提出理論從事例中來,事例則從觀察和實(shí)驗(yàn)中來的觀點(diǎn)。文章針對重理論輕事例的現(xiàn)實(shí),在辯證立論、全面論述的基礎(chǔ)上,強(qiáng)調(diào)突出了觀察、實(shí)驗(yàn)對理論形成的作用這一重點(diǎn)。全文第一部分提出兩者關(guān)系的問題,表明觀點(diǎn);第二部分緊緊圍繞觀點(diǎn),對兩者關(guān)系展開論述;第三部分在論述兩者關(guān)系的基礎(chǔ)上,進(jìn)一步闡述觀察和實(shí)驗(yàn)的有關(guān)問題,從整體到局部,逐步剖析,層層深人,不斷具體、深化,具有嚴(yán)密的邏輯性和較強(qiáng)的說服力。

高一函數(shù)課件(篇9)

初中數(shù)學(xué)知識少、淺、難度容易、知識面笮。高中數(shù)學(xué)知識廣泛,將對初中的數(shù)學(xué)知識推廣和引伸,也是對初中數(shù)學(xué)知識的完善。如:初中學(xué)習(xí)的角的概念只是“0—1800”范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和“—300”等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》,將在三維空間中求一些幾何實(shí)體的體積和表面積;還將學(xué)習(xí)“排列組合”知識,以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,( =6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答: =3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=-1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識同學(xué)們在以后的學(xué)習(xí)中將逐漸學(xué)習(xí)到。

(1)初中課堂教學(xué)量小、知識簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對知識的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識讓每個(gè)學(xué)生掌握后再進(jìn)行新課。

初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識面廣,知識要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。

其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。

初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識的難度大和知識面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢,對高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會分類討論。

初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對方程ax2+bx+c=0 (a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會通過對變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。

初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識的范圍小,知識層次低,知識面笮,對實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識的多元化和廣泛性,將會使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。

高一函數(shù)課件(篇10)

高一數(shù)學(xué)教案:《函數(shù)的應(yīng)用舉例》教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.能夠運(yùn)用函數(shù)的性質(zhì),指數(shù)函數(shù),對數(shù)函數(shù)的性質(zhì)解決某些簡單的實(shí)際問題.

(1)能通過閱讀理解讀懂題目中文字?jǐn)⑹鏊从车膶?shí)際背景,領(lǐng)悟其中的數(shù)學(xué)本,弄清題中出現(xiàn)的量及其數(shù)學(xué)含義.

(2)能根據(jù)實(shí)際問題的具體背景,進(jìn)行數(shù)學(xué)化設(shè)計(jì),將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,并調(diào)動(dòng)函數(shù)的相關(guān)性質(zhì)解決問題.

(3)能處理有關(guān)幾何問題,增長率的問題,和物理方面的實(shí)際問題.

2.通過聯(lián)系實(shí)際的引入問題和解決帶有實(shí)際意義的某些問題,培養(yǎng)學(xué)生分析問題,解決問題的能力和運(yùn)用數(shù)學(xué)的意識,也體現(xiàn)了函數(shù)知識的應(yīng)用價(jià)值,也滲透了訓(xùn)練的價(jià)值.

3.通過對實(shí)際問題的研究解決,滲透了數(shù)學(xué)建模的思想.提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,使學(xué)生對函數(shù)思想等有了進(jìn)一步的了解.

教學(xué)建議

教材分析

(1)本小節(jié)內(nèi)容是全章知識的綜合應(yīng)用.這一節(jié)的出現(xiàn)體現(xiàn)了強(qiáng)化應(yīng)用意識的要求,讓學(xué)生能把數(shù)學(xué)知識應(yīng)用到生產(chǎn),生活的實(shí)際中去,形成應(yīng)用數(shù)學(xué)的意識.所以培養(yǎng)學(xué)生分析解決問題的能力和運(yùn)用數(shù)學(xué)的意識是本小節(jié)的重點(diǎn),根據(jù)實(shí)際問題建立數(shù)學(xué)模型是本小節(jié)的難點(diǎn).

(2)在解決實(shí)際問題過程中常用到函數(shù)的知識有:函數(shù)的概念,函數(shù)解析式的確定,指數(shù)函數(shù)的概念及其性質(zhì),對數(shù)概念及其性質(zhì),和二次函數(shù)的概念和性質(zhì).在方法上涉及到換元法,配方法,方程的思想,數(shù)形結(jié)合等重要的思方法..事業(yè)本節(jié)的學(xué)習(xí),既是對知識的復(fù)習(xí),也是對方法和思想的再認(rèn)識.

教法建議

(1)本節(jié)中處理的均為應(yīng)用問題,在題目的敘述表達(dá)上均較長,其中要分析把握的信息量較多.事業(yè)處理這種大信息量的閱讀題首先要在閱讀上下功夫,找出關(guān)鍵語言,關(guān)鍵數(shù)據(jù),特別是對實(shí)際問題中數(shù)學(xué)變量的隱含限制條件的提取尤為重要.

(2)對于應(yīng)用問題的處理,第二步應(yīng)根據(jù)各個(gè)量的關(guān)系,進(jìn)行數(shù)學(xué)化設(shè)計(jì)建立目標(biāo)函數(shù),將實(shí)際問題通過分析概括,抽象為數(shù)學(xué)問題,最后是用數(shù)學(xué)方法將其化為常規(guī)的函數(shù)問題(或其它數(shù)學(xué)問題)解決.此類題目一般都是分為這樣三步進(jìn)行.

(3)在現(xiàn)階段能處理的應(yīng)用問題一般多為幾何問題,利潤最大,費(fèi)用最省問題,增長率的問題及物理方面的問題.在選題時(shí)應(yīng)以以上幾方面問題為主.

教學(xué)設(shè)計(jì)示例

函數(shù)初步應(yīng)用

教學(xué)目標(biāo)

1.能夠運(yùn)用常見函數(shù)的性質(zhì)及平面幾何有關(guān)知識解決某些簡單的實(shí)際問題.

2.通過對實(shí)際問題的研究,培養(yǎng)學(xué)生分析問題,解決問題的能力

3.通過把實(shí)際問題向數(shù)學(xué)問題的轉(zhuǎn)化,滲透數(shù)學(xué)建模的思想,提高學(xué)生用數(shù)學(xué)的意識,及學(xué)習(xí)數(shù)學(xué)的興趣.

教學(xué)重點(diǎn),難點(diǎn)

重點(diǎn)是應(yīng)用問題的閱讀分析和解決.

難點(diǎn)是根據(jù)實(shí)際問題建立相應(yīng)的數(shù)學(xué)模型

教學(xué)方法

師生互動(dòng)式

教學(xué)用具

投影儀

教學(xué)過程

一.提出問題

讓學(xué)生明確是分段函數(shù)的前提條件下,求出定義域?yàn)椋?板書)

問題解決后可由教師簡單小結(jié)一下研究過程中的主要步驟(1)閱讀理解;(2)建立目標(biāo)函數(shù);(3)按要求解決數(shù)學(xué)問題.

下面我們一起看第二個(gè)問題

問題二:某工廠制定了從1999年底開始到20xx年底期間的生產(chǎn)總值持續(xù)增長的兩個(gè)三年計(jì)劃,預(yù)計(jì)生產(chǎn)總值年平均增長率為,則第二個(gè)三年計(jì)劃生產(chǎn)總值與第一個(gè)三年計(jì)劃生

相關(guān)閱讀

高一數(shù)學(xué)應(yīng)用舉例033

1.2解三角形應(yīng)用舉例第三課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)計(jì)算角度的實(shí)際問題

2、通過綜合訓(xùn)練強(qiáng)化學(xué)生的相應(yīng)能力,讓學(xué)生有效、積極、主動(dòng)地參與到探究問題的過程中來,逐步讓學(xué)生自主發(fā)現(xiàn)規(guī)律,舉一反三。

3、培養(yǎng)學(xué)生提出問題、正確分析問題、獨(dú)立解決問題的能力,并激發(fā)學(xué)生的探索精神。

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):能根據(jù)正弦定理、余弦定理的特點(diǎn)找到已知條件和所求角的關(guān)系

難點(diǎn):靈活運(yùn)用正弦定理和余弦定理解關(guān)于角度的問題

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

[創(chuàng)設(shè)情境]

提問:前面我們學(xué)習(xí)了如何測量距離和高度,這些實(shí)際上都可轉(zhuǎn)化已知三角形的一些邊和角求其余邊的問題。然而在實(shí)際的航海生活中,人們又會遇到新的問題,在浩瀚無垠的海面上如何確保輪船不迷失方向,保持一定的航速和航向呢?今天我們接著探討這方面的測量問題。

Ⅱ.講授新課

[范例講解]

例1、如圖,一艘海輪從A出發(fā),沿北偏東75的方向航行67.5nmile后到達(dá)海島B,然后從B出發(fā),沿北偏東32的方向航行54.0nmile后達(dá)到海島C.如果下次航行直接從A出發(fā)到達(dá)C,此船應(yīng)該沿怎樣的方向航行,需要航行多少距離?(角度精確到0.1,距離精確到0.01nmile)

學(xué)生看圖思考并講述解題思路

分析:首先根據(jù)三角形的內(nèi)角和定理求出AC邊所對的角ABC,即可用余弦定理算出AC邊,再根據(jù)正弦定理算出AC邊和AB邊的夾角CAB。

解:在ABC中,ABC=180-75+32=137,根據(jù)余弦定理,

AC==≈113.15

根據(jù)正弦定理,=sinCAB==≈0.3255,

所以CAB=19.0,75-CAB=56.0

答:此船應(yīng)該沿北偏東56.1的方向航行,需要航行113.15nmile

例2、在某點(diǎn)B處測得建筑物AE的頂端A的仰角為,沿BE方向前進(jìn)30m,至點(diǎn)C處測得頂端A的仰角為2,再繼續(xù)前進(jìn)10m至D點(diǎn),測得頂端A的仰角為4,求的大小和建筑物AE的高。

解法一:(用正弦定理求解)由已知可得在ACD中,

AC=BC=30,AD=DC=10,ADC=180-4,

=。因?yàn)閟in4=2sin2cos2

cos2=,得2=30=15,在RtADE中,AE=ADsin60=15

答:所求角為15,建筑物高度為15m

解法二:(設(shè)方程來求解)設(shè)DE=x,AE=h

在RtACE中,(10+x)+h=30在RtADE中,x+h=(10)

兩式相減,得x=5,h=15在RtACE中,tan2==

2=30,=15

答:所求角為15,建筑物高度為15m

解法三:(用倍角公式求解)設(shè)建筑物高為AE=8,由題意,得

BAC=,CAD=2,AC=BC=30m,AD=CD=10m

在RtACE中,sin2=------①在RtADE中,sin4=,----②

②①得cos2=,2=30,=15,AE=ADsin60=15

答:所求角為15,建筑物高度為15m

例3、某巡邏艇在A處發(fā)現(xiàn)北偏東45相距9海里的C處有一艘走私船,正沿南偏東75的方向以10海里/小時(shí)的速度向我海岸行駛,巡邏艇立即以14海里/小時(shí)的速度沿著直線方向追去,問巡邏艇應(yīng)該沿什么方向去追?需要多少時(shí)間才追趕上該走私船?

