幼兒教師教育網(wǎng),為您提供優(yōu)質(zhì)的幼兒相關(guān)資訊

勾股定理的課件

發(fā)布時(shí)間:2024-08-08 勾股定理課件

勾股定理的課件范文。

幼兒教師教育網(wǎng)為您精心準(zhǔn)備了“勾股定理的課件”的相關(guān)資料敬請(qǐng)查收。教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,每位老師應(yīng)該設(shè)計(jì)好自己的教案課件。寫好教案課件,可以避免老師遺漏重點(diǎn)內(nèi)容。本文或許能幫你解答疑問希望你喜歡!

勾股定理的課件 篇1

1、讓學(xué)生通過對(duì)的圖形創(chuàng)造、觀察、思考、猜想、驗(yàn)證等過程,體會(huì)勾股定理的產(chǎn)生過程。

2、通過介紹我國(guó)古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學(xué)生為祖國(guó)的復(fù)興努力學(xué)習(xí)。

3、培養(yǎng)學(xué)生數(shù)學(xué)發(fā)現(xiàn)、數(shù)學(xué)分析和數(shù)學(xué)推理證明的能力。

四個(gè)全等的直角三角形、方格紙、固體膠。

教師:很多同學(xué)都喜歡在紙上涂涂畫畫,今天想請(qǐng)大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長(zhǎng)為1的方格紙上任意畫一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

(2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫法,最后班級(jí)展示。

1、請(qǐng)求出三個(gè)正方形的面積,再說說這些面積之間具有怎樣的數(shù)量關(guān)系?

2、圖中所畫的直角三角形的邊長(zhǎng)分別是多少?請(qǐng)根據(jù)面積之間的關(guān)系寫出邊長(zhǎng)之間存在的數(shù)量關(guān)系。

3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請(qǐng)寫下自己的推理過程。

學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫出相應(yīng)的證明過程,再在組內(nèi)交流算法,最后在班級(jí)展示。

1、在Rt△ABC中,∠C=900,∠A,∠B,∠C的對(duì)邊分別為a,b,c。

已知a=6,b=8、求c。

已知c=25,b=15、求a。

已知c=9,a=3、求b(結(jié)果保留根號(hào))。

學(xué)生活動(dòng):先獨(dú)立完成問題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問題。

教師:說說自己這節(jié)課有哪些收獲?請(qǐng)從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

勾股定理的課件 篇2

一、利用勾股定理進(jìn)行計(jì)算

1.求面積

例1:如圖1,在等腰△ABC中,腰長(zhǎng)AB=10cm,底BC=16cm,試求這個(gè)三角形面積。

析解:若能求出這個(gè)等腰三角形底邊上的高,就可以求出這個(gè)三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時(shí)D也為底邊的中點(diǎn),這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個(gè)三角形面積為×BC×AD=×16×6=48cm2。

2.求邊長(zhǎng)

例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長(zhǎng)。

析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點(diǎn)B作BD⊥AC,交AC的延長(zhǎng)線于D點(diǎn),構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因?yàn)椤螦CB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

點(diǎn)評(píng):這兩道題有一個(gè)共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來(lái)解決問題的,這種解決問題的方法里蘊(yùn)含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請(qǐng)同學(xué)們要留心。

二、利用勾股定理的逆定理判斷直角三角形

例3:已知a,b,c為△ABC的三邊長(zhǎng),且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

析解:由于所給條件是關(guān)于a,b,c的一個(gè)等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因?yàn)閍2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因?yàn)?a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因?yàn)?2+122=132,所以a2+b2=c2,即△ABC是直角三角形。

點(diǎn)評(píng):用代數(shù)方法來(lái)研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

三、利用勾股定理說明線段平方和、差之間的關(guān)系

例4:如圖3,在△ABC中,∠C=90?,D是AC的中點(diǎn),DE⊥AB于E點(diǎn),試說明:BC2=BE2-AE2。

析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來(lái)解決。因?yàn)椤螩=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點(diǎn),所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

點(diǎn)評(píng):若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時(shí),則可考慮構(gòu)造直角三角形,利用勾股定理來(lái)解決問題。

勾股定理的課件 篇3

《勾股定理》是人教版教材八年級(jí)數(shù)學(xué)(下)的內(nèi)容,第一課時(shí)的教學(xué)重點(diǎn)是讓學(xué)生經(jīng)歷勾股定理的探索和證明過程,了解勾股定理的背景知識(shí),在學(xué)習(xí)知識(shí)的同時(shí),感受勾股定理的豐富文化內(nèi)涵,激發(fā)學(xué)生的學(xué)習(xí)興趣,對(duì)學(xué)生進(jìn)行思想品德教育。

針對(duì)教材的任務(wù)要求,我是按照如下的教學(xué)流程進(jìn)行的:

通過欣賞在我國(guó)北京召開的國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽?qǐng)D案,引出“趙爽弦圖”,讓學(xué)生了解我國(guó)古代輝煌的數(shù)學(xué)成就,引入課題。

接下來(lái),讓學(xué)生欣賞傳說故事:相傳25前,畢達(dá)格拉斯在朋友家做客時(shí),發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。通過故事使學(xué)生明白:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。

這樣,一方面激發(fā)學(xué)生的求知欲望,另一方面,也對(duì)學(xué)生進(jìn)行了學(xué)習(xí)方法指導(dǎo)和解決問題能力的培養(yǎng)。

通過對(duì)地板圖形中的等腰直角三角形三邊關(guān)系到一般直角三角形中三邊關(guān)系的探究,讓同學(xué)們體驗(yàn)由特殊到一般的探究過程,學(xué)習(xí)這種研究方法。

在這一過程中,學(xué)生充分利用學(xué)具去嘗試解決,力求讓學(xué)生自己探索,先在小組內(nèi)討論,然后在全班討論,盡量學(xué)習(xí)更多的方法。

先了解趙爽的證明思路,然后讓學(xué)生利用學(xué)具自己動(dòng)手剪拼,并利用圖形進(jìn)行證明。

由于難度比較大,組織學(xué)生開展小組合作學(xué)習(xí)。教師要巡回輔導(dǎo),給予學(xué)生必要的幫助。

1.主要練習(xí)勾股定理的其它證明方法。

本節(jié)課上,對(duì)教材中的探究?jī)?nèi)容,不但制作了多媒體課件,還讓每個(gè)學(xué)生都準(zhǔn)備了探究圖形和拼圖紙板。在課堂上,學(xué)生通過自己嘗試探究、小組交流合作、集中成果展示等多種形式參與課堂活動(dòng),學(xué)生普遍參與,學(xué)習(xí)興趣深厚,參與活動(dòng)的積極性很高,小組分工合作任務(wù)明確,課堂效果很好。學(xué)生在掌握了知識(shí)的同時(shí),由于真正經(jīng)歷了探究的整個(gè)過程,對(duì)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng)理解頗深,并學(xué)到了一些新的探究方法,在思想上也受到了教育和啟迪。課堂教學(xué)目標(biāo)順利完成,整個(gè)課堂絲毫沒有那種“熟課”學(xué)生不想上的痕跡。

2.學(xué)生用不同方法得出結(jié)論后,我又展示了如下習(xí)題對(duì)學(xué)生進(jìn)行鞏固訓(xùn)練:

(1)在△ABC中,∠C=90°。若a=6,b=8,則 c= 。

(2)在△ABC中,∠C=90°。若c=13,b=12,則 a= 。

(3)若直角三角形中,有兩邊長(zhǎng)是3和4,則第三 邊長(zhǎng)的平方為( )

3.之后又補(bǔ)充了如下稍難的題目進(jìn)行拓展:

某樓發(fā)生火災(zāi),消防車立即趕到距大樓6米的地方搭建云梯,升起云梯到達(dá)火災(zāi)窗口。已知云梯長(zhǎng)10米,問發(fā)生火災(zāi)的窗口距離地面多高?(不計(jì)消防車的高度)

通過這幾道題目的訓(xùn)練學(xué)生已經(jīng)基本掌握了勾股定理。

一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識(shí)和方法)。

二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。

通過本節(jié)課的教學(xué),讓我更深刻地認(rèn)識(shí)到:

1.新課改理念只有全面滲透到教育教學(xué)工作中,與平時(shí)工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;

2.教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識(shí)目標(biāo)與要求,就知識(shí)“教”知識(shí),而要通過知識(shí)的學(xué)習(xí)獲得學(xué)習(xí)這些知識(shí)的方法,同時(shí),還要充分利用課堂對(duì)學(xué)生進(jìn)行情感態(tài)度價(jià)值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;

3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)。我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來(lái)目標(biāo),而且也一定能讓學(xué)生“考出”好的成績(jī)。

勾股定理的課件 篇4

教師:很多同學(xué)都喜歡在紙上涂涂畫畫,今天想請(qǐng)大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長(zhǎng)為1的方格紙上任意畫一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形。

(2)再分別以這個(gè)三角形的三邊向三角形外作3個(gè)正方形。

學(xué)生活動(dòng):先獨(dú)立完成,再在小組內(nèi)互相交流畫法,最后班級(jí)展示。

1、請(qǐng)求出三個(gè)正方形的面積,再說說這些面積之間具有怎樣的數(shù)量關(guān)系?

2、圖中所畫的直角三角形的邊長(zhǎng)分別是多少?請(qǐng)根據(jù)面積之間的關(guān)系寫出邊長(zhǎng)之間存在的數(shù)量關(guān)系。

3、與小組成員交流探究結(jié)果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數(shù)量關(guān)系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關(guān)系的方法叫做什么方法?