師:你能根據(jù)題意畫出方位圖?教師啟發(fā)學(xué)生做圖建立數(shù)學(xué)模型

分析:這道題的關(guān)鍵是計(jì)算出三角形的各邊,即需要引入時(shí)間這個(gè)參變量。

解:如圖,設(shè)該巡邏艇沿AB方向經(jīng)過x小時(shí)后在B處追上走私船,則CB=10x,AB=14x,AC=9,

ACB=+=

(14x)=9+(10x)-2910xcos

化簡得32x-30x-27=0,即x=,或x=-(舍去)

所以BC=10x=15,AB=14x=21,

又因?yàn)閟inBAC===

BAC=38,或BAC=141(鈍角不合題意,舍去),

38+=83

答:巡邏艇應(yīng)該沿北偏東83方向去追,經(jīng)過1.4小時(shí)才追趕上該走私船.

評注:在求解三角形中,我們可以根據(jù)正弦函數(shù)的定義得到兩個(gè)解,但作為有關(guān)現(xiàn)實(shí)生活的應(yīng)用題,必須檢驗(yàn)上述所求的解是否符合實(shí)際意義,從而得出實(shí)際問題的解

Ⅲ.課堂練習(xí)

課本第16頁練習(xí)

Ⅳ.課時(shí)小結(jié)

解三角形的應(yīng)用題時(shí),通常會遇到兩種情況:

(1)已知量與未知量全部集中在一個(gè)三角形中,依次利用正弦定理或余弦定理解之。

(2)已知量與未知量涉及兩個(gè)或幾個(gè)三角形,這時(shí)需要選擇條件足夠的三角形優(yōu)先研究,再逐步在其余的三角形中求出問題的解。

Ⅴ.課后作業(yè)

《習(xí)案》作業(yè)六

高一函數(shù)課件(篇11)

1、函數(shù):設(shè)A、B為非空集合,如果按照某個(gè)特定的對應(yīng)關(guān)系f,使對于集合A中的任意一個(gè)數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù),寫作y=f(x),x∈A,其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域,與x相對應(yīng)的y的值叫做函數(shù)值,函數(shù)值的集合B={f(x)∣x∈A }叫做函數(shù)的值域。

2、函數(shù)定義域的解題思路:

⑴ 若x處于分母位置,則分母x不能為0。

⑵ 偶次方根的被開方數(shù)不小于0。

⑶ 對數(shù)式的真數(shù)必須大于0。

⑷ 指數(shù)對數(shù)式的底,不得為1,且必須大于0。

⑸ 指數(shù)為0時(shí),底數(shù)不得為0。

⑹ 如果函數(shù)是由一些基本函數(shù)通過四則運(yùn)算結(jié)合而成的,那么,它的定義域是各個(gè)部分都有意義的x值組成的集合。

⑺ 實(shí)際問題中的函數(shù)的定義域還要保證實(shí)際問題有意義。

⑴ 觀察法:適用于初等函數(shù)及一些簡單的由初等函數(shù)通過四則運(yùn)算得到的函數(shù)。

⑵ 圖像法:適用于易于畫出函數(shù)圖像的函數(shù)已經(jīng)分段函數(shù)。

⑶ 配方法:主要用于二次函數(shù),配方成 y=(x-a)2+b 的形式。

⑷ 代換法:主要用于由已知值域的函數(shù)推測未知函數(shù)的值域。

⑴平移變換:在x軸上的變換在x上就行加減,在y軸上的變換在y上進(jìn)行加減。

6、映射:設(shè)A、B是兩個(gè)非空集合,如果按某一個(gè)確定的對應(yīng)法則f,使對于A中的任意儀的元素x,在集合B中都有唯一的確定的y與之對應(yīng),那么就稱對應(yīng)f:A→B為從集合A到集合B的映射。

⑴ 集合A中的每一個(gè)元素,在集合B中都有象,并且象是唯一的。

⑵ 集合A中的不同元素,在集合B中對應(yīng)的象可以是同一個(gè)。

⑶ 不要求集合B中的每一個(gè)元素在集合A中都有原象。

⑴ 在定義域的不同部分上有不同的解析式表達(dá)式。

⑵ 各部分自變量和函數(shù)值的取值范圍不同。

⑶ 分段函數(shù)的定義域是各段定義域的交集,值域是各段值域的并集。

8、復(fù)合函數(shù):如果(u∈M),u=g(x) (x∈A),則,y=f[g(x)]=F(x) (x∈A),稱為f、g的復(fù)合函數(shù)。

高一函數(shù)課件(篇12)

1.2解三角形應(yīng)用舉例第二課時(shí)

一、教學(xué)目標(biāo)

1、能夠運(yùn)用正弦定理、余弦定理等知識和方法解決一些有關(guān)底部不可到達(dá)的物體高度測量的問題

2、鞏固深化解三角形實(shí)際問題的一般方法,養(yǎng)成良好的研究、探索習(xí)慣。

3、進(jìn)一步培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)、應(yīng)用數(shù)學(xué)的意識及觀察、歸納、類比、概括的能力

二、教學(xué)重點(diǎn)、難點(diǎn)

重點(diǎn):結(jié)合實(shí)際測量工具,解決生活中的測量高度問題

難點(diǎn):能觀察較復(fù)雜的圖形,從中找到解決問題的關(guān)鍵條件

三、教學(xué)過程

Ⅰ.課題導(dǎo)入

提問:現(xiàn)實(shí)生活中,人們是怎樣測量底部不可到達(dá)的建筑物高度呢?又怎樣在水平飛行的飛機(jī)上測量飛機(jī)下方山頂?shù)暮0胃叨饶??今天我們就來共同探討這方面的問題

Ⅱ.講授新課

[范例講解]

例1、AB是底部B不可到達(dá)的一個(gè)建筑物,A為建筑物的最高點(diǎn),設(shè)計(jì)一種測量建筑物高度AB的方法。

分析:求AB長的關(guān)鍵是先求AE,在ACE中,如能求出C點(diǎn)到建筑物頂部A的距離CA,再測出由C點(diǎn)觀察A的仰角,就可以計(jì)算出AE的長。

解:選擇一條水平基線HG,使H、G、B三點(diǎn)在同一條直線上。由在H、G兩點(diǎn)用測角儀器測得A的仰角分別是、,CD=a,測角儀器的高是h,那么,在ACD中,根據(jù)正弦定理可得

AC=AB=AE+h=AC+h=+h

例2、如圖,在山頂鐵塔上B處測得地面上一點(diǎn)A的俯角=54,在塔底C處測得A處的俯角=50。已知鐵塔BC部分的高為27.3m,求出山高CD(精確到1m)

師:根據(jù)已知條件,大家能設(shè)計(jì)出解題方案嗎?

若在ABD中求CD,則關(guān)鍵需要求出哪條邊呢?

生:需求出BD邊。

師:那如何求BD邊呢?

生:可首先求出AB邊,再根據(jù)BAD=求得。

解:在ABC中,BCA=90+,ABC=90-,

BAC=-,BAD=.根據(jù)正弦定理,=

所以AB==在RtABD中,得BD=ABsinBAD=

將測量數(shù)據(jù)代入上式,得BD==≈177(m)

CD=BD-BC≈177-27.3=150(m)

答:山的高度約為150米.

思考:有沒有別的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

例3、如圖,一輛汽車在一條水平的公路上向正東行駛,到A處時(shí)測得公路南側(cè)遠(yuǎn)處一山頂D在東偏南15的方向上,行駛5km后到達(dá)B處,測得此山頂在東偏南25的方向上,仰角為8,求此山的高度CD.

思考1:欲求出CD,大家思考在哪個(gè)三角形中研究比較適合呢?(在BCD中)

思考2:在BCD中,已知BD或BC都可求出CD,根據(jù)條件,易計(jì)算出哪條邊的長?(BC邊)

解:在ABC中,A=15,C=25-15=10,根據(jù)正弦定理,

=,BC=≈7.4524(km)CD=BCtanDBC≈BCtan8≈1047(m)

答:山的高度約為1047米

Ⅲ.課堂練習(xí):課本第17頁練習(xí)第1、2、3題

Ⅳ.課時(shí)小結(jié)

利用正弦定理和余弦定理來解題時(shí),要學(xué)會審題及根據(jù)題意畫方位圖,要懂得從所給的背景資料中進(jìn)行加工、抽取主要因素,進(jìn)行適當(dāng)?shù)暮喕?/p>

Ⅴ.課后作業(yè)

作業(yè):《習(xí)案》作業(yè)五

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

高一數(shù)學(xué)教案:《函數(shù)》教學(xué)設(shè)計(jì)

教學(xué)目標(biāo)

1.理解函數(shù)的概念,了解函數(shù)的三種表示法,會求函數(shù)的定義域.

(1)了解函數(shù)是特殊的映射,是非空數(shù)集A到非空數(shù)集B的映射.能理解函數(shù)是由定義域,值域,對應(yīng)法則三要素構(gòu)成的整體.

(2)能正確認(rèn)識和使用函數(shù)的三種表示法:解析法,列表法,和圖象法.了解每種方法的優(yōu)點(diǎn).

(3)能正確使用“區(qū)間”及相關(guān)符號,能正確求解各類函數(shù)的定義域.

2.通過函數(shù)概念的學(xué)習(xí),使學(xué)生在符號表示,運(yùn)算等方面的能力有所提高.

學(xué)過什么函數(shù)?

(要求學(xué)生盡量用自己的話描述初中函數(shù)的定義,并試舉出各類學(xué)過的函數(shù)例子)

學(xué)生舉出如等,待學(xué)生說完定義后教師打出投影片,給出定義之后教師也舉一個(gè)例子,問學(xué)生.

提問1.是函數(shù)嗎?

(由學(xué)生討論,發(fā)表各自的意見,有的認(rèn)為它不是函數(shù),理由是沒有兩個(gè)變量,也有的認(rèn)為是函數(shù),理由是可以可做.)

教師由此指出我們爭論的焦點(diǎn),其實(shí)就是函數(shù)定義的不完善的地方,這也正是我們今天研究函數(shù)定義的必要性,新的定義將在與原定義不相違背的基礎(chǔ)上從更高的觀點(diǎn),將它完善與深化.

二、新課

現(xiàn)在請同學(xué)們打開書翻到第50頁,從這開始閱讀有關(guān)的內(nèi)容,再回答我的問題.(約2-3分鐘或開始提問)

提問2.新的函數(shù)的定義是什么?能否用最簡單的語言來概括一下.