學(xué)生活動(dòng):先獨(dú)立思考,再在小組內(nèi)互相交流探究結(jié)果,并猜想直角三角形的三邊關(guān)系,最后班級(jí)展示。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請(qǐng)寫下自己的推理過程。

學(xué)生活動(dòng):獨(dú)立拼圖,并思考如何利用圖形寫出相應(yīng)的證明過程,再在組內(nèi)交流算法,最后在班級(jí)展示。

1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對(duì)邊分別為a,b,c

已知a=6,b=8.求c.

已知c=25,b=15.求a .

學(xué)生活動(dòng):先獨(dú)立完成問題,再組內(nèi)交流解題心得,最后上臺(tái)展示,其他小組幫助解決問題。

教師:說說自己這節(jié)課有哪些收獲?請(qǐng)從數(shù)學(xué)知識(shí)、數(shù)學(xué)方法、數(shù)學(xué)運(yùn)用等方向進(jìn)行總結(jié)。

(1)在邊長(zhǎng)為1的方格紙上任意畫一個(gè)頂點(diǎn)都在格點(diǎn)上的直角三角形;

(2)再分別以這個(gè)三角形的三邊為直徑向三角形外作三個(gè)半圓,這三個(gè)半圓的面積之間有什么關(guān)系?看看又會(huì)有什么新的數(shù)學(xué)發(fā)現(xiàn)?

勾股定理的課件 篇5

一、教材分析

教材所處的地位與作用

“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容。“勾股定理”是安排在學(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

二、教學(xué)目標(biāo)

綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

1、知識(shí)目標(biāo)

知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。

掌握勾股定理,通過動(dòng)手操作利用等積法理解勾股定理的證明過程。

2、能力目標(biāo)

在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

3、情感目標(biāo)

通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國(guó)情感。

三、教學(xué)重難點(diǎn)

本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

四、教學(xué)問題診斷

本節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說,有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

五、教法與學(xué)法分析

[教學(xué)方法與手段]針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

[學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

六、教學(xué)流程設(shè)計(jì)

1、創(chuàng)設(shè)情境,引入新課

本節(jié)課開始利用多媒體介紹了在北京召開的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué)生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

2、觀察發(fā)現(xiàn),類比猜想

讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對(duì)此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。

3、實(shí)驗(yàn)探究,證明結(jié)論

因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

4、練兵之際

這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

5、自己動(dòng)手,拼出弦圖

讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們?cè)跀?shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

6、總結(jié)反思

通過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

七、設(shè)計(jì)說明

1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

勾股定理的課件 篇6

(2)學(xué)會(huì)利用勾股定理進(jìn)行計(jì)算、證明與作圖;

(3)了解有關(guān)勾股定理的歷史。

2、能力目標(biāo):

(1)在定理的證明中培養(yǎng)學(xué)生的拼圖能力;

3、情感目標(biāo):

(1)通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;

(2)通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

教學(xué)難點(diǎn):通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

直角三角形的三邊關(guān)系,除了滿足一般關(guān)系外,還有另外的特殊關(guān)系嗎?

讓學(xué)生用文字語(yǔ)言將上述問題表述出來(lái)。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

強(qiáng)調(diào)說明:

學(xué)習(xí)完一個(gè)重要知識(shí)點(diǎn),給學(xué)生留有一定的.時(shí)間和機(jī)會(huì),提出問題,然后大家共同分析討論.

方法一:將四個(gè)全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個(gè)全等的直角三角形拼成如圖2所示的正方形。

方法三:“總統(tǒng)”法、如圖所示將兩個(gè)直角三角形拼成直角梯形。

勾股定理的課件 篇7

1.已知一個(gè)直角三角形的兩邊長(zhǎng)分別為3和4,則第三邊長(zhǎng)的平方是( )

3.(遼寧大連中考)如圖,在△ABC中,C=90,AC=2,點(diǎn)D在BC 上,ADC=

A. B. C. D.

5.如圖,在 中, , , ,點(diǎn) , 在 上,且 ,

6.如圖,一圓柱高 ,底面半徑為 ,一只螞蟻從點(diǎn) 爬到點(diǎn) 處吃食,要爬行的

A. B. C. D.

9.(2015黑龍江龍東中考)在△ABC中,AB=AC=5,BC=8,點(diǎn)P是BC邊上的動(dòng)點(diǎn),過點(diǎn)P作PDAB于點(diǎn)D,PEAC于點(diǎn)E ,則PD+PE的長(zhǎng)是( )

10.(2015 山東淄博中考)如圖,在Rt△ABC中,BAC=90,ABC的平分線BD交AC于點(diǎn)D,DE垂直平分BC,點(diǎn)E是垂足,已知DC=5,AD=3,則圖中長(zhǎng)為4的線段有( )

11.(甘肅臨夏中考)在等腰三角形 中, , ,則 邊上的高是 .

12.在 中, , , ,以 為一邊作等腰直角三角形 ,使 ,連結(jié) ,則線段 的長(zhǎng)為___________.

13.一個(gè)三角形的三邊長(zhǎng)分別為9、12、15,那么兩個(gè)這樣的三角形拼成的四邊形的面積

為__________.

14.如果一梯子底端離建筑物9 m遠(yuǎn),那么15 m長(zhǎng)的梯子可達(dá)到建筑物的高度是_______m.

15.下列四組數(shù):①5,12,13;②7,24,25;③ , , ;④ , , .其中可以構(gòu)成直角三角形的有________.(把所有你認(rèn)為正確的序號(hào)都寫上)

16.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長(zhǎng)為 ,則正方形 , , , 的面積之和為___________ .

17.如圖,學(xué)校有一塊長(zhǎng)方形花圃,有極少數(shù)人為了避開拐角走捷徑,在花圃內(nèi)走出了一條路,他們僅僅少走了________步路(假設(shè)2步為 ),卻踩傷了花草.

18.(2015湖北黃岡中考)在△ABC中,AB=13 cm,AC=20 cm,BC邊上的高為12 cm,則△ABC的`面積為 .

19.(6分)若 的三邊滿足下列條件,判斷 是不是直角三角形,并說明哪個(gè)角是直角.

(1) , , ;

(2) , , .

20.(6分)若三角形的三個(gè)內(nèi)角的比是 ,最短邊長(zhǎng)為1,最長(zhǎng)邊長(zhǎng)為2.

(2)另外一條邊長(zhǎng)的平方.

21.(6分)如圖,有一個(gè)小朋友拿著一根竹竿要通過一個(gè)長(zhǎng)方形的門,如果把竹竿豎放,

則比門高出1米,如果斜放,則恰好等于門的對(duì)角線的長(zhǎng).已知門寬4米,請(qǐng)你求出竹竿

的長(zhǎng)與門的高.

22.(7分)如圖,將 放在每個(gè)小正方形的邊長(zhǎng)為1的網(wǎng)格中,點(diǎn) , , 均落在

格點(diǎn)上.

(1)計(jì)算 的值等于 ;

(2)請(qǐng)?jiān)谌鐖D所示的網(wǎng)格中,用無(wú)刻度的直尺,畫出一個(gè)以 為一邊的矩形,使矩形

的面積等于 ,并簡(jiǎn)要說明畫圖方法(不要求證明).

, ,

請(qǐng)你結(jié)合該表格及相關(guān)知識(shí),求 , 的值.

24.(7分)如圖,折疊長(zhǎng)方形的一邊 ,使點(diǎn) 落在 邊上的點(diǎn) 處, , .求:(1) 的長(zhǎng);(2) 的長(zhǎng).

發(fā),沿長(zhǎng)方體表面爬到點(diǎn) ,求螞蟻怎樣走最短,最短路程是多少?

勾股定理的課件 篇8

教學(xué)目標(biāo):

一知識(shí)技能

1.理解勾股定理的逆定理的證明方法和證明過程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是直角三角形;

二數(shù)學(xué)思考

1.通過勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生發(fā)展與形成的過程;

2.通過三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)形結(jié)合法的應(yīng)用.

三解決問題

通過勾股定理的逆定理的證明及其應(yīng)用,體會(huì)數(shù)形結(jié)合法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題.

四情感態(tài)度

1.通過三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一關(guān)系;

2.在探究勾股定理的逆定理的證明及應(yīng)用的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流合作的意識(shí)和探究精神.

教學(xué)重難點(diǎn):

一重點(diǎn):勾股定理的逆定理及其應(yīng)用.

二難點(diǎn):勾股定理的逆定理的證明.

教學(xué)方法

啟發(fā)引導(dǎo)分組討論合作交流等。

教學(xué)媒體

多媒體課件演示。

教學(xué)過程:

一復(fù)習(xí)孕新,引入課題

問題:

(1) 勾股定理的內(nèi)容是什么?

(2) 求以線段ab為直角邊的直角三角形的斜邊c的長(zhǎng):

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分別以上述abc為邊的三角形的形狀會(huì)是什么樣的呢?

二動(dòng)手實(shí)踐,檢驗(yàn)推測(cè)

1.把準(zhǔn)備好的一根打了13個(gè)等距離結(jié)的繩子,按3個(gè)結(jié)4個(gè)結(jié)5個(gè)結(jié)的長(zhǎng)度為邊擺放成一個(gè)三角形,請(qǐng)觀察并說出此三角形的形狀?