學(xué)生的回答往往是把書上的定義念一遍,教師可以板書的形式寫出定義,但還要引導(dǎo)形式發(fā)現(xiàn)定義的本質(zhì).

(板書)2.2函數(shù)

一、函數(shù)的概念

函數(shù)的課件


居安思危,思則有備,有備無患。當(dāng)幼兒園教師的教學(xué)任務(wù)遇到困難時(shí),往往都需要參考一下我們提前準(zhǔn)備參考資料。資料所覆蓋的面比較廣,可以指學(xué)習(xí)資料。參考資料我們接下來的學(xué)習(xí)工作才會更加好!你是否收藏了一些有用的幼師資料內(nèi)容呢?于是,小編為你收集整理了函數(shù)的課件。歡迎閱讀,希望你能閱讀并收藏。

函數(shù)的課件【篇1】

函數(shù)是數(shù)學(xué)中最重要的基本概念之一,它揭示了現(xiàn)實(shí)世界中數(shù)量關(guān)系之間相互依存和變化的實(shí)質(zhì),是刻畫和研究現(xiàn)實(shí)世界變化規(guī)律的重要模型。托馬斯稱:函數(shù)是現(xiàn)代數(shù)學(xué)思想之花。

《集合與函數(shù)概念》一章在高中數(shù)學(xué)中起著承上啟下的作用。本課學(xué)習(xí)的函數(shù)概念及其反映出來的數(shù)學(xué)思想方法已廣泛滲透到數(shù)學(xué)的各個(gè)領(lǐng)域,是進(jìn)一步學(xué)習(xí)數(shù)學(xué)的重要基礎(chǔ)。函數(shù)的思想方法貫穿了高中數(shù)學(xué)課程的始終。

本小節(jié)是繼學(xué)習(xí)集合語言之后,運(yùn)用集合與對應(yīng)語言,在初中學(xué)習(xí)的基礎(chǔ)上,進(jìn)一步刻畫函數(shù)概念,目的是讓學(xué)生認(rèn)識到它們優(yōu)越性,從根本上揭示函數(shù)的本質(zhì)。因此本課的教學(xué)重點(diǎn)是:學(xué)會用集合與對應(yīng)語言刻畫函數(shù)概念,進(jìn)一步認(rèn)識函數(shù)是描述客觀世界中變量間依賴關(guān)系的數(shù)學(xué)模型。

1.正確理解函數(shù)的概念,會用集合與對應(yīng)語言刻畫函數(shù)。通過實(shí)例分析,體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;強(qiáng)化數(shù)學(xué)的應(yīng)用與建模意識;培養(yǎng)學(xué)生的學(xué)習(xí)興趣。

2.理解函數(shù)三要素,會求簡單函數(shù)的定義域。通過例題教學(xué)與練習(xí),培養(yǎng)歸納概括能力。

3.理解符號y=f(x)的含義,明確f(x)與f(a)的區(qū)別與聯(lián)系。體會函數(shù)思想,代換思想,提高思維品質(zhì)。

本堂課作為一堂公開課,我曾在多個(gè)班級試教。主要問題有:

首先,由三個(gè)實(shí)例歸納共性會遇到困難。原因是由具體實(shí)例到抽象的數(shù)學(xué)語言,要求學(xué)生具備較強(qiáng)的歸納概括能力;而對高一學(xué)生抽象思維能力相對較弱。

其次,學(xué)生不容易認(rèn)識到函數(shù)概念的整體性。原因是把函數(shù)單一地理解成函數(shù)中的對應(yīng)關(guān)系,甚至認(rèn)為函數(shù)就是函數(shù)值。

第三,函數(shù)符號y=f(x)比較抽象,學(xué)生難以理解。

因此本課的教學(xué)難點(diǎn)是:1、從主觀知識抽象成為客觀概念。2、函數(shù)符號y=f(x)的理解。

在初中學(xué)生已學(xué)習(xí)了變量觀點(diǎn)下的函數(shù)定義,具體研究了幾類最簡單的函數(shù),對函數(shù)并不陌生;學(xué)生已經(jīng)會把函數(shù)看成變量之間的依賴關(guān)系;同時(shí),雖然函數(shù)概念比較抽象,但函數(shù)現(xiàn)象大量存在于學(xué)生周圍,學(xué)生能列舉出函數(shù)的實(shí)例,已具備初步的數(shù)學(xué)建模能力。 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?我們目前所教的學(xué)生經(jīng)歷了初中新課程改革,他們普遍思維活躍,表達(dá)能力強(qiáng),有較強(qiáng)的獨(dú)立解決問題的能力。在平時(shí)的學(xué)習(xí)過程中,他們更喜歡教師創(chuàng)造疑問,然后自己想辦法解決問題,通過教師的啟發(fā)點(diǎn)撥,學(xué)生以自己的努力找到解決問題的方法。學(xué)生作為教學(xué)主體隨時(shí)對所學(xué)知識產(chǎn)生有意注意,努力思索解決疑問的方式,使自己的能力通過教師的點(diǎn)撥得到發(fā)揮。

針對學(xué)生這一學(xué)習(xí)方式,我們在教學(xué)過程中從學(xué)生已有的知識經(jīng)驗(yàn)出發(fā),讓學(xué)生明白新問題產(chǎn)生的背景,引導(dǎo)學(xué)生對三個(gè)實(shí)例進(jìn)行分析,然后歸納共性,抽象出用集合與對應(yīng)語言刻畫的函數(shù)概念。其間采用了多媒體動(dòng)畫演示、教師引導(dǎo)、學(xué)生探究、討論、交流一系列活動(dòng),讓學(xué)生感到“概念的.得出是水到渠成的,自然的而不是強(qiáng)加于人的”。

對函數(shù)概念的整體性的理解,通過設(shè)計(jì)“想一想”、“練一練”、“試一試”等問題情景激發(fā)學(xué)生積極參與,在問題解決的過程中鞏固函數(shù)概念。而對函數(shù)符號y=f(x),則讓學(xué)生分析實(shí)例和動(dòng)手操作,來認(rèn)識和理解符號的內(nèi)涵;并進(jìn)一步滲透函數(shù)思想、代換思想。如三個(gè)實(shí)例用統(tǒng)一的符號表示、例4中計(jì)算當(dāng)自變量是數(shù)字、字母不同情況時(shí)的函數(shù)值。讓學(xué)生在做數(shù)學(xué)中領(lǐng)會含義,學(xué)會解題方法,提高解決問題的能力。

《標(biāo)準(zhǔn)》提倡運(yùn)用信息技術(shù)呈現(xiàn)以往教學(xué)難以呈現(xiàn)的課程內(nèi)容,數(shù)學(xué)的理解需要直觀的觀察、視覺的感知,特別是幾何圖形的性質(zhì),復(fù)雜的計(jì)算過程,函數(shù)的動(dòng)態(tài)變化過程、幾何直觀背景等,若能利用信息技術(shù)來直觀呈現(xiàn)使其可視化將會有助于學(xué)生的理解。本節(jié)課將充分利用信息技術(shù)支持課堂教學(xué)。

1、? ?多媒體動(dòng)畫演示炮彈發(fā)射。在形象生動(dòng)的情景中感受高度h隨時(shí)間t的變化而變化的運(yùn)動(dòng)規(guī)律。

2、? ?用幾何畫板畫出h=130t-5t2的圖象。在圖象上任取一點(diǎn)P(t,h),然后拖動(dòng)點(diǎn)P的位置,觀察點(diǎn)P的橫坐標(biāo)t與縱坐標(biāo)h的變化規(guī)律。

3、? ?制作幻燈片展示問題情景。

函數(shù)的課件【篇2】

一.內(nèi)容和內(nèi)容解析

【內(nèi)容】變量與函數(shù)的概念

【內(nèi)容解析】

“14.1變量與函數(shù)”是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級上冊第十四章第一單元,本設(shè)計(jì)是第1課時(shí),引導(dǎo)學(xué)生從生活實(shí)例中抽象出常量、變量與函數(shù)等概念,其中函數(shù)的概念是本節(jié)核心內(nèi)容.函數(shù)概念的核心是兩個(gè)變量間的特殊對應(yīng)關(guān)系:(1)由哪一個(gè)變量確定另一個(gè)變量;(2)唯一對應(yīng)關(guān)系.如果直接研究某個(gè)量y有一定困難,我們可以去研究另一個(gè)與之有關(guān)的量x,從而達(dá)到研究的目的.這也是一種化繁為簡的轉(zhuǎn)化思想.

本節(jié)課是函數(shù)入門課,首先必須準(zhǔn)確認(rèn)識變量與常量的特征,初步感受到現(xiàn)實(shí)世界各種變量之間聯(lián)系的復(fù)雜性,同時(shí)感受到研究主要從化繁就簡入手,在初中階段主要研究兩個(gè)變量之間的特殊對應(yīng)關(guān)系.本設(shè)計(jì)把重點(diǎn)放在認(rèn)識“兩個(gè)變量間的特殊對應(yīng)關(guān)系:由哪一個(gè)變量確定另一變量;唯一確定的含義.” 而函數(shù)圖象較為直觀形象,有助于學(xué)生理解函數(shù)的概念,因此把函數(shù)圖象中的部分內(nèi)容提前到本課時(shí)學(xué)習(xí).

二.目標(biāo)和目標(biāo)解析

【目標(biāo)】理解常量、變量與函數(shù)的概念.

【目標(biāo)解析】

(1)借助簡單實(shí)例,學(xué)生初步感知用常量與變量來刻畫一些簡單的數(shù)學(xué)問題,能指出具體問題中的常量、變量.初步理解存在一類變量可以用函數(shù)方式來刻畫,能舉出涉及兩個(gè)變量的實(shí)例,并指出由哪一個(gè)變量確定另一個(gè)變量,這兩個(gè)變量是否具有函數(shù)關(guān)系.初步理解對應(yīng)的思想,體會函數(shù)概念的核心是兩個(gè)變量之間的特殊對應(yīng)關(guān)系,能判斷兩個(gè)變量間是否具有函數(shù)關(guān)系.

(2)借助簡單實(shí)例,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體會從生活實(shí)例抽象出數(shù)學(xué)知識的方法,感知現(xiàn)實(shí)世界中變量之間聯(lián)系的復(fù)雜性,數(shù)學(xué)研究從最簡單的情形入手,化繁為簡.

(3)從學(xué)生熟悉、感興趣的實(shí)例引入課題,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體驗(yàn)“發(fā)現(xiàn)、創(chuàng)造”數(shù)學(xué)知識的樂趣.學(xué)生初步感知實(shí)際生活蘊(yùn)藏著豐富的數(shù)學(xué)知識,感知數(shù)學(xué)是有用、有趣的學(xué)科.