學(xué)生分組活動(dòng),動(dòng)手操作,并在組內(nèi)進(jìn)行交流討論的基礎(chǔ)上,作出實(shí)踐性預(yù)測(cè).

教師深入小組參與活動(dòng),并幫助指導(dǎo)部分學(xué)生完成任務(wù),得出勾股定理的逆命題.在此基礎(chǔ)上,介紹:古埃及和我國(guó)古代大禹治水都是用這種方法來(lái)確定直角的.

2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個(gè)三角形,請(qǐng)觀察并說出此三角形的形狀?

3.結(jié)合三角形三邊長(zhǎng)度的平方關(guān)系,你能猜一猜三角形的三邊長(zhǎng)度與三角形的形狀之間有怎樣的關(guān)系嗎?

三探索歸納,證明猜想

問題

1.三邊長(zhǎng)度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?

2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長(zhǎng)的三角形是直角三角形嗎?

3.如圖18.2-2,若△ABC的三邊長(zhǎng)

滿足

,試證明△ABC是直角三角形,請(qǐng)簡(jiǎn)要地寫出證明過程.

教師提出問題,并適時(shí)誘導(dǎo),指導(dǎo)學(xué)生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

四嘗試運(yùn)用,熟悉定理

問題

1例1:判斷由線段

組成的三角形是不是直角三角形:

(1)

(2)

2三角形的兩邊長(zhǎng)分別為3和4,要使這個(gè)三角形是直角三角形,則第三條邊長(zhǎng)是多少?

教師巡視,了解學(xué)生對(duì)知識(shí)的掌握情況.

特別關(guān)注學(xué)生在練習(xí)中反映出的問題,有針對(duì)性地講解,學(xué)生能否熟練地應(yīng)用勾股定理的逆定理去分析和解決問題

五類比模仿,鞏固新知

1.練習(xí):練習(xí)題13.

2.思考:習(xí)題18.2第5題.

部分學(xué)生演板,剩余學(xué)生在課堂練習(xí)本上獨(dú)立完成.

小結(jié)梳理,內(nèi)化新知

六1.小結(jié):教師引導(dǎo)學(xué)生回憶本節(jié)課所學(xué)的知識(shí).

2.作業(yè):

(1)必做題:習(xí)題18.2第1題(2)(4)和第3題;

(2)選做題:習(xí)題18.2第46題.

yjs21.cOm更多幼兒園教案編輯推薦

勾股定理課件教案12篇


所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫教案和課件時(shí),老師們尤其需要注意確保教學(xué)重點(diǎn)不會(huì)被忽略。是否也曾有過編寫教案和課件時(shí)的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠?yàn)槟峁└嗟膸椭?/p>

勾股定理課件教案【篇1】

尊敬的各位領(lǐng)導(dǎo)、各位老師,大家好:

我叫李朝紅,是第十四中學(xué)的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標(biāo)實(shí)驗(yàn)版教科書數(shù)學(xué)八年級(jí)下冊(cè)第十八章第二節(jié),本節(jié)課共分兩個(gè)課時(shí),我今天分析的是第一個(gè)課時(shí),下面我將從教材、教法學(xué)法、教學(xué)過程、教學(xué)反思四個(gè)方面進(jìn)行闡述。

一、教材分析

1、教材的地位和作用:

在學(xué)習(xí)本節(jié)課之前學(xué)生已經(jīng)學(xué)習(xí)了勾股定理,全等三角形的判定等相關(guān)知識(shí),為本節(jié)課的學(xué)習(xí)打好了基礎(chǔ),學(xué)習(xí)好本節(jié)課不但可以鞏固學(xué)生已有的知識(shí),而且為后面利用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形等相關(guān)知識(shí)的學(xué)習(xí)做好了鋪墊。

2、教學(xué)目標(biāo)

教學(xué)目標(biāo)支配著教學(xué)過程,教學(xué)目標(biāo)的制定和落實(shí)是實(shí)施課堂教學(xué)的關(guān)鍵??紤]到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及本班學(xué)生的實(shí)際情況,我制定了如下教學(xué)目標(biāo)

知識(shí)與技能:掌握勾股定理的逆定理,會(huì)用勾股定理的逆定理判斷一個(gè)三角形是否直角三角形。

過程與方法:通過對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成

過程,體會(huì)數(shù)形結(jié)合和由特殊到一般的數(shù)學(xué)思想,進(jìn)一步提高學(xué)生分析問題、解決問題的能力。

情感、態(tài)度、價(jià)值觀:在探究勾股定理的逆定理的活動(dòng)中,滲透與他人交流、合作的意識(shí)和探究精神.

3、重點(diǎn)難點(diǎn)

本著課程標(biāo)準(zhǔn),在吃透教材的基礎(chǔ)上,我確立了如下的教學(xué)重、難點(diǎn)

重點(diǎn):理解并掌握勾股定理的逆定理,并會(huì)應(yīng)用。

難點(diǎn):理解勾股定理的逆定理的推導(dǎo)。

二、教法學(xué)法分析

八年級(jí)學(xué)生的特點(diǎn)是思維比較活躍,喜歡發(fā)表自己的見解,善于進(jìn)行小組合作學(xué)習(xí),所以我將采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)相結(jié)合的方法,老師為主導(dǎo),學(xué)生為主體,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,讓學(xué)生動(dòng)手操作,動(dòng)腦思考,動(dòng)口表達(dá),積極參與到本節(jié)課的教學(xué)過程中來(lái),在鍛煉學(xué)生思考、觀察、實(shí)踐能力的同時(shí),使其科學(xué)文化修養(yǎng)與思想道德修養(yǎng)進(jìn)一步提升。

教法學(xué)法分析完畢,我再來(lái)分析一下教學(xué)過程,這是我本次說課的重點(diǎn)。

三、教學(xué)過程分析:

(一)創(chuàng)設(shè)情景,引入新課

1、展示圖片:古埃及人制作直角的方法

2、讓學(xué)生試一試用一根繩子確定直角

設(shè)計(jì)意圖:通過古埃及人制作直角的方法,提出讓學(xué)生動(dòng)手操作,進(jìn)而使學(xué)生產(chǎn)生好奇心:“這樣就能確定直角嗎”,激發(fā)學(xué)生的求知欲,點(diǎn)燃其學(xué)習(xí)的激情,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性 ,同時(shí)也使學(xué)生感受到幾何來(lái)源于生活,服務(wù)于生活的道理,體會(huì)數(shù)學(xué)的價(jià)值。

(二)動(dòng)手檢測(cè),提出假設(shè)

在本環(huán)節(jié)中通過情境中的問題,引導(dǎo)學(xué)生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

上面三組線段為邊畫出三角形,猜測(cè)驗(yàn)證出其形狀。

再引導(dǎo)啟發(fā)誘導(dǎo)學(xué)生從上面的活動(dòng)中歸納思考:如果一個(gè)三角形的三邊a,b,c滿足a2+b2=c2,那這個(gè)三角形是直角三角形嗎?在整個(gè)過程的活動(dòng)中,盡量給學(xué)生足夠的時(shí)間和空間,以平等身份參與到學(xué)生活動(dòng)中來(lái),對(duì)其實(shí)踐活動(dòng)予以指導(dǎo)。讓學(xué)生通過作圖、測(cè)量等實(shí)踐活動(dòng),給出合理的假設(shè)與猜測(cè)。整個(gè)環(huán)節(jié)通過設(shè)置的問題串,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口相結(jié)合,激活學(xué)生的思維,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度,合理的推測(cè)能力,嚴(yán)密的邏輯思維能力和靈活的動(dòng)手實(shí)踐能力。

(三) 探索歸納,證明假設(shè):

勾股定理逆定理的證明與以往不同,需要構(gòu)造直角三角形才能完成,如何構(gòu)造直角三角形就成為解決問題的關(guān)鍵。如果直接將問題拋給學(xué)生證明,他們定會(huì)無(wú)從下手,所以為了解決這一問題,突破這個(gè)難點(diǎn),我先

1、 讓學(xué)生畫了一個(gè)三邊長(zhǎng)度為3cm,4cm,5cm的三角形和一個(gè)以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個(gè)三角形上看出現(xiàn)了什么情況?并請(qǐng)學(xué)生簡(jiǎn)單說明理由。通過操作驗(yàn)證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

2、 然后在黑板上畫一個(gè)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC,與一個(gè)以a、b為直角邊的直角三角形,讓學(xué)生觀察它們之間有什么聯(lián)系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

在這個(gè)過程中,首先讓學(xué)生從特殊的實(shí)例中動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的判定,進(jìn)而由特殊到一般發(fā)現(xiàn)三邊長(zhǎng)為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關(guān)系。

設(shè)計(jì)意圖:讓學(xué)生從特殊的實(shí)例動(dòng)手到證明,進(jìn)而由特殊到一般,順利地利用構(gòu)建法證明了勾股定理的逆定理,整個(gè)過程自然、無(wú)神秘感,實(shí)現(xiàn)從直觀印象向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了“操作——觀察——猜測(cè)——探索——論證”的過程,體驗(yàn)了“特殊到一般,個(gè)性到共性”的偉大數(shù)學(xué)思想在實(shí)際中的應(yīng)用。

這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

(四)學(xué)以致用、鞏固提升

本著由淺入深的原則,安排了三個(gè)題。第一題比較簡(jiǎn)單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學(xué)生仿照課本上的例題,獨(dú)立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長(zhǎng)的正整數(shù),我們稱為勾股數(shù)。第二題我改變題的形式,把一些符合a+b=c的三角形放入網(wǎng)格中讓學(xué)生運(yùn)用勾股定理及其逆定理來(lái)說明理由。第三題是求一個(gè)不規(guī)則四邊形的面積,讓學(xué)生思考如何添加輔助線,把它分成一個(gè)直角三角形和一個(gè)非直角但能判定是直角的三角形,讓學(xué)生運(yùn)用勾股定理及其逆定理證明并求解。

設(shè)計(jì)意圖:采用啟發(fā)教學(xué)與誘導(dǎo)教學(xué)方法相結(jié)合的方法分層練習(xí),由淺入深地逐步提高學(xué)生解決實(shí)際問題的能力,達(dá)到鞏固知識(shí),學(xué)以致用的目的

(五)回顧總結(jié),強(qiáng)化認(rèn)知

課堂小結(jié)以填空體的形式檢測(cè)、歸納總結(jié)

設(shè)計(jì)意圖:讓學(xué)生以填空題的形式進(jìn)行總結(jié),不僅能夠起到檢測(cè)的目的,而且?guī)椭鷮W(xué)生理清知識(shí)脈絡(luò),起到重點(diǎn)強(qiáng)調(diào),產(chǎn)生高度重視的效果。

(六)作業(yè)布置

教材33頁(yè)練習(xí)

設(shè)計(jì)意圖:加強(qiáng)學(xué)生對(duì)勾股定理逆定理的理解,使學(xué)生的練習(xí)范圍拓展到多個(gè)題型。

教學(xué)反思:本節(jié)課以學(xué)生為主體、教師為主導(dǎo),通過啟發(fā)與誘導(dǎo),使學(xué)生動(dòng)手操作、動(dòng)腦思考、動(dòng)口表達(dá),讓學(xué)生在實(shí)踐與探究中發(fā)揮自我,充分調(diào)動(dòng)了學(xué)生的自主性與積極性,整個(gè)過程注重了學(xué)生課上知識(shí)的形成與鞏固,以及學(xué)生各方面素質(zhì)的培養(yǎng)??傊竟?jié)課的知識(shí)目標(biāo)基本達(dá)成,能力目標(biāo)基本實(shí)現(xiàn),情感目標(biāo)基本落實(shí)。

以上是我對(duì)本節(jié)課的理解,還望各位老師指正。

勾股定理課件教案【篇2】

一、 說教材分析

1. 教材的地位和作用

華師大版八年級(jí)上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用。

因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:

知識(shí)與技能:

1、經(jīng)歷勾股定理的探索過程,體會(huì)數(shù)形結(jié)合思想。

2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。

過程與方法:

1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

2、在觀察、猜想、歸納、驗(yàn)證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。

情感、態(tài)度與價(jià)值觀:

1、通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識(shí)和然所精神。

3、讓學(xué)生通過動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。

由于八年級(jí)的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以

本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。

教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。

二、說教法學(xué)法分析:

要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。

學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。

三、 說教學(xué)程序設(shè)計(jì)

1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。

牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

2、探索新知

在這里我設(shè)計(jì)了四個(gè)內(nèi)容:

①探索等腰直角三角形三邊的關(guān)系

②邊長(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系

③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)

⑤勾股定理歷史介紹,讓學(xué)生體會(huì)勾股定理的文化價(jià)值。

體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

3、新知運(yùn)用:

①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)

②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問怎么做?

④如圖,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

4、小結(jié)本課:

學(xué)完了這節(jié)課,你有什么收獲?

老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。數(shù)學(xué)來(lái)源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

反思:

教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識(shí)形成過程,探索問題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長(zhǎng),整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。

對(duì)學(xué)生的啟發(fā)不夠,對(duì)學(xué)生的關(guān)注不夠,學(xué)生對(duì)問題的思考不能及時(shí)想出來(lái),沒有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱栴}設(shè)計(jì)的較難,沒有很好的體現(xiàn)出探究。

預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒有很好的得到發(fā)展。

勾股定理課件教案【篇3】

一、學(xué)生知識(shí)狀況分析

本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng)。學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。

二、教學(xué)任務(wù)分析

本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。

三、本節(jié)課的教學(xué)目標(biāo)是:

1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).

四、教法學(xué)法

1.教學(xué)方法

引導(dǎo)—探究—?dú)w納

本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;

(2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過程;

(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

2.課前準(zhǔn)備

教具:教材、電腦、多媒體課件.

學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

五、教學(xué)過程分析

本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

1.3勾股定理的應(yīng)用:課后練習(xí)

一、問題引入:

1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

2、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足________,那么這個(gè)三角形是直角三角形

1.3勾股定理的應(yīng)用:同步檢測(cè)

1.為迎接新年的到來(lái),同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會(huì),小劉搬來(lái)一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )

A.0.7米B.0.8米C.0.9米D.1.0米

2.小華和小剛兄弟兩個(gè)同時(shí)從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個(gè)( )

A.銳角彎B.鈍角彎C.直角彎D.不能確定

3.如圖,是一個(gè)圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個(gè)小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長(zhǎng)度(罐壁的厚度和小圓孔的大小忽略不計(jì))范圍是( )

A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

4.一個(gè)木工師傅測(cè)量了一個(gè)等腰三角形木板的腰、底邊和高的長(zhǎng),但他把這三個(gè)數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請(qǐng)你幫助他找出來(lái),是第( )組.

A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理課件教案【篇4】

各位考官,大家好,我是X號(hào)考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來(lái)說說我對(duì)教材的理解。

教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對(duì)教材的理解。

一、說教材

“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化。勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。

二、說學(xué)情

中學(xué)生心理學(xué)研究指出,初中階段是智力發(fā)展的關(guān)鍵年齡,學(xué)生邏輯思維從經(jīng)驗(yàn)型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學(xué)生此前學(xué)習(xí)了三角形有關(guān)的知識(shí),掌握了直角三角形的性質(zhì)和勾股定理,學(xué)生在此基礎(chǔ)上學(xué)習(xí)勾股定理的逆定理可以加深理解。

三、說教學(xué)目標(biāo)

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容結(jié)合學(xué)生實(shí)際我確定了如下教學(xué)目標(biāo)。

【知識(shí)與技能】

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形。

【過程與方法】

通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

【情感態(tài)度與價(jià)值觀】

通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神。

四、說教學(xué)重難點(diǎn)

重點(diǎn):勾股定理逆定理的應(yīng)用;

難點(diǎn):探究勾股定理逆定理的證明過程。

五、說教學(xué)方法

科學(xué)合理的教學(xué)方法能使教學(xué)效果事半功倍,達(dá)到教與學(xué)的和諧完美統(tǒng)一?;诖?,我準(zhǔn)備采用的教法是講練結(jié)合法,小組討論法。

六、說教學(xué)過程

(一)導(dǎo)入新課

在導(dǎo)入新課環(huán)節(jié),我會(huì)采用溫故知新的導(dǎo)入方法,先讓學(xué)生回顧勾股定理有關(guān)知識(shí),并引入本節(jié)課的課題——勾股定理逆定理。

【設(shè)計(jì)意圖】通過復(fù)習(xí)回顧能很好地將新舊知識(shí)聯(lián)系起來(lái),使學(xué)生形成對(duì)知識(shí)的系統(tǒng)的認(rèn)識(shí)。并且由舊知開始,能很好地幫助學(xué)生克服畏難情緒。

(二)探究新知

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后便得到一個(gè)直角三角形這是為什么?這個(gè)問題一出現(xiàn),馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái)創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來(lái)源于實(shí)踐不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說選擇適當(dāng)?shù)臅r(shí)機(jī)讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí)可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等順利作出了輔助直角三角形,整個(gè)證明過程自然無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過程。這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理?因而使學(xué)生感到自然、親切。學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高,使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學(xué)生看書的習(xí)慣這也是在培養(yǎng)學(xué)生的自學(xué)能力。

(三)鞏固提高

本著由淺入深的原則安排了三個(gè)題目。演示第一題比較簡(jiǎn)單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學(xué)生口答讓所有的學(xué)生都能完成。

第二題則進(jìn)了一層用字母代替了數(shù)字,繞了一個(gè)彎,既可以檢查本課知識(shí)又可以提高靈活運(yùn)用以往知識(shí)的能力。

思維提高了課堂教學(xué)的效果和利用率。在變式訓(xùn)練中我還采用講、說、練結(jié)合的方法,教師通過觀察、提問、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過程,隨時(shí)反饋調(diào)節(jié)教法同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo)把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。

(四)小結(jié)作業(yè)

在小結(jié)環(huán)節(jié),我會(huì)隨機(jī)詢問學(xué)生勾股定理的逆定理是什么?如果判斷一個(gè)三角形是不是直角三角形,以及勾股定理的逆定理的應(yīng)用需要注意點(diǎn)什么等問題,先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法培養(yǎng)能力方面比如輔助線的添法。

設(shè)計(jì)意圖:這樣設(shè)計(jì)可以幫助學(xué)生以反思的形式回憶本節(jié)課所學(xué)的知識(shí),加深對(duì)知識(shí)的印象,有利于學(xué)生良好的數(shù)學(xué)學(xué)習(xí)習(xí)慣的養(yǎng)成。

由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎(chǔ)題,我會(huì)用ppt出示關(guān)于勾股定理的逆定理的計(jì)算題目,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二組是開放性題目,讓學(xué)生課后思考總結(jié)一下判定一個(gè)三角形是直角三角形的方法。

勾股定理課件教案【篇5】

教學(xué)課題:

勾股定理的應(yīng)用

教學(xué)時(shí)間(日期、課時(shí)):

教材分析:

學(xué)情分析:

教學(xué)目標(biāo):

能運(yùn)用勾股定理及直角三角形的判定條件解決實(shí)際問題.