三、教學(xué)問題診斷分析

變量與函數(shù)的概念把學(xué)生由常量數(shù)學(xué)的學(xué)習(xí)引入變量數(shù)學(xué)學(xué)習(xí)中.學(xué)生知道代數(shù)式中的字母可以表示數(shù),方程中的未知數(shù)求出來后也是一個(gè)“已知數(shù)”,從“靜態(tài)”的角度理解字母所表示的數(shù),另外,學(xué)生在日常生活中也接觸到函數(shù)圖象、兩個(gè)變量的關(guān)系等樸素的函數(shù)關(guān)系的生活實(shí)例.但是學(xué)生初次接觸函數(shù)的概念,難以理解定義中“唯一確定”的準(zhǔn)確含義.

【教學(xué)重點(diǎn)】借助簡單實(shí)例,從兩個(gè)變量間的特殊對應(yīng)關(guān)系抽象出函數(shù)的概念.

【教學(xué)難點(diǎn)】怎樣理解“唯一對應(yīng)”.

四、教學(xué)過程設(shè)計(jì)

(一)導(dǎo)言:

1.《名偵探柯南》中有這樣一個(gè)情景:柯南根據(jù)案發(fā)現(xiàn)場的腳印,鎖定疑犯的身高.你知道其中的道理嗎?

2.我們班中同學(xué)A與職業(yè)相撲運(yùn)動(dòng)員,誰的飯量大?你能說明理由嗎?

問題1中都涉及兩個(gè)量的關(guān)系,腳印確定,對應(yīng)的身高有多個(gè)取值;問題2涉及多個(gè)量的關(guān)系.這一節(jié)課我們研究兩個(gè)量的關(guān)系,研究怎樣由一個(gè)量來確定另一個(gè)量.

【設(shè)計(jì)意圖】從學(xué)生的生活入手,開門見山,在極短的時(shí)間(一兩分鐘)內(nèi)指明本節(jié)課的學(xué)習(xí)內(nèi)容.現(xiàn)實(shí)世界中各種量之間的聯(lián)系紛繁復(fù)雜,應(yīng)向?qū)W生說明我們數(shù)學(xué)的研究方法是化繁就簡,本節(jié)課只關(guān)注一類簡單的問題.

(二)概念的引入

1.票房收入問題:每張電影票的售價(jià)為10元.

(1)若一場售出150張電影票,則該場的票房收入是 元;若售出205張、310張呢?

(2)若一場售出x張電影票,則該場的票房收入y元,則y= .

思考:

(1)票房收入隨售出的電影票變化而變化,即y隨的變化而變化;

(2)當(dāng)售出票數(shù)x取定一個(gè)確定的值時(shí),對應(yīng)的票房收入y的取值是否唯一確定?

2.成績問題:如圖是某班同學(xué)一次數(shù)學(xué)測試中的成績登記表:這一次數(shù)學(xué)測試中,13號的成績?yōu)開_____;15號的成績?yōu)開_____;16號的成績?yōu)開_____;23號的成績?yōu)開_____.

思考:

(1)測試成績隨________的變化而變化;

(2)任意確定一個(gè)學(xué)號x,對應(yīng)的成績f的取值是否唯一確定?

3.氣溫問題:圖一是撫順春季某一天的氣溫T隨時(shí)間t變化的圖象,看圖回答:

(1)這天的8時(shí)的氣溫是 ℃,14時(shí)的氣溫是 ℃,最高氣溫是 ℃,最低氣溫是 ℃;

(3)這一天中,在4時(shí)~12時(shí),氣溫( ),在16時(shí)~24時(shí),氣溫( ).

A.持續(xù)升高 B.持續(xù)降低 C.持續(xù)不變

思考:

(1)天氣溫度隨的變化而變化,即T隨的變化而變化;

(2)當(dāng)時(shí)間t取定一個(gè)確定的值時(shí),對應(yīng)的溫度T的取值是否唯一確定?

【設(shè)計(jì)意圖】這三個(gè)問題中都含有變量之間的單值對應(yīng)關(guān)系,通過研究這些問題引出常量、變量、函數(shù)等概念,通過這種從實(shí)際問題出發(fā)開始討論的方式,使學(xué)生體驗(yàn)從具體到抽象地認(rèn)識過程.問題的形式有填空、列表、求值、寫解析式、讀圖等,隱含著在函數(shù)關(guān)系中表示兩個(gè)變量的對應(yīng)關(guān)系有解析法、列表法、圖象法.

(三)概念的界定

思考:上述三個(gè)問題中,分別涉及哪些量的關(guān)系?通過哪一個(gè)量可以確定另一個(gè)量?

在上面的三個(gè)問題中,其中一個(gè)量的變化引起另一個(gè)量的變化(按照某種規(guī)律變化),變化的量叫做變量;有些量的值始終不變(例如電影票的單價(jià)10元……).并且當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就隨之確定,且它的對應(yīng)值只有一個(gè).

教師根據(jù)學(xué)生的回答,在黑板上板書:

師生對上述三個(gè)問題進(jìn)行分析,找出它們的共性,歸納出函數(shù)的概念.

【設(shè)計(jì)意圖】(1)如何把具體的實(shí)例進(jìn)行抽象,形式化為數(shù)學(xué)知識是本課的關(guān)鍵.這里提出的問題“上述三個(gè)問題中,分別涉及哪些量的關(guān)系?通過哪一個(gè)量可以確定另一個(gè)量?”是一個(gè)關(guān)鍵的“腳手架”,借助“腳手架”,學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程,引導(dǎo)學(xué)生認(rèn)識為什么要引進(jìn)變量、常量、函數(shù)的概念,逐步了解如何給數(shù)學(xué)概念下定義.(2)此處板書是“腳手架”的重要組成部分,揭示“兩個(gè)量的對應(yīng)關(guān)系”.

問題回顧:指出前面三個(gè)問題中涉及到的量,并指出其中的變量、常量、自變量與函數(shù).

【設(shè)計(jì)意圖】鞏固常量、變量、自變量、函數(shù)的概念.

例1 一個(gè)三角形的底邊為5,這一邊上的高h(yuǎn)可以任意伸縮.

(1)高h(yuǎn)的變化會引起三角形中哪些量發(fā)生變化?這些變量是高h(yuǎn)的函數(shù)嗎?

(2)試求面積s隨h變化的關(guān)系式,并指出其中的'常量、變量與自變量。

例2如果用r表示圓的半徑,半徑r的變化會引起圓中哪些量發(fā)生變化?這些變量是半徑r的函數(shù)嗎?

【設(shè)計(jì)意圖】例1、例2的引入用幾何畫板做動(dòng)態(tài)演示.此兩例引導(dǎo)學(xué)生體會幾何問題中兩個(gè)變量在動(dòng)態(tài)變化過程中的依存關(guān)系.

例3 問題1中,售出票數(shù)是票房的函數(shù)嗎?問題2中,學(xué)號x是成績f的函數(shù)嗎?

【設(shè)計(jì)意圖】(1)引導(dǎo)學(xué)生從逆向思維的角度進(jìn)行思考,更全面地理解函數(shù)的概念.(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣.(3)讓學(xué)生對這三個(gè)問題留下更深刻的印象,特別是“成績問題,”它將在函數(shù)這一章書的教學(xué)中反復(fù)被引用,幫助學(xué)生深入理解函數(shù)的概念.

(四)概念鞏固

1.購買一些簽字筆,單價(jià)3元,總價(jià)為y元,簽字筆為x支,根據(jù)題意填表:

(1)y隨x變化的關(guān)系式y(tǒng) = , 是自變量, 是 的函數(shù);

(2)當(dāng)購買8支簽字筆時(shí),總價(jià)為 元.

2.周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離開家后的距離s(千米)與時(shí)間t(時(shí))的關(guān)系如圖所示.

(1)當(dāng)t=12時(shí),s=________;當(dāng)t=14時(shí),s=________;

(2)小李從______時(shí)開始第一次休息,休息時(shí)間為____小時(shí),此時(shí)離家______千米.

(3)距離s是時(shí)間t的函數(shù)嗎?時(shí)間t是距離s的函數(shù)嗎?

函數(shù)的課件【篇3】

§5 簡單的冪函數(shù)(第1課時(shí))

交大二附中

劉正偉

一、課標(biāo)三維目標(biāo):

1.知識技能:了解簡單冪函數(shù)的概念;通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行初步的應(yīng)用.2.過程與方法:通過作函數(shù)圖像,讓學(xué)生體會冪函數(shù)圖像的特點(diǎn),會利用定義證

明簡單函數(shù)的奇偶性,了解利用奇偶性畫函數(shù)圖像和研究函數(shù)的方法。

3.情感、態(tài)度、價(jià)值觀:進(jìn)一步滲透數(shù)形結(jié)合與類比的思想方法;培養(yǎng)從特殊歸

納出一般的意識,體會冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對稱性。

二、教學(xué)重點(diǎn)與難點(diǎn):

重點(diǎn):冪函數(shù)的概念,函數(shù)奇、偶性的概念。

難點(diǎn):判斷函數(shù)的奇偶性。

三、學(xué)法指導(dǎo):

通過數(shù)形結(jié)合,類比、觀察、思考、交流、討論,理解冪函數(shù)的概念和函數(shù)的奇偶性。

四、教學(xué)方法:

對奇偶性要求不高,題目不需要過難,盡量用多媒體和計(jì)算機(jī)畫函數(shù)的圖像,重在從圖上看出圖像關(guān)于誰對稱,著重從對稱的角度應(yīng)用這一性質(zhì),培養(yǎng)學(xué)生自己歸納總結(jié)的能力。

五、教學(xué)過程:

(一)創(chuàng)設(shè)情境(生活實(shí)例中抽象出幾個(gè)數(shù)學(xué)模型)

1.如果張紅購買每千克1元的蔬菜x千克,那么她需要付的錢數(shù) p=x元,這里p是s的函數(shù).2.如果正方形的邊長為a,那么正方形的面積S=a2,這里S是a的函數(shù).3.如果正方體的邊長為a,那么正方體的體積V=a3,這里V是a的函數(shù)

4.如果正方形場地的面積為S,那么正方形的邊長a=S1/2,這里a是S的函數(shù).5.如果某人t s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度 v=t-1km/s,這里v 是t的函數(shù).【思考】上述函數(shù)解析式有什么形式特征?具有什么共同點(diǎn)?(教師將解析式寫成指數(shù)冪形式,以啟發(fā)學(xué)生歸納,板書課題并歸納冪函數(shù)的定義。)

(二)探究冪函數(shù)的概念、圖象和性質(zhì)

1.冪函數(shù)的定義

如果一個(gè)函數(shù),底數(shù)是自變量x,指數(shù)是常量α,即y = x,這樣的函數(shù)稱為冪函數(shù).如

α【練】為了加深對定義的理解,讓學(xué)生判別下列函數(shù)中有幾個(gè)冪函數(shù)?