在運(yùn)用勾股定理解決實(shí)際問題的過程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會(huì)數(shù)學(xué)的應(yīng)用價(jià)值.

教學(xué)準(zhǔn)備

《數(shù)學(xué)學(xué)與練》

集體備課意見和主要參考資料

頁(yè)邊批注

教學(xué)過程

一.新課導(dǎo)入

本課時(shí)的教學(xué)內(nèi)容是勾股定理在實(shí)際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實(shí)際情況另行設(shè)計(jì)一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動(dòng)。比如,把課本例2改編為開放式的問題情境:

一架長(zhǎng)為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認(rèn)為梯子的底端會(huì)發(fā)生什么變化?與同學(xué)交流.

創(chuàng)設(shè)學(xué)生身邊的問題情境,為每一個(gè)學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問題學(xué)生常常會(huì)從自己的生活經(jīng)驗(yàn)出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:

底端也滑動(dòng)0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動(dòng)8m,估計(jì)梯子底端的滑動(dòng)小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動(dòng)小于0.5m;構(gòu)造直角三角形,運(yùn)用勾股定理計(jì)算梯子滑動(dòng)前、后底端到墻的垂直距離的差,得出梯子底端滑動(dòng)約0.61m的結(jié)論等)。

通過與同學(xué)交流,完善各自的想法,有利于學(xué)生主動(dòng)地把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂趣.

二.新課講授

問題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的`底端滑動(dòng)多少米?

組織學(xué)生嘗試用勾股定理解決問題,對(duì)有困難的學(xué)生教師給予及時(shí)的幫助和指導(dǎo).

問題二從上面所獲得的信息中,你對(duì)梯子下滑的變化過程有進(jìn)一步的思考嗎?與同學(xué)交流.

設(shè)計(jì)問題二促使學(xué)生能主動(dòng)積極地從數(shù)學(xué)的角度思考實(shí)際問題.教學(xué)中學(xué)生可能會(huì)有多種思考.比如,

①這個(gè)變化過程中,梯子底端滑動(dòng)的距離總比頂端下滑的距離大;

②因?yàn)樘葑禹敹讼禄降孛鏁r(shí),頂端下滑了8m,而底端只滑動(dòng)4m,所以這個(gè)變化過程中,梯子底端滑動(dòng)的距離不一定比頂端下滑的距離大;

③由勾股數(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時(shí),底端到墻的垂直距離是8m,即底端電滑動(dòng)2m等。

教學(xué)中不要把尋找規(guī)律作為這個(gè)探索活動(dòng)的目標(biāo),應(yīng)讓學(xué)生進(jìn)行充分的交流,使學(xué)生逐步學(xué)會(huì)運(yùn)用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗(yàn)和方法.

3.例題教學(xué)

課本的例1是勾股定理的簡(jiǎn)單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實(shí)際情況補(bǔ)充一些實(shí)際應(yīng)用問題,把課本習(xí)題2.7第4題作為補(bǔ)充例題.通過這個(gè)問題的討論,把“32+b2=c2”看作一個(gè)方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會(huì)解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進(jìn)一步了解勾股定理的悠久歷史和我國(guó)古代人民的聰明才智.

三.鞏固練習(xí)

1.甲、乙兩人同時(shí)從同一地點(diǎn)出發(fā),甲往東走了4km,乙往南走了6km,這時(shí)甲、乙兩人相距__________km.

2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點(diǎn)A爬到點(diǎn)B處吃食,要爬行的最短路程(取3)是().

(A)20cm(B)10cm(C)14cm(D)無(wú)法確定

3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.

四.小結(jié)

我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊.從應(yīng)用勾股定理解決實(shí)際問題中,我們進(jìn)一步認(rèn)識(shí)到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個(gè)方程,只要依據(jù)問題的條件把它轉(zhuǎn)化為我們會(huì)解的方程,就把解實(shí)際問題轉(zhuǎn)化為解方程.

勾股定理課件教案【篇6】

一、 教材分析

(一)教材所處的地位

這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(北師大)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

1、 能說出勾股定理的內(nèi)容。

2、 會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。

3、 在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

4、 通過介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

(三)本課的教學(xué)重點(diǎn):探索勾股定理

本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

二、教法與學(xué)法分析:

教法分析:針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題—猜想結(jié)論—實(shí)驗(yàn)操作—?dú)w納總結(jié)—問題解決—課堂小結(jié)—布置作業(yè)七部分。

學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

三、 教學(xué)過程設(shè)計(jì):

(一)提出問題:

首先創(chuàng)設(shè)這樣一個(gè)問題情境:強(qiáng)大的臺(tái)風(fēng)使得一座高壓線塔在離地面9米處斷裂,塔頂落在離塔底部12米處,高壓線塔折斷之前有多高?

問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過程,而且解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程。

(二)猜想結(jié)論。

教師用計(jì)算機(jī)演示:

(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所對(duì)邊分別為a,b和c,使△ABC運(yùn)動(dòng)起來(lái),但始終保持∠ACB=90°,如拖動(dòng)A點(diǎn)或B點(diǎn)改變a,b的長(zhǎng)度來(lái)拖動(dòng)AB邊繞任一點(diǎn)旋轉(zhuǎn)△ACB等。

(2)在以上過程中,始終測(cè)算 ,各取以上典型運(yùn)動(dòng)的某一兩個(gè)狀態(tài)的測(cè)算值列成表格,讓學(xué)生觀察三個(gè)數(shù)之間有何數(shù)量關(guān)系,得出猜想。

(三)實(shí)驗(yàn)操作:

1、投影課本圖1—2的有關(guān)直角三角形問題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問題和解決問題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)極有幫助。

3、給出一個(gè)兩直角邊長(zhǎng)分別為1.6,2.4這種含小數(shù)的直角三角形,對(duì)學(xué)生有一定的挑戰(zhàn)性。讓學(xué)生驗(yàn)證是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。

(四)歸納總結(jié):

1、歸納

通過對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

2、總結(jié)

勾股定理內(nèi)容得出后,引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛國(guó)主義教育。

(五)問題解決:

讓學(xué)生解決開頭的實(shí)際問題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。

(六)課堂小結(jié):

主要通過學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

(七)布置作業(yè):

課本P7習(xí)題1.1-- 2,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開放題。

四、 設(shè)計(jì)說明

1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問題—猜想結(jié)論—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問題解決—課堂小結(jié)—布置作業(yè)七部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。

3、關(guān)于練習(xí)的設(shè)計(jì),除實(shí)際問題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開放題,大致思路是已知直角三角形的兩條邊,求出與這個(gè)三角形所有相關(guān)的結(jié)論。

4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開,既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。

勾股定理課件教案【篇7】

一、教材分析

教材所處的地位與作用

“探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容?!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

二、教學(xué)目標(biāo)

綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

1、知識(shí)目標(biāo)

知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。

掌握勾股定理,通過動(dòng)手操作利用等積法理解勾股定理的證明過程。

2、能力目標(biāo)

在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問題的能力。

3、情感目標(biāo)

通過觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛國(guó)情感。

三、教學(xué)重難點(diǎn)

本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

四、教學(xué)問題診斷

本節(jié)主要攻克的問題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說,有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

五、教法與學(xué)法分析

[教學(xué)方法與手段]針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

[學(xué)法分析]在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

六、教學(xué)流程設(shè)計(jì)

1、創(chuàng)設(shè)情境,引入新課

本節(jié)課開始利用多媒體介紹了在北京召開的20xx年國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)?!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學(xué)生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

2、觀察發(fā)現(xiàn),類比猜想

讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié)論。最后對(duì)此結(jié)論通過在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過割補(bǔ)變?yōu)橐?guī)則。

3、實(shí)驗(yàn)探究,證明結(jié)論

因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

4、練兵之際

這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

5、自己動(dòng)手,拼出弦圖

讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們?cè)跀?shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

6、總結(jié)反思

通過這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn)室”,學(xué)生通過自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

七、設(shè)計(jì)說明

1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

勾股定理課件教案【篇8】

我按照“理解—掌握—運(yùn)用”的梯度設(shè)計(jì)了如下三組習(xí)題。

(1)對(duì)應(yīng)難點(diǎn),鞏固所學(xué);(2)考查重點(diǎn),深化新知;(3)解決問題,感受應(yīng)用

第五步 溫故反思 任務(wù)后延

在課堂接近尾聲時(shí),我鼓勵(lì)學(xué)生從“四基”的要求對(duì)本節(jié)課進(jìn)行小結(jié)。進(jìn)而總結(jié)出一個(gè)定理、二個(gè)方案、三種思想、四種經(jīng)驗(yàn)。

然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。

四、教學(xué)評(píng)價(jià)

在探究活動(dòng)中,教師評(píng)價(jià)、學(xué)生自評(píng)與互評(píng)相結(jié)合,從而體現(xiàn)評(píng)價(jià)主體多元化和評(píng)價(jià)方式的多樣化。

五、設(shè)計(jì)說明

本節(jié)課探究體驗(yàn)貫穿始終,展示交流貫穿始終,習(xí)慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用 “七巧板”代替教材中“畢達(dá)哥拉斯地板磚”利用我國(guó)傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國(guó)數(shù)學(xué)文化為主線這一設(shè)計(jì)理念,展現(xiàn)了我國(guó)古代數(shù)學(xué)璀璨的歷史,激發(fā)學(xué)生再創(chuàng)數(shù)學(xué)輝煌的愿望。

以上就是我對(duì)《勾股定理》這一課的設(shè)計(jì)說明,有不足之處請(qǐng)?jiān)u委老師們指正,謝謝大家。

勾股定理課件教案【篇9】

學(xué)習(xí)目標(biāo)

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2.探索勾股定理的過程,發(fā)展合情推理的能力,體會(huì)數(shù)型結(jié)合的思想。

重點(diǎn)難點(diǎn)

或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說明勾股定理的正確.

學(xué)習(xí)難點(diǎn):勾股定理的'應(yīng)用.

學(xué)習(xí)過程教師

二次備課欄

自學(xué)準(zhǔn)備與知識(shí)導(dǎo)學(xué):

這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。

郵票上的圖案是根據(jù)一個(gè)著名的數(shù)學(xué)定理設(shè)計(jì)的。

學(xué)習(xí)交流與問題研討:

1、探索

問題:分別以圖中的直角三角形三邊為邊向三角形外

作正方形,小方格的面積看做1,求這三個(gè)正方形的面積?

S正方形BCED=S正方形ACFG=S正方形ABHI=

發(fā)現(xiàn):

2、實(shí)驗(yàn)

在下面的方格紙上,任意畫幾個(gè)頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個(gè)三角形的各邊為一邊向三角形外做正方形并計(jì)算出正方形的面積。

請(qǐng)完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系

112

145

41620

91625

發(fā)現(xiàn):

如何用直角三角形的三邊長(zhǎng)來(lái)表示這個(gè)結(jié)論?

這個(gè)結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:

如圖:我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

練習(xí)檢測(cè)與拓展延伸:

練習(xí)1、求下列直角三角形中未知邊的長(zhǎng)

練習(xí)2、下列各圖中所示的線段的長(zhǎng)度或正方形的面積為多少。

(注:下列各圖中的三角形均為直角三角形)

例1、如圖,在四邊形中,∠,∠,,求.

檢測(cè):

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

(2)b=8,c=17,則S△ABC=________。

2、在Rt△ABC中,∠C=90,周長(zhǎng)為60,斜邊與一條直角邊之比為13∶5,則這個(gè)三角形三邊長(zhǎng)分別是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的兩邊長(zhǎng)為10cm,第三邊長(zhǎng)為16cm,那么第三邊上的高為()

A.12cmB.10cmC.8cmD.6cm

4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長(zhǎng)的梯子?(畫出示意圖)

5、飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到一個(gè)男孩頭頂正上方4千米處,過了20秒,飛機(jī)距離這個(gè)男孩5千米,飛機(jī)每小時(shí)飛行多少千米?

課后反思或經(jīng)驗(yàn)總結(jié):

1、什么叫勾股定理;

2、什么樣的三角形的三邊滿足勾股定理;

3、用勾股定理解決一些實(shí)際問題。

勾股定理課件教案【篇10】

一、勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:

1.知識(shí)和方法目標(biāo):通過對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解. 2.過程與方法目標(biāo):通過對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的.

3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.

教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.

教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.

二.說教法和學(xué)法

1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程.

2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力.

3.通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.

三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.

勾股定理課件教案【篇11】

尊敬的各位評(píng)委、老師,您們好,我是臨沂市蒼山縣實(shí)驗(yàn)中學(xué)的宋寧。今天我說課的內(nèi)容是人教版《數(shù)學(xué)》八年級(jí)下冊(cè)第十八章第一節(jié)《勾股定理》第一課時(shí),我將從教材、教法與學(xué)法、教學(xué)過程、教學(xué)評(píng)價(jià)以及設(shè)計(jì)說明五個(gè)方面來(lái)闡述對(duì)本節(jié)課的理解與設(shè)計(jì)。

一、教材分析:

(一) 教材的地位與作用

從知識(shí)結(jié)構(gòu)上看百度一下,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實(shí)生活中有著廣泛的應(yīng)用。

從學(xué)生認(rèn)知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;

勾股定理又是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育的良好素材,因此具備相當(dāng)重要的地位和作用。

根據(jù)數(shù)學(xué)新課程標(biāo)準(zhǔn)以及八年級(jí)學(xué)生的認(rèn)知水平我確定如下學(xué)習(xí)目標(biāo):知識(shí)技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國(guó)數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國(guó)悠久文化的情感。

(二)重點(diǎn)與難點(diǎn)

為變被動(dòng)接受為主動(dòng)探究,我確定本節(jié)課的重點(diǎn)為:勾股定理的探索過程。限于八年級(jí)學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點(diǎn),我將引領(lǐng)學(xué)生動(dòng)手實(shí)驗(yàn)突出重點(diǎn),合作交流突破難點(diǎn)。

二、教學(xué)與學(xué)法分析

教學(xué)方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機(jī)誘導(dǎo)。”因此教師利用幾何直觀提出問題,引領(lǐng)學(xué)生由淺入深的探索,設(shè)計(jì)實(shí)驗(yàn)讓學(xué)生進(jìn)行驗(yàn)證,感悟其中所蘊(yùn)涵的思想方法。

學(xué)法指導(dǎo) 為把學(xué)習(xí)的主動(dòng)權(quán)還給學(xué)生,教師鼓勵(lì)學(xué)生采用動(dòng)手實(shí)踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗(yàn)知識(shí)的形成過程。

三、教學(xué)過程

我國(guó)數(shù)學(xué)文化源遠(yuǎn)流長(zhǎng)、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計(jì)為以下五個(gè)環(huán)節(jié)。

首先,情境導(dǎo)入 古韻今風(fēng)

給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進(jìn)行合作拼圖。(請(qǐng)看視頻)讓學(xué)生觀察并思考三個(gè)正方形面積之間的關(guān)系?它們圍成了什么三角形?反映在三邊上,又蘊(yùn)含著什么數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。

勾股定理課件教案【篇12】

(一)創(chuàng)設(shè)問題情境,引入新課:

在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動(dòng)畫展示,米老鼠來(lái)到了數(shù)學(xué)王國(guó)里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測(cè)大多數(shù)同學(xué)會(huì)無(wú)從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動(dòng)學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動(dòng)漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。

(二)實(shí)踐猜想

本環(huán)節(jié)要圍繞以下幾個(gè)活動(dòng)展開:

1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長(zhǎng)。

1a=3b=42a=5b=123a=2.5b=64a=6b=8

2、猜一猜,以下列線段長(zhǎng)為三邊的三角形形狀

13cm4cm5cm25cm12cm13cm

32.5cm6cm6.5cm46cm8cm10cm

3、擺一擺利用方便筷來(lái)操作問題2,利用量角器來(lái)度量,驗(yàn)證問題2的發(fā)現(xiàn)。

4、用恰當(dāng)?shù)恼Z(yǔ)言敘述你的結(jié)論

在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動(dòng)手實(shí)踐,在問題1的基礎(chǔ)上做出合理的推測(cè)和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),最后運(yùn)用恰當(dāng)?shù)恼Z(yǔ)言表述,得到了勾股定理的逆定理。在整個(gè)過程的活動(dòng)中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動(dòng)中,傾聽意見,幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。學(xué)生的擺一擺的過程利用實(shí)物投影儀展示,在活動(dòng)中教師關(guān)注;

1)學(xué)生的參與意識(shí)與動(dòng)手能力。

2)是否清楚三角形三邊長(zhǎng)度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。

3)數(shù)形結(jié)合的思想方法及歸納能力。

(三)推理證明

八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問題的關(guān)鍵,直接拋給學(xué)生證明,無(wú)疑會(huì)石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。

1.三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請(qǐng)簡(jiǎn)要說明理由?

2.△ABC三邊長(zhǎng)a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說明理由?

為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組內(nèi)交流個(gè)別意見的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問題的關(guān)鍵,讓他們?cè)诓粩嗟奶骄窟^程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。

勾股定理教案通用


小編為大家呈上收集和整理的勾股定理教案,相信您在本文中有所收獲。教案課件是老師教學(xué)工作的起始環(huán)節(jié),也是上好課的先決條件,因此教案課件可能就需要每天都去寫。老師在上課時(shí)要以教案課件為依據(jù)。

勾股定理教案(篇1)

一、勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面.教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標(biāo)如下:

1.知識(shí)和方法目標(biāo):通過對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解. 2.過程與方法目標(biāo):通過對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的.

3.情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.

教學(xué)重點(diǎn):勾股定理的應(yīng)用. 教學(xué)難點(diǎn):勾股定理的正確使用.

教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.

二.說教法和學(xué)法

1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程.

2.切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力.

3.通過演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.

三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用.