212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.冪函數(shù)的圖象和性質(zhì)

【1】通過幾何畫板演示讓學(xué)生認(rèn)識到,冪函數(shù)的圖象因a的不同而形狀各異 【2】引導(dǎo)學(xué)生從5個(gè)具體冪函數(shù)的圖象入手,研究冪函數(shù)的性質(zhì)

① 畫出y?x,y?x,y?x,y?x,y?x?1的圖象(重點(diǎn)畫y=x3和y=x1/2的圖象----學(xué)生畫,再用幾何畫板演示)

2312

學(xué)生活動(dòng):1.學(xué)生自己說出作圖步驟,交流討論單調(diào)性。

學(xué)生活動(dòng):2.觀察交流,分析圖像還有那些特點(diǎn)?

3.觀察函數(shù)值和自變量取值有什么特點(diǎn)?

我們還可以看到,f(x)=x3 的圖像關(guān)于原點(diǎn)對稱.并且對任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).

(三)奇函數(shù)、偶函數(shù)的定義

一般地,圖像關(guān)于原點(diǎn)對稱的函數(shù)叫作奇函數(shù),即f(-x)=-f(x);反之,滿足f(-x)=-f(x)的函數(shù)y=f(x)一定是奇函數(shù)。

2學(xué)生通過類比,自己找出偶函數(shù)的定義,可以建議利用y=x的圖像特征?

一定是偶函數(shù)。

當(dāng)函數(shù)f(x)是奇函數(shù)或偶函數(shù)時(shí),稱函數(shù)具有奇偶性。例1:畫出下列函數(shù)的圖像,判斷奇偶性.(1)f(x)=-3x-1;

(2)f(x)= x2,x∈﹙-3,3〕

(3)f(x)= x2-3

;(4)f(x)= 2(x+1)2+1 圖像關(guān)于y軸對稱的函數(shù)叫作偶函數(shù),即f(-x)=f(x);反之,滿足f(-x)=f(x)的函數(shù)y=f(x)學(xué)生活動(dòng):思考討論:

1.總結(jié)奇偶性對函數(shù)定義域的要求.2.總結(jié)利用圖像法判斷函數(shù)奇偶性

(四)根據(jù)定義法判斷奇偶性

例2.判斷f(x)=-2x5 和g(x)= x4 +2的奇偶性.

由于從圖像上進(jìn)行觀察是一種常用而又較為粗略的方法,嚴(yán)格的說,它需要根據(jù)奇偶函數(shù)的定義進(jìn)行證明。

學(xué)生自己先動(dòng)手證明,教師一旁指導(dǎo)。要注意書寫規(guī)范,并討論交流定義法證明的步驟。

例3學(xué)生活動(dòng):動(dòng)手實(shí)踐

在圖2-28 中,只畫出了函數(shù)圖象的一半,請你畫出它們的另一半,并說出畫法的依據(jù).

結(jié)論:

在研究函數(shù)時(shí),如果知道其圖像具有關(guān)于原點(diǎn)或y軸對稱的特點(diǎn),那么我們可以先研究它的一半,再利用對稱性了解另一半,從而可以減少工作量.

六.歸納小結(jié):(學(xué)生自己交流總結(jié))

1.本節(jié)課學(xué)習(xí)的主要知識是什么?

2.如何確定函數(shù)的奇偶性,其定義域有何特征?

3.思考討論填寫常用冪函數(shù)規(guī)律表。

七.作業(yè):課本第50頁A組1(2),2,3(1)(2),4

選做:B組、第2題

八.板書設(shè)計(jì):

簡單的冪函數(shù)

α一. 定義:形如y = x,α是常量.二. 奇、偶函數(shù)的定義: 三. 定義證明奇偶性。(教師板演)

八.教學(xué)反思:

函數(shù)的課件【篇4】

反比例函數(shù)是繼一次函數(shù)學(xué)習(xí)之后又一類新的函數(shù),它位居初中階段三大函數(shù)中的第二,區(qū)別于一次函數(shù),但又建立在一次函數(shù)基礎(chǔ)之上,而又服務(wù)于以后更高層次函數(shù)的學(xué)習(xí),以及為函數(shù)、方程、不等式間關(guān)系的處理奠定了基礎(chǔ)。函數(shù)本身是數(shù)學(xué)學(xué)習(xí)中的重要內(nèi)容,而反比例函數(shù)則是基礎(chǔ)函數(shù)。具體老師評課如下:

劉霞:通過反比例函數(shù)的應(yīng)用使學(xué)生明確函數(shù)、方程、不等式是解決實(shí)際問題的三種重要的數(shù)學(xué)模型,它們之間有著密切聯(lián)系,并在一定的條件下可以互相轉(zhuǎn)化。

在本節(jié)課的復(fù)習(xí)過程中,滲透著建模思想、函數(shù)思想、數(shù)形結(jié)合思想、方程以及方程組的思想,這些思想也為后面學(xué)習(xí)二次函數(shù)的應(yīng)用奠定了基礎(chǔ)。

而利用反比例函數(shù)解決實(shí)際問題的基本步驟是通過對例題的解題過程進(jìn)行歸納總結(jié)而得到的結(jié)論。它遵循了從“具體到抽象再到具體”的認(rèn)知規(guī)律,蘊(yùn)含了從“特殊到一般再到特殊”的推理方法。對今后學(xué)習(xí)數(shù)學(xué)有著重要的指導(dǎo)意義。

孫法圣:鞏固反比例函數(shù)的概念,會求反比例函數(shù)表達(dá)式并能畫出圖象。 鞏固反比例函數(shù)圖象的變化及性質(zhì)并能運(yùn)用解決某些實(shí)際問題。

李杰:可以說從復(fù)習(xí)課的角度來說這樣安排教學(xué)目標(biāo)是恰如其分的,使數(shù)學(xué)教學(xué)課標(biāo)要求當(dāng)中的了解、掌握、直至應(yīng)用都考慮到了體現(xiàn)。

牛媛:首先通過提問的方式梳理有關(guān)反比例函數(shù)的知識點(diǎn)(如:定義,表示法,圖像性質(zhì)),形成知識體系。爾后給出三道例題,學(xué)生做完后由學(xué)生板演再師生共同分析,最后學(xué)生再完成自我測驗(yàn)題。(馮老師精心設(shè)計(jì)本節(jié)課教學(xué)內(nèi)容并通過印刷試卷給予呈現(xiàn)。)通過這些難度不同的習(xí)題來滲透反比例函數(shù)的相關(guān)知識與性質(zhì)以及數(shù)學(xué)思想方法。使基礎(chǔ)薄弱的學(xué)生能聽得懂做一些,也使學(xué)有余力的學(xué)生學(xué)習(xí)能力得到進(jìn)一步的提升,面向全體,使每一位學(xué)生都學(xué)有所得,另一方面也符合學(xué)生的認(rèn)知特點(diǎn)和認(rèn)知規(guī)律。

梁淑禎:應(yīng)該說馮老師能較好地完成了本節(jié)課的教學(xué)任務(wù),實(shí)現(xiàn)了既定的教學(xué)目標(biāo),達(dá)到了一定的教學(xué)效果,數(shù)學(xué)思想方法都能從例題教學(xué)中得到了體現(xiàn)??傮w上落實(shí)以教師為主導(dǎo),學(xué)生為主體,練習(xí)為主線的復(fù)習(xí)課教學(xué)模式。

在教學(xué)基本功方面:馮老師深入研讀課標(biāo),鉆研教學(xué)大綱,吃透教材,形成自己獨(dú)到的見解,把握教材準(zhǔn)確、恰當(dāng),難易適中,重點(diǎn)空出,緊緊抓住數(shù)形結(jié)合的思想來求解有關(guān)反比例函數(shù)的應(yīng)用問題。

板書工整有示范性,有啟發(fā)性,如在學(xué)生板演出現(xiàn)錯(cuò)誤時(shí)給予及時(shí)糾正并用彩色筆加以區(qū)別經(jīng)引起學(xué)生的特別注意。靈活地把黑板分成4大板面,內(nèi)容緊湊

又分明、清晰,主板書和副板書一目了然。個(gè)人以為在學(xué)生不能很好地完成書寫過程時(shí),教師不應(yīng)把板演的任務(wù)交給學(xué)生,雖說教師已加以修改和訂正,但看起來已經(jīng)不夠整潔,也不美觀。這樣在一定程度上就降低了板書對示范性和啟發(fā)性要求。

教師上課娓娓道來,循循善誘,聲音柔和,具有校強(qiáng)的語言功底,這有利于學(xué)生靜心思考,與學(xué)生容易形成思維的碰撞,易于與學(xué)生達(dá)到心靈上的勾通,交流。不過引起注意是要多注視數(shù)學(xué)語言的生動(dòng)有趣、簡潔明了、富于啟發(fā)的.特點(diǎn),特別當(dāng)學(xué)生情緒處于低落之時(shí),若能制造輕松愉快的課堂氛圍,就更有利于學(xué)生的思考。當(dāng)學(xué)生在思維處于山重水復(fù)疑無路時(shí),教師應(yīng)適時(shí)加以啟發(fā)以讓學(xué)生的思維得到進(jìn)一步的深入,以期達(dá)到柳岸花明又一春的境界,這樣也許更好。

教師具有較強(qiáng)地把握課堂的能力,得心應(yīng)手地實(shí)施教學(xué)設(shè)想。

教師從概念入手引發(fā)性質(zhì),步步為營,有利于知識重組,形成知識體系,然后拋出例題由學(xué)生解答,學(xué)以致用。

教師首先提問學(xué)生反比例函數(shù)的定義及性質(zhì)如:圖像的位置、單調(diào)性、函數(shù)表達(dá)式的兩種表示方式(少了一種,應(yīng)有三種),由學(xué)生共同回答,當(dāng)學(xué)生無法回答出反比例函數(shù)當(dāng)k 的值互為相反數(shù)時(shí)圖像的兩支關(guān)于x軸或y軸成軸對稱(最好補(bǔ)充關(guān)于原點(diǎn)成中心對稱)時(shí),老師能給予及時(shí)的啟發(fā),讓學(xué)生的思維得以順利地進(jìn)行(啟發(fā)略嫌生澀)。接著進(jìn)入典型例題的講解,例題1兩個(gè)小題是關(guān)于反比例函數(shù)解析式的求解以及實(shí)際的應(yīng)用,其中涉及到解析式兩個(gè)解取一個(gè)的情況,另一個(gè)解是負(fù)數(shù)不合實(shí)際意義,要舍去。解析式的求法用到了待定系數(shù)法,根據(jù)過函數(shù)反比例函數(shù)圖像上任意一點(diǎn)作x軸或y軸的垂線,以垂足、該點(diǎn)和原點(diǎn)這三個(gè)點(diǎn)為頂點(diǎn)的三角形的面積的兩倍就是k絕對值。若設(shè)這一點(diǎn)的坐標(biāo)為(a,b),則k=ab。教師在講解完該題時(shí)若能及時(shí)給予歸納就有畫龍點(diǎn)睛的作用了,也更有深入淺出之意境,這樣將大大提高了學(xué)生掌握和應(yīng)用知識的能力。另外教師采用由學(xué)生到黑板析演的方式,而不是先由自己板書再讓學(xué)生做下面第二題時(shí)再讓學(xué)生板書,有暴露學(xué)生解題過程之不足之意,此種做法的效率個(gè)人以為有待于進(jìn)一步商榷。