勾股定理教案(篇2)

尊敬的各位領(lǐng)導(dǎo),各位老師:

大家好!今天我說課的內(nèi)容是初中八年級(jí)數(shù)學(xué)人教版教材第十八章第一節(jié)《勾股定理》(第一課時(shí)),下面我分五部分來(lái)匯報(bào)我這節(jié)課的教學(xué)設(shè)計(jì),這就是"教材分析"、"學(xué)情分析"、"教法選擇"、"學(xué)法指導(dǎo)"、"教學(xué)過程"。

一、教材分析

(一) 教材地位和作用

勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系,將幾何圖形與數(shù)字聯(lián)系起來(lái)。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在生產(chǎn)生活中有著廣泛的應(yīng)用。而且它在其它自然學(xué)科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

(二)教學(xué)目標(biāo)

根據(jù)新課程標(biāo)準(zhǔn)的要求和本課的特點(diǎn),結(jié)合學(xué)生的實(shí)際情況,我確定了本課的教學(xué)目標(biāo):

1、知識(shí)與技能方面

了解勾股定理的文化背景,經(jīng)歷探索勾股定理的過程,掌握直角三角形三邊之間的數(shù)量關(guān)系, 并能簡(jiǎn)單應(yīng)用。

2、過程與方法方面

經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,能感受到數(shù)學(xué)思考過程的條理性,發(fā)展數(shù)學(xué)的說理和簡(jiǎn)單的推理的意識(shí),和語(yǔ)言表達(dá)的能力,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

3、情感態(tài)度與價(jià)值觀方面

(1)通過了解勾股定理的歷史,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

(2) 通過研究一系列富有探 究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。

(三)教學(xué)重點(diǎn)難點(diǎn)

教學(xué)重點(diǎn):掌握勾股定理,并能用它來(lái)解決一些簡(jiǎn)單的問題。

教學(xué)難點(diǎn):勾股定理的證明。

二、學(xué)情分析

我們班日常經(jīng)常使用多媒體輔助教學(xué)。經(jīng)過一年多的幾何學(xué)習(xí),學(xué)生對(duì)幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學(xué)生解題思維能力比較高,能夠正確 歸納所學(xué)知識(shí),通過學(xué)習(xí)小組討論交流,能夠形成解決問題的思路。 現(xiàn)在的學(xué)生已經(jīng)厭倦教師單獨(dú)的說教方式,希望教師設(shè)計(jì)便于他們進(jìn)行觀察的.幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現(xiàn)自己才華的機(jī)會(huì);更希望教師滿足他 們的創(chuàng)造愿望。

三、教法選擇

根據(jù)本節(jié)課的教學(xué)目標(biāo)、教學(xué)內(nèi)容以及學(xué)生的認(rèn)知特點(diǎn),結(jié)合我校的“當(dāng)堂達(dá)標(biāo)”教學(xué)模式,我在教法上采用引導(dǎo)發(fā)現(xiàn)法為主,并以分析法、討論法相結(jié)合。設(shè)計(jì)" 觀察——討論—?dú)w納"的教學(xué)方法,意在幫助學(xué)生通過自己動(dòng)手實(shí)驗(yàn)和直觀情景觀察,從實(shí)踐中獲取知識(shí),并通過討論來(lái)深化對(duì)知識(shí)的理解。本節(jié)課采用了多媒體輔 助教學(xué),能夠直觀、生動(dòng)的反應(yīng)圖形,增加課堂的容量,同時(shí)有利于突出重點(diǎn)、分散難點(diǎn),增強(qiáng)教學(xué)形象性,更好的提高課堂效率。

四、學(xué)法指導(dǎo):

為了充分體現(xiàn)《新課標(biāo)》的要求,培養(yǎng)學(xué)生的觀察分析能力,邏輯思維能力,積累豐富的數(shù)學(xué)學(xué)習(xí)經(jīng)驗(yàn),這節(jié)課主要采用觀察分析,自主探索與合作交流的學(xué)習(xí)方 法,使學(xué)生積極參與教學(xué)過程。在教學(xué)過程中展開思維,培養(yǎng)學(xué)生提出問題、分析問題、解決問題的能力,進(jìn)一步體會(huì)觀察、類比、分析、從特殊到一般等數(shù)學(xué)思 想。借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主人。

五、教學(xué)過程

根據(jù)《新課標(biāo)》中"要引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)中"的教學(xué)要求,本節(jié)課的教學(xué)過程我是這樣設(shè)計(jì)的:

(一)創(chuàng)設(shè)情境,引入新課

一個(gè)設(shè)計(jì)合理的情境引入可以說在一定程度上決定著學(xué)生能否帶著興趣積極投入到本節(jié)課的學(xué)習(xí)中。為了體現(xiàn)數(shù)學(xué)源于生活,數(shù)學(xué)是從人的需要中產(chǎn)生的,學(xué)習(xí)數(shù)學(xué)的目的是為了用數(shù)學(xué)解決實(shí)際問題。我設(shè)計(jì)了以下題目:

星期日老師帶領(lǐng)全班同學(xué)去某山風(fēng)景區(qū)游玩,同學(xué)們看到山勢(shì)險(xiǎn)峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

∠ACB=90° ,你能用所學(xué)知識(shí)算出纜車路線AB長(zhǎng)應(yīng)為多少?

答案是不能的。然后教師指出,通過這節(jié)課的學(xué)習(xí),問題將迎刃而解。

設(shè)計(jì)意圖:以趣味性題目引入。從而設(shè)置懸念,激發(fā)學(xué)生的學(xué)習(xí)興趣。 教師引導(dǎo)學(xué)生把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,這其中滲透了一種數(shù)學(xué)思想,對(duì)于學(xué)生也是一種挑戰(zhàn),能激發(fā)學(xué)生探究的欲望,自然引出下面的環(huán)節(jié)。

緊接著出示本節(jié)課的學(xué)習(xí)目標(biāo):

1、了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。

2、掌握勾股定理的內(nèi)容,并會(huì)簡(jiǎn)單應(yīng)用。

(二)勾股定理的探索

1、猜想結(jié)論

(1)探究一:等腰直角三角形三邊關(guān)系。

由課本64頁(yè)畢達(dá)哥拉斯的故事,探究等腰直角三角形三邊關(guān)系。結(jié)合課件中格點(diǎn)圖形的面積,學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

在此過程中,給學(xué)生充分的時(shí)間、觀察、比較、交流,最后通過活動(dòng)讓學(xué)生用語(yǔ)言概括總結(jié)。

提問:等腰直角三角形有這樣的性質(zhì),其他的直角三角形也有這樣的性質(zhì)嗎?

(2、)探究二:一般的直角三角形三邊關(guān)系。

在課件中的格點(diǎn)圖形中,利用面積,再次探究直角三角形的三邊關(guān)系。學(xué)生自主探究,通過計(jì)算、討論、總結(jié),得出結(jié)論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

設(shè) 計(jì)意圖:組織學(xué)生進(jìn)行討論,在此基礎(chǔ)上教師引導(dǎo)學(xué)生從三邊的平方有何大小關(guān)系入手進(jìn)行觀察。教師在多媒體課件上直觀地演示。通過學(xué)生自己探索、討論,由學(xué) 生自己得出結(jié)論。這樣,讓學(xué)生參與定理的再發(fā)現(xiàn)過程,他們通過自己觀察、計(jì)算所得出的定理,在心理產(chǎn)生自豪感,從而增強(qiáng)學(xué)生的學(xué)習(xí)數(shù)學(xué)的自信心。

2、證明猜想

目前世界上證明該勾股定理的方法有很多種,而我國(guó)古代數(shù)學(xué)家利用拼接、割補(bǔ)圖形,計(jì)算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進(jìn)行證 明。學(xué)生分組活動(dòng),根據(jù)圖形的面積進(jìn)行計(jì)算,推導(dǎo)出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

設(shè)計(jì)意圖:通過利用多媒體課件的演示,更直觀、形象的向?qū)W生介紹用拼接、割補(bǔ)圖形,計(jì)算面積的證明方法,使學(xué)生認(rèn)識(shí)到證明的必要性、結(jié)論的確定性,感受到前人的偉大和智慧。

3、簡(jiǎn)要介紹勾股定理命名的由來(lái)

我國(guó)是最早了解勾股定理的國(guó)家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個(gè)直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國(guó)古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中、我國(guó)稱這個(gè)結(jié)論為"勾股定理",西方畢達(dá)哥拉斯于公元前五世紀(jì)發(fā)現(xiàn)了勾股定理, 但他比商高晚出生五百多年。

設(shè)計(jì)意圖:對(duì)比以上事實(shí)對(duì)學(xué)生進(jìn)行愛國(guó)主義教育,激勵(lì)他們奮發(fā)向上。

(三)勾股定理的應(yīng)用

1、利用勾股定理,解決引入中的問題。體會(huì)數(shù)學(xué)在實(shí)際生活中的應(yīng)用。

2、教學(xué)例1:課本66頁(yè)探究1

師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內(nèi)通過.

木板的寬2、2米大于2米,所以豎著不能從門框內(nèi)通過.

因?yàn)閷?duì)角線AC的長(zhǎng)度最大,所以只能試試斜著 能否通過.

從而將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題.

提示:

(1)在圖中構(gòu)造出一個(gè)直角三角形。(連接AC)

(2)知道直角△ABC的那條邊?

(3)知道直角三角形兩條邊長(zhǎng)求第三邊用什么方法呢?

設(shè)計(jì)意圖:此題是將實(shí)際為題轉(zhuǎn)化為數(shù)學(xué)問題,從中抽象出Rt△ABC,并求出斜邊A C的長(zhǎng)。本例意在滲透實(shí)際問題和勾股定理的知識(shí)聯(lián)系。通過系列問題的設(shè)置和解決,旨在降低難度,分散難點(diǎn),使難點(diǎn)予以突破,讓學(xué)生掌握勾股定理在具體問題中的應(yīng)用,使學(xué)生獲得新知,體驗(yàn)成功,從而增加學(xué)習(xí)興趣。

(四)、課堂練習(xí) 習(xí)題18、1 1、5。 學(xué)生板演,師生點(diǎn)評(píng)。

設(shè)計(jì)意圖:通過練習(xí)使學(xué)生加深對(duì)勾股定理的理解,讓學(xué)生比較練習(xí)題和例題中條件的異同,進(jìn)一步讓學(xué)生理解勾股定理的運(yùn)用。

(五)課堂小結(jié)

對(duì)學(xué)生提問:"通過這節(jié)課的學(xué)習(xí)有什么收獲?"