復(fù)習(xí)舊知時(shí)由學(xué)生一人主講,讓其他學(xué)生補(bǔ)充的方式。復(fù)習(xí)完舊知時(shí),教師在不改變例題作用和降低例題使用效果的情況把三道例題結(jié)合為一道大例題,這樣能節(jié)省學(xué)生因?qū)忣}而花費(fèi)的時(shí)間,也使題目的從易到難,層層深入,步步為營,同時(shí)照顧到了全體學(xué)生,使每個(gè)學(xué)生都能學(xué)有所獲,也能讓本節(jié)課不至于太沉悶。爾后,在講解完例題后,還可留出一些時(shí)間給學(xué)生歸納反比例函數(shù)解題時(shí)所涉及的思想方法,讓數(shù)學(xué)思想方法成為學(xué)生學(xué)習(xí)數(shù)學(xué)的導(dǎo)航器。

函數(shù)的課件【篇5】

人教版 數(shù)學(xué) 八年級 上冊

第十四章

一次函數(shù)

§14.1.2 函數(shù)

案 設(shè) 計(jì) 說 明

江西省贛州市文清實(shí)驗(yàn)學(xué)校 謝志華

【教學(xué)設(shè)計(jì)說明】

這節(jié)課本著以觀察為起點(diǎn),以問題為主線,以培養(yǎng)能力為核心的宗旨;遵照教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的教學(xué)原則;遵循特殊到一般,具體到抽象,由淺入深,由易到難的認(rèn)識規(guī)律。整個(gè)教學(xué)過程突出以下構(gòu)想:(1).創(chuàng)設(shè)情境,引人入勝

首先根據(jù)學(xué)生的認(rèn)知基礎(chǔ),播放一組生活中熟悉的體現(xiàn)運(yùn)動(dòng)變化的課件視頻與圖片,激發(fā)學(xué)生的求知欲,使學(xué)生感知變量和函數(shù)的存在和意義,體會變量之間的相互依存關(guān)系和變化規(guī)律,為新課的開展創(chuàng)設(shè)良好的教學(xué)氛圍,同時(shí)培養(yǎng)學(xué)生從數(shù)學(xué)的角度觀察生活,思考問題的能力。

(2).過程凸現(xiàn),緊扣重點(diǎn)

函數(shù)概念的形成過程是本節(jié)的重點(diǎn)。所以本節(jié)突出概念形成過程的教學(xué)。首先列舉學(xué)生熟悉例子,引導(dǎo)學(xué)生從實(shí)例中觀察分析探索變量之間的規(guī)律,抽象出函數(shù)的概念。然后提出注意問題,幫助學(xué)生把握概念的本質(zhì)特征,再通過生活中的函數(shù)舉例進(jìn)一步理解函數(shù)的概念,最后引導(dǎo)學(xué)生運(yùn)用概念并及時(shí)反饋,同時(shí)在概念的形成過程中,著意培養(yǎng)學(xué)生觀察分析抽象概括的能力。引導(dǎo)學(xué)生從運(yùn)動(dòng)變化的角度看問題時(shí),向?qū)W生滲透唯物主義觀點(diǎn)的教育。(3).動(dòng)態(tài)顯現(xiàn),化難為易

本節(jié)課的難點(diǎn)是理解函數(shù)概念。教學(xué)活動(dòng)中充分利用多媒體有聲有色有動(dòng)感的畫面,使抽象的問題形象化,靜態(tài)方式的動(dòng)態(tài)化,直觀深刻地揭示函數(shù)概念的本質(zhì)。不僅叩開學(xué)生的思維之門,也打開他們的心靈之窗,使他們在欣賞享受中,在美的熏陶中主動(dòng)地輕松愉快地獲得新知。

(4).例子展現(xiàn),多方滲透

為了使抽象的概念具體化,通俗易懂,本節(jié)列舉了大量的生活中的例子和其他學(xué)科中的例子,培養(yǎng)學(xué)生的發(fā)散思維,加強(qiáng)學(xué)科間的滲透,知識間的聯(lián)系,也增強(qiáng)學(xué)生學(xué)數(shù)學(xué)的意識。

函數(shù)的課件【篇6】

函數(shù)的概念教學(xué)設(shè)計(jì)說明

一、本質(zhì)、地位、作用分析:

函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課.它上承集合,下引性質(zhì).是派生數(shù)學(xué)概念的強(qiáng)大“固著點(diǎn)”.本節(jié)在復(fù)習(xí)初中函數(shù)概念的基礎(chǔ)上,用集合和對應(yīng)的觀點(diǎn)來研究函數(shù),加深對函數(shù)概念的理解,為高中后續(xù)課程的學(xué)習(xí)打下基礎(chǔ),函數(shù)的概念將貫穿整個(gè)高中數(shù)學(xué)的始終,滲透到數(shù)學(xué)的各個(gè)領(lǐng)域。

二、教學(xué)目標(biāo)分析

我們生活的世界時(shí)刻都在發(fā)生變化,變化無處不在.這些變化著的現(xiàn)象都可以用數(shù)學(xué)有效地描述它們的變化規(guī)律.函數(shù)正是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型,通過函數(shù)模型可以幫助我們科學(xué)地預(yù)測將發(fā)生什么,進(jìn)而解決實(shí)際問題.因此,學(xué)習(xí)函數(shù)知識對研究客觀世界、掌握事物變化規(guī)律具有重要的意義.教科書采用了從實(shí)際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運(yùn)用函數(shù)模型表述、思考和解決現(xiàn)實(shí)世界中蘊(yùn)涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.本課主要是從兩集合間對應(yīng)來描繪函數(shù)的概念,是一個(gè)抽象過程,學(xué)生學(xué)習(xí)可能有所不適應(yīng).教學(xué)中宜逐步設(shè)計(jì)合理的階梯,從實(shí)際問題逐步建構(gòu)函數(shù)的初步定義,對函數(shù)的概念的研究遵循“直觀感知、抽象概括”的認(rèn)知過程展開,學(xué)生在對生活中的實(shí)例觀察感知基礎(chǔ)上,借助幫助學(xué)生總結(jié)它們的共同特征得出定義,構(gòu)建函數(shù)的一般概念,并通過辨析問題深化對定義的理解,這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。使學(xué)生更好地參與教學(xué)活動(dòng),展開思維,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.為更好地鞏固函數(shù)的概念,設(shè)置了有梯度的例題,例1的三個(gè)小題都是選擇題,第一小題重點(diǎn)考察是變量x與y是否具有函數(shù)關(guān)系,緊扣定義,驗(yàn)證定義即可;第二小題考察從集合A到集合B的函數(shù)應(yīng)該滿足什么條件,方法一可以通過定義驗(yàn)證對于集合A中的每一個(gè)元素,在集合B中是否有元素而且是唯一的元素與之相對應(yīng);另一種方法是從集合A到集合B的函數(shù),其特點(diǎn)是:A就是函數(shù) 的定義域,B包含函數(shù)的值域,值域可以變化,只要是B的子集即可。如果條件“從A到B的函數(shù)”改為“以A為定義域,以B為值域的函數(shù)”,學(xué)生應(yīng)當(dāng)注意這道題變化前后的區(qū)別,再次加深函數(shù)的概念的理解;第三個(gè)題考察函數(shù)相等的條件,了解函數(shù)的三要素是定義域、對應(yīng)關(guān)系和值域,而三者中起決定因素的是定義域和對應(yīng)關(guān)系,使學(xué)生對于函數(shù)有直觀的認(rèn)識。例2是一道解答題,考察求函數(shù)的定義域問題,函數(shù)問題首要考慮定義域,這是研究函數(shù)的值域,單調(diào)性等一些性質(zhì)的前提,所以函數(shù)的定義域顯得尤為重要,本例的意圖是讓學(xué)生總結(jié)如何求函數(shù)的定義域;例3是求函數(shù)值問題,旨在讓學(xué)生明白f(a)與f(x)的區(qū)別,真正理解函數(shù);最后設(shè)計(jì)了一道易錯(cuò)題,考察含參問題一定要注意分類討論。這四個(gè)題都是學(xué)生自己討論、自己寫出解題過程、自己講解,最后教師點(diǎn)評。

整個(gè)教學(xué)過程主要是對函數(shù)概念的探究和應(yīng)用。通過對概念的探究,不僅培養(yǎng)和提高了學(xué)生對抽象問題的感知和概括能力,而且通過對函數(shù)概念的感性認(rèn)識進(jìn)一步讓學(xué)生認(rèn)識到數(shù)學(xué)和生活密不可分,數(shù)學(xué)來源于生活并服務(wù)于生活,加深了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

三、教學(xué)問題診斷:

(1)班級學(xué)生狀況分析:

1.在學(xué)習(xí)本節(jié)課之前,學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,對函數(shù)已經(jīng)有了一些直觀的認(rèn)識;

2.學(xué)生已具有小組合作學(xué)習(xí)的經(jīng)驗(yàn),能積極參與討論,對高效課堂的學(xué)習(xí)模式已經(jīng)熟悉,但部分學(xué)生課前預(yù)習(xí)抓不住重點(diǎn),自學(xué)能力不強(qiáng);

3.少部分學(xué)生能從初中所學(xué)的函數(shù)的概念再加上生活中一些函數(shù)模型學(xué)習(xí)本課,大部分學(xué)生對于抽象的、不可觸摸的函數(shù)概念理解不透徹,不知道怎么應(yīng)用,因此我們采取對生活中常見的三類例子進(jìn)行分析,從實(shí)際例子中抽象概括出用集合與對應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運(yùn)用函數(shù)模型表述、思考和解決現(xiàn)實(shí)世界中蘊(yùn)涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識.4.學(xué)生對學(xué)習(xí)概念興趣不高,對學(xué)習(xí)抽象的函數(shù)概念有畏懼情緒,所以,學(xué)生需要受到鼓勵(lì)和安慰,增強(qiáng)學(xué)習(xí)的興趣。

(2)學(xué)情分析:

學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù),并且已經(jīng)認(rèn)識一次函數(shù)、二次函數(shù)、正比例函數(shù)和反比例函數(shù),對于函數(shù)已經(jīng)有了直觀的認(rèn)識,但對于類似“x=1”、“y=1”、?x?1x?0等一些表達(dá)式是否是函數(shù)沒有概念,無從下手,這就說明初 f(x)???x?1x?0 中所學(xué)的概念太過狹隘,這就要求我們從更高的層面再次學(xué)習(xí)函數(shù)。函數(shù)的概念從初中的變量學(xué)說到高中階段的對應(yīng)學(xué)說,顯得很抽象,不好理解,特別“對于A中的任意一個(gè)元素,B中都有唯一的元素與之相對應(yīng)”這句話的怎么理解,它有什么深刻的含義,這就要求我們用生活中同學(xué)們所熟悉的實(shí)例出發(fā),提出問題讓學(xué)生思考,解釋為什么要強(qiáng)調(diào)A中任意,B中唯一,很自然的歸納出函數(shù)的定義,并通過一些例題加深對函數(shù)概念的認(rèn)識和理解。對于函數(shù)的三要素、函數(shù)相等的條件、函數(shù)的定義域問題以及函數(shù)求值問題是對函數(shù)概念的升華,是為了加深對函數(shù)概念的理解,也是對函數(shù)概念的應(yīng)用

四、教法特點(diǎn)以及預(yù)期效果分析:

(1)教法特點(diǎn):

·情境激趣策略:根據(jù)學(xué)生的特點(diǎn),本節(jié)課借助對生活中常見的三類實(shí)例及多媒體手段,觀察思考數(shù)學(xué)在生活中的應(yīng)用,促進(jìn)思維的深層次加工和提高課堂參與度,激發(fā)學(xué)生興趣,調(diào)動(dòng)學(xué)生的積極性,使學(xué)生覺得學(xué)有所用;

·問題目標(biāo)引導(dǎo)探究策略:通過問題目標(biāo)的驅(qū)動(dòng),引導(dǎo)學(xué)生積極思考生活中的函數(shù)問題,并通過直觀感知、抽象概括一步步加深對函數(shù)概念的理解,使學(xué)習(xí)循序漸進(jìn)、由淺入深,積極地參與到猜想、探究的學(xué)習(xí)中;

·自主合作、實(shí)驗(yàn)探究式學(xué)習(xí)策略:建立小組討論、交流、合作的課堂氛圍,主張“先學(xué)后導(dǎo),問題評價(jià)”的教學(xué)思維,采用小組合作學(xué)習(xí)方式,師生共同圍繞研究這節(jié)課的主要內(nèi)容和問題進(jìn)行自主學(xué)習(xí)、合作交流,在討論的過程中使學(xué)生思維更加開放、多樣和靈活,給予學(xué)生一定的自主性和創(chuàng)造發(fā)揮的空間,使學(xué)生樂意學(xué)習(xí),主動(dòng)學(xué)習(xí)。(2)預(yù)期效果分析:

本節(jié)課借助多媒體輔助教學(xué),采用“引導(dǎo)-探究式“教學(xué)方法,整個(gè)教學(xué)過程遵循”直觀感知-歸納總結(jié)“的認(rèn)知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低對抽象問題理解的難度,同時(shí)加強(qiáng)了抽象問題具體化的培養(yǎng),注重知識產(chǎn)生的

過程性,使學(xué)生更容易的記住本節(jié)課知識??紤]到學(xué)生的實(shí)際,有意地設(shè)計(jì)了一些鋪墊和引導(dǎo),既鞏固已有知識,又為新知識提供了附著點(diǎn),充分體現(xiàn)學(xué)生的主體地位。

本節(jié)課做題過程中滲透了分類討論的數(shù)學(xué)思想方法,設(shè)計(jì)中注重對學(xué)生自己發(fā)現(xiàn)問題,自己解決問題能力的培養(yǎng),使學(xué)生學(xué)會思考、掌握方法,有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。相信通過這節(jié)課的學(xué)習(xí)會達(dá)到比較好地教學(xué)效果。

函數(shù)的課件【篇7】

1.掌握對數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用.

(1) 能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對數(shù)函數(shù)的定義,了解對底數(shù)的要求,及對定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對數(shù)函數(shù)的圖象.

(2) 能把握指數(shù)函數(shù)與對數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識對數(shù)函數(shù)的性質(zhì),初步學(xué)會用對數(shù)函數(shù)的性質(zhì)解決簡單的問題.

2.通過對數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力.

3.通過指數(shù)函數(shù)與對數(shù)函數(shù)在圖象與性質(zhì)上的對比,對學(xué)生進(jìn)行對稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性.

(1) 對數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時(shí)又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).

(2) 本節(jié)的教學(xué)重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn).

(3) 本節(jié)課的主線是對數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開.而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn).

(1) 對數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時(shí),既要考慮到對底數(shù) 的`分類討論而且對每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

(2) 在本節(jié)課中結(jié)合對數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識又教給他們思考問題的方法,獲取知識的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.

教學(xué)設(shè)計(jì)示例

1. 在指數(shù)函數(shù)及反函數(shù)概念的基礎(chǔ)上,使學(xué)生掌握對數(shù)函數(shù)的概念,能正確描繪對數(shù)函數(shù)的圖像,掌握對數(shù)函數(shù)的性質(zhì),并初步應(yīng)用性質(zhì)解決簡單問題.

2. 通過對數(shù)函數(shù)的學(xué)習(xí),樹立相互聯(lián)系,相互轉(zhuǎn)化的觀點(diǎn),滲透數(shù)形結(jié)合,分類討論的思想.

3. 通過對數(shù)函數(shù)有關(guān)性質(zhì)的研究,培養(yǎng)學(xué)生觀察,分析,歸納的思維能力,調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性.

重點(diǎn)是理解對數(shù)函數(shù)的定義,掌握圖像和性質(zhì).

難點(diǎn)是由對數(shù)函數(shù)與指數(shù)函數(shù)互為反函數(shù)的關(guān)系,利用指數(shù)函數(shù)圖像和性質(zhì)得到對數(shù)函數(shù)的圖像和性質(zhì).

今天我們一起再來研究一種常見函數(shù).前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的函數(shù)就是指數(shù)函數(shù).

由學(xué)生說出 是指數(shù)函數(shù),它是存在反函數(shù)的.并由一個(gè)學(xué)生口答求反函數(shù)的過程:

由 得 .又 的值域?yàn)? ,

所求反函數(shù)為 .

那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).

由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識是什么?

教師可提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識,從而找出對數(shù)函數(shù)的定義域?yàn)? ,對數(shù)函數(shù)的值域?yàn)? ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

在此基礎(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).

提問學(xué)生打算用什么方法來畫函數(shù)圖像?學(xué)生應(yīng)能想到利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.同時(shí)教師也應(yīng)指出用列表描點(diǎn)法也是可以的,讓學(xué)生從中選出一種,最終確定用圖像變換法畫圖.

由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

具體操作時(shí),要求學(xué)生做到:

(1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢等).

(2) 畫出直線 .

(3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對稱點(diǎn) 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

2. 草圖.

教師畫完圖后再利用投影儀將? 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:

然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)

由以上兩條可說明圖像位于 軸的右側(cè).

(3) 截距:令 得 ,即在 軸上的截距為1,與 軸無交點(diǎn)即以 軸為漸近線.

(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對稱,也不關(guān)于 軸對稱.

(5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的

當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.

之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .

學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.

最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)

對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.

例1.? 求下列函數(shù)的定義域:

先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.

(1) 與 ;????? (2) 與 ;

(3) 與 ;????????? ?(4) 與 .

讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大?。詈笞寣W(xué)生以其中一組為例寫出詳細(xì)的比較過程.

(1)??? 定義域(2)值域(3)截距(4)奇偶性(5)單調(diào)性

(1) 已知 是函數(shù) 的反函數(shù),且 都有意義.

① 求 ;

② 試比較 與4 的大小,并說明理由.

(2) .

函數(shù)的課件【篇8】

(1)開口___________;

(2)對稱軸是___________;

(3)頂點(diǎn)坐標(biāo)是___________;

(4)當(dāng)時(shí),隨的增大而___________;

當(dāng)時(shí),隨的增大而___________;

(5)函數(shù)圖象有___________點(diǎn),函數(shù)有___________值;

當(dāng)_____時(shí),取得__________值____.

問題:那二次函數(shù)的圖象會是什么樣子呢?它會有哪些性質(zhì)呢?它與的圖象有關(guān)系嗎?

Ⅱ.自主探索、小組互學(xué)、展學(xué)提升:

(2)觀察、思考并與同伴交流完成“議一議”

(3)一小組派代表展示,其它小組與老師評價(jià)、完善。

(1)作出二次函數(shù)的圖象:

議一議:

仔細(xì)觀察,用心思考,與同伴交流:

(1)二次函數(shù)的圖象是什么樣子?

(2)它的開口方向是什么?

(3)它是軸對稱圖形嗎?對稱軸是誰?

(4)它的頂點(diǎn)坐標(biāo)是什么?

(5)當(dāng)取什么值時(shí),隨的增大而增大?當(dāng)取什么值時(shí),隨的增大而減小?

(6)二次函數(shù)的圖象有最高點(diǎn)還是最低點(diǎn)?它會取得最大還是最小值?是多少?

此時(shí),等于多少?

(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點(diǎn)和不同點(diǎn)呢?它們的圖象之間有什么關(guān)系呢?

教師巡視,察看學(xué)生完成情況并適時(shí)給予指導(dǎo)。

當(dāng)學(xué)生展開討論時(shí),參與到學(xué)生的交流中啟發(fā)、點(diǎn)撥學(xué)生的思維。

學(xué)生通過上一環(huán)節(jié)的作圖、觀察、比較、歸納、交流討論等過程,已經(jīng)積累了一些方法和經(jīng)驗(yàn),所以此環(huán)節(jié)由學(xué)生自己獨(dú)立完成:

(1)作出二次函數(shù)的圖象;

(2)觀察、思考完成“想一想”

(3)一學(xué)生展示,其他同學(xué)與老師評價(jià)、完善。

問:

二次函數(shù)的圖象會是什么樣子?它與二次函數(shù)的圖象有哪些相同點(diǎn)和不同點(diǎn)呢?它們的圖象之間有什么關(guān)系呢?它圖象的開口方向、對稱軸、頂點(diǎn)坐標(biāo)是什么?它的增減性、最值是什么情況呢?請你先猜一猜,然后做出它的圖象觀察思考,你猜的對嗎?

(1)作出二次函數(shù)的圖象:

(1)二次函數(shù)的圖象是什么樣子?

(2)它的開口方向是什么?

(3)它是軸對稱圖形嗎?對稱軸是誰?

(4)它的頂點(diǎn)坐標(biāo)是什么?

(5)當(dāng)取什么值時(shí),隨的增大而增大?當(dāng)取什么值時(shí),隨的增大而減小?

(6)二次函數(shù)的圖象有最高點(diǎn)還是最低點(diǎn)?它會取得最大還是最小值?是多少?

此時(shí),等于多少?

(7)二次函數(shù)與二次函數(shù)的圖象有哪些相同點(diǎn)和不同點(diǎn)呢?它們的圖象之間有什么關(guān)系呢?

教師巡視,察看學(xué)生解決問題情況并適時(shí)指導(dǎo).之后請學(xué)生展示,師生共同評價(jià)完善.

Ⅳ.自主探索、小組互學(xué)、展學(xué)提升:

學(xué)生在前面作圖、觀察、思考、交流討論的基礎(chǔ)上,完成“猜一猜”,然后師生共同利用計(jì)算機(jī)進(jìn)行驗(yàn)證。最后,學(xué)生在交流討論的基礎(chǔ)上總結(jié)二此函數(shù)的性質(zhì)。

猜一猜:

(1)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).

(2)二次函數(shù)的圖象是什么樣子呢?二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?請你描述一下二次函數(shù)的性質(zhì).

議一議:

(1)二次函數(shù)的圖象與二次函數(shù)的圖象有什么關(guān)系?

(2)二次函數(shù)的性質(zhì):

函數(shù)的課件【篇9】

2.函數(shù)f(x)=(a2-1)x在R上是減函數(shù),則a的取值范圍是( )

4.已知ab,ab 下列不等式(1)a2b2,(2)2a2b,(3) ,(4)a b ,(5)( )a( )b

(C)y= (D)y=

8.若函數(shù)y=32x-1的反函數(shù)的圖像經(jīng)過P點(diǎn),則P點(diǎn)坐標(biāo)是( )

(A)(2,5) (B)(1,3) (C)(5,2) (D)(3,1)

10.已知函數(shù)f(x)=ax+k,它的.圖像經(jīng)過點(diǎn)(1,7),又知其反函數(shù)的圖像經(jīng)過點(diǎn)(4,0),則函數(shù)f(x)的表達(dá)式是( )

(A)f(x)=2x+5 (B)f(x)=5x+3 (C)f(x)=3x+4 (D)f(x)=4x+3

11.已知01,b-1,則函數(shù)y=ax+b的圖像必定不經(jīng)過( )

12.一批設(shè)備價(jià)值a萬元,由于使用磨損,每年比上一年價(jià)值降低b%,則n年后這批設(shè)備的價(jià)值為( )

(A)na(1-b%) (B)a(1-nb%) (C)a[(1-(b%))n (D)a(1-b%)n

13.若a a ,則a的取值范圍是 。

14.若10x=3,10y=4,則10x-y= 。

15.化簡= 。

18.(12分)若 ,求 的值.

19.(12分)設(shè)01,解關(guān)于x的不等式a a .

20.(12分)已知x [-3,2],求f(x)= 的最小值與最大值。

21.(12分)已知函數(shù)y=( ) ,求其單調(diào)區(qū)間及值域。

22.(14分)若函數(shù) 的值域?yàn)?,試確定 的取值范圍。

題號 11 12 13 14 15 16 17 18 19 20

4.(- ,0) (0,1) (1,+ ) ,聯(lián)立解得x 0,且x 1。

5.[( )9,39] 令U=-2x2-8x+1=-2(x+2)2+9,∵ -3 ,又∵y=( )U為減函數(shù),( )9 y 39。 6。D、C、B、A。

令y=3U,U=2-3x2, ∵y=3U為增函數(shù),y=3 的單調(diào)遞減區(qū)間為[0,+ )。

8.0 f(125)=f(53)=f(522-1)=2-2=0。

9. 或3。

Y=m2x+2mx-1=(mx+1)2-2, ∵它在區(qū)間[-1,1]上的最大值是14,(m-1+1)2-2=14或(m+1)2-2=14,解得m= 或3。

11.∵ g(x)是一次函數(shù),可設(shè)g(x)=kx+b(k 0), ∵F(x)=f[g(x)]=2kx+b。由已知有F(2)= ,F(xiàn)( )=2, , k=- ,b= ,f(x)=2-

1.∵02, y=ax在(- ,+ )上為減函數(shù),∵ a a , 2x2-3x+1x2+2x-5,解得23,

2.g[g(x)]=4 =4 =2 ,f[g(x)]=4 =2 ,∵g[g(x)]g[f(x)]f[g(x)], 2 2 ,22x+122x, 2x+12x,解得01

3.f(x)= , ∵x [-3,2],.則當(dāng)2-x= ,即x=1時(shí),f(x)有最小值 ;當(dāng)2-x=8,即x=-3時(shí),f(x)有最大值57。

4.要使f(x)為奇函數(shù),∵ x R,需f(x)+f(-x)=0, f(x)=a- =a- ,由a- =0,得2a- =0,得2a- 。

5.令y=( )U,U=x2+2x+5,則y是關(guān)于U的減函數(shù),而U是(- ,-1)上的減函數(shù),[-1,+ ]上的增函數(shù), y=( ) 在(- ,-1)上是增函數(shù),而在[-1,+ ]上是減函數(shù),又∵U=x2+2x+5=(x+1)2+4 4, y=( ) 的值域?yàn)椋?,( )4)]。

由函數(shù)y=2x的單調(diào)性可得x 。

7.(2x)2+a(2x)+a+1=0有實(shí)根,∵ 2x0,相當(dāng)于t2+at+a+1=0有正根,

8.(1)∵定義域?yàn)閤 ,且f(-x)= 是奇函數(shù);

(2)f(x)= 即f(x)的值域?yàn)椋?1,1);

(3)設(shè)x1,x2 ,且x1x2,f(x1)-f(x2)= (∵分母大于零,且a a ) f(x)是R上的增函數(shù)。

相關(guān)推薦

  • 一次函數(shù)課件教案精選 編輯花費(fèi)一定時(shí)間整理出了《一次函數(shù)課件教案》的內(nèi)容。無論是哪位老師,都需要耗費(fèi)精力編寫教案和課件,為的是能夠上好課。因此,每一位老師都會花費(fèi)時(shí)間和心思完善自己的教案和課件,目的是為了更好地授課。詳細(xì)而系統(tǒng)的教案有助于對授課內(nèi)容進(jìn)行深入的規(guī)劃和設(shè)計(jì)。我們希望這些整理好的教案能對各位老師提供一些有用的幫...
    2023-05-16 閱讀全文
  • 二次函數(shù)課件經(jīng)典 優(yōu)秀的人總是會提前做好準(zhǔn)備,在學(xué)習(xí)工作中,幼兒園教師有提前準(zhǔn)備可能會使用到資料的習(xí)慣。資料的意義非常的廣泛,可以指需要查到某樣?xùn)|西所需要的素材。參考資料有利于我們完成相應(yīng)的學(xué)習(xí)工作目標(biāo)。所以,你是否知曉幼師資料到底是怎樣的形式呢?根據(jù)你的需要,小編精心整理了二次函數(shù)課件經(jīng)典,我們后續(xù)還將不斷提供這方...
    2023-07-03 閱讀全文
  • 二次函數(shù)的課件八篇 幼兒教師教育網(wǎng)小編為您尋找到了這篇重量級的“二次函數(shù)的課件”文章。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。?教案課件要敲定教學(xué)內(nèi)容,也要注重梳理難點(diǎn)。感謝大家?guī)椭窒磉@份資料讓大家能夠更好地學(xué)習(xí)和成長!...
    2024-04-28 閱讀全文
  • 高一函數(shù)課件 這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。...
    2023-07-03 閱讀全文
  • 函數(shù)課件 在教學(xué)過程中,教案課件起著至關(guān)重要的作用,并且每位老師都需要每天撰寫自己的教案課件。教案課件是提高學(xué)生思維能力的有效途徑。為了幫助大家更好地工作和學(xué)習(xí),幼兒教師教育網(wǎng)今天為大家準(zhǔn)備了一篇精選文章,講述的是“函數(shù)課件”。希望這篇文章能夠?qū)δ趯?shí)際工作和學(xué)習(xí)中提供一些參考。如果您需要具體的實(shí)現(xiàn)方案,請與...
    2023-10-22 閱讀全文

編輯花費(fèi)一定時(shí)間整理出了《一次函數(shù)課件教案》的內(nèi)容。無論是哪位老師,都需要耗費(fèi)精力編寫教案和課件,為的是能夠上好課。因此,每一位老師都會花費(fèi)時(shí)間和心思完善自己的教案和課件,目的是為了更好地授課。詳細(xì)而系統(tǒng)的教案有助于對授課內(nèi)容進(jìn)行深入的規(guī)劃和設(shè)計(jì)。我們希望這些整理好的教案能對各位老師提供一些有用的幫...

2023-05-16 閱讀全文

優(yōu)秀的人總是會提前做好準(zhǔn)備,在學(xué)習(xí)工作中,幼兒園教師有提前準(zhǔn)備可能會使用到資料的習(xí)慣。資料的意義非常的廣泛,可以指需要查到某樣?xùn)|西所需要的素材。參考資料有利于我們完成相應(yīng)的學(xué)習(xí)工作目標(biāo)。所以,你是否知曉幼師資料到底是怎樣的形式呢?根據(jù)你的需要,小編精心整理了二次函數(shù)課件經(jīng)典,我們后續(xù)還將不斷提供這方...

2023-07-03 閱讀全文

幼兒教師教育網(wǎng)小編為您尋找到了這篇重量級的“二次函數(shù)的課件”文章。老師會對課本中的主要教學(xué)內(nèi)容整理到教案課件中,所以老師寫教案可不能隨便對待。?教案課件要敲定教學(xué)內(nèi)容,也要注重梳理難點(diǎn)。感謝大家?guī)椭窒磉@份資料讓大家能夠更好地學(xué)習(xí)和成長!...

2024-04-28 閱讀全文

這篇“高一函數(shù)課件”是幼兒教師教育網(wǎng)小編精心制作的,希望您能夠喜歡它,并從中獲得幫助。教案和課件是每位教師為上課準(zhǔn)備的必要材料,但它們并非隨隨便便就能寫好。只有寫好教案,才能打造出完整的課堂教學(xué)。...

2023-07-03 閱讀全文

在教學(xué)過程中,教案課件起著至關(guān)重要的作用,并且每位老師都需要每天撰寫自己的教案課件。教案課件是提高學(xué)生思維能力的有效途徑。為了幫助大家更好地工作和學(xué)習(xí),幼兒教師教育網(wǎng)今天為大家準(zhǔn)備了一篇精選文章,講述的是“函數(shù)課件”。希望這篇文章能夠?qū)δ趯?shí)際工作和學(xué)習(xí)中提供一些參考。如果您需要具體的實(shí)現(xiàn)方案,請與...

2023-10-22 閱讀全文