學(xué)生同桌間暢談自己的學(xué)習(xí)感受和體會(huì),并請(qǐng)個(gè)別學(xué)生發(fā)言。

設(shè)計(jì)意圖:讓學(xué)生自己小結(jié),活躍了氣氛,做到全員參與,理清了知識(shí)脈絡(luò),強(qiáng)化了重點(diǎn),培養(yǎng)了學(xué)生口頭表達(dá)能力。

(六)達(dá)標(biāo)訓(xùn)練與反饋

設(shè)計(jì)意圖:必做題較為簡(jiǎn)單,要求全體學(xué)生完成;選作題有一點(diǎn)的難度,基礎(chǔ)較好的學(xué)生能夠完成,體現(xiàn)分層教學(xué)。

以上內(nèi)容,我僅從"說教材","說學(xué)情"、"說教法"、"說學(xué)法"、"說教學(xué)過程"五個(gè)方面來(lái)說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià), 探索過程中,會(huì)為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境。希望得到各位專家領(lǐng)導(dǎo)的指導(dǎo)與指正,謝謝!

勾股定理教案(篇3)

尊敬的各位考官:

大家好,我是X號(hào)考生,今天我說課的題目是《勾股定理的逆定理》。

新課標(biāo)指出:數(shù)學(xué)課程要面向全體學(xué)生,適應(yīng)學(xué)生個(gè)性發(fā)展的需要,使得人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學(xué)情分析、教學(xué)過程等幾個(gè)方面展開我的說課。

一、說教材

首先來(lái)談一談我對(duì)教材的理解。

本節(jié)課選自人教版初中數(shù)學(xué)八年級(jí)下冊(cè)第十七章第二節(jié)《勾股定理的逆定理》,它是在學(xué)生掌握勾股定理及一般三角形性質(zhì)的基礎(chǔ)上進(jìn)行教學(xué)的。應(yīng)用前面學(xué)習(xí)的勾股定理及三角形全等證明逆定理是本節(jié)課的關(guān)鍵步驟,同時(shí)本節(jié)課又豐富了三角形的性質(zhì),是后面幾何問題的基礎(chǔ)理論性知識(shí)。

二、說學(xué)情

接下來(lái)談?wù)剬W(xué)生的實(shí)際情況。本階段的學(xué)生已經(jīng)掌握了一定的基礎(chǔ)知識(shí),處于由幾何內(nèi)容的初級(jí)向高級(jí)行進(jìn)的過程。他們的幾何思維正在逐步形成和發(fā)展,對(duì)幾何題目具有一定的分析、想象、概括能力,具有對(duì)未知事物的新鮮感和探求欲。同時(shí)也要注意到學(xué)生能力的不成熟,教學(xué)中鼓勵(lì)與引導(dǎo)并重。

三、說教學(xué)目標(biāo)

根據(jù)以上對(duì)教材的分析以及對(duì)學(xué)情的把握,我制定了如下教學(xué)目標(biāo):

(一)知識(shí)與技能

理解并掌握勾股定理的逆定理,會(huì)應(yīng)用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯(lián)系;理解原命題和逆命題的概念,知道二者的關(guān)系及二者真假性的關(guān)系。

(二)過程與方法

經(jīng)歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態(tài)度與價(jià)值觀

體會(huì)事物之間的聯(lián)系,感受幾何的魅力。

四、說教學(xué)重難點(diǎn)

在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是勾股定理的逆定理及其證明,教學(xué)難點(diǎn)是勾股定理的逆定理的證明。

五、說教法學(xué)法

為了突破重點(diǎn),解決難點(diǎn),順利達(dá)成教學(xué)目標(biāo),教學(xué)中我將主要采用小組討論、自主探究的教學(xué)方法,輔以適量的教師講解和引導(dǎo),把課堂還給學(xué)生。

六、說教學(xué)過程

下面我將重點(diǎn)談?wù)勎覍?duì)教學(xué)過程的設(shè)計(jì)。

(一)導(dǎo)入新課

課堂伊始,我采用復(fù)習(xí)舊知與創(chuàng)設(shè)情境相結(jié)合的導(dǎo)入方式。首先我會(huì)帶領(lǐng)學(xué)生復(fù)習(xí)勾股定理并明確其題設(shè)和結(jié)論,為后面提出逆命題、逆定理做鋪墊。接著提問學(xué)生如何畫直角三角形,學(xué)生很容易想到用三角尺或量角器。此時(shí)我會(huì)要求學(xué)生不能用繩子以外的工具,借助學(xué)生的困惑,給出古埃及人利用等長(zhǎng)的3、4、5個(gè)繩結(jié)間距畫直角三角形的情境。以古埃及人所用方法中蘊(yùn)含何道理為切入點(diǎn)引出課題。

通過這樣的導(dǎo)入方式,能夠帶領(lǐng)學(xué)生回顧上節(jié)課的內(nèi)容,為本節(jié)課奠定好基礎(chǔ),同時(shí)用情境激發(fā)學(xué)生的好奇心和求知欲,更好地展開教學(xué)。

(二)講解新知

接下來(lái)是最重要的新授環(huán)節(jié)。

請(qǐng)學(xué)生思考3,4,5之間的關(guān)系,結(jié)合勾股定理的學(xué)習(xí)經(jīng)驗(yàn)明確

出示數(shù)據(jù)2.5cm,6cm,6.5cm,請(qǐng)學(xué)生計(jì)算驗(yàn)證數(shù)據(jù)滿足上述平方和關(guān)系,并畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

學(xué)生活動(dòng):同桌兩人一組,將三邊換成其他滿足上述平方和關(guān)系的數(shù)據(jù),如4cm,7.5cm,8.5cm,畫出相應(yīng)邊長(zhǎng)的三角形檢驗(yàn)是否為直角三角形。

在得到肯定結(jié)論后,引導(dǎo)學(xué)生基于以上例子大膽猜想得出命題。

勾股定理教案(篇4)

教材中直接給出“趙爽弦圖”的證法對(duì)學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動(dòng)解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點(diǎn)也是重點(diǎn),教師應(yīng)給學(xué)生充分的自主探索的時(shí)間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對(duì)于不同的拼圖方案給予肯定。從而體現(xiàn)出“學(xué)生是學(xué)習(xí)的主體,教師是組織者、引領(lǐng)者與合作者”這一教學(xué)理念。學(xué)生會(huì)發(fā)現(xiàn)兩種證明方案。

方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個(gè)探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會(huì)數(shù)學(xué)的嚴(yán)謹(jǐn)性。對(duì)比“古”、“今”兩種證法,讓學(xué)生體會(huì)“吹盡黃沙始到金”的喜悅,感受到“青出于藍(lán)而勝于藍(lán)”的自豪感。板書勾股定理,進(jìn)而給出字母表示,培養(yǎng)學(xué)生的符號(hào)意識(shí)。

教師對(duì)“勾、股、弦”的含義以及古今中外對(duì)勾股定理的研究做一個(gè)介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國(guó)主義精神。利用勾股樹動(dòng)態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。

勾股定理教案(篇5)

尊敬的各位評(píng)委、老師,大家好!

我說課的題目是華師版八年級(jí)上冊(cè)第十四章第一節(jié)第一課時(shí)《勾股定理》。

教材分析:

如果說數(shù)學(xué)思想是解決數(shù)學(xué)問題的一首經(jīng)典老歌,那么本節(jié)課蘊(yùn)含的由特殊到一般的思想、數(shù)學(xué)建模的思想、轉(zhuǎn)化的思想就是歌中最為活躍的音符!本節(jié)的內(nèi)容是在學(xué)習(xí)了二次根式之后的教學(xué),是在學(xué)生已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行的后繼學(xué)習(xí),是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,是解決四邊形、圓等知識(shí)的靈魂,在實(shí)際生活中有著極其廣泛的應(yīng)用。

勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

新課標(biāo)下的數(shù)學(xué)教學(xué)不僅是知識(shí)的教學(xué),更應(yīng)注重能力的培養(yǎng)及情感的教育,因此,根據(jù)本節(jié)在教學(xué)中的地位和作用,結(jié)合初二學(xué)生不愛表現(xiàn)、好靜不好動(dòng)的特點(diǎn),我確定本節(jié)教學(xué)目標(biāo)如下:

1、探索并利用拼圖證明勾股定理。

2、利用勾股定理解決簡(jiǎn)單的數(shù)學(xué)問題。

3、感受數(shù)學(xué)文化,體會(huì)解決問題方法的多樣性和數(shù)形結(jié)合的思想。

本著課標(biāo)的要求,在吃透教材的基礎(chǔ)上,我確定本節(jié)的教學(xué)重點(diǎn)、難點(diǎn)、關(guān)鍵如下:

勾股定理的證明和簡(jiǎn)單應(yīng)用是本節(jié)的重點(diǎn),用拼圖的方法證明勾股定理是難點(diǎn),而解決難點(diǎn)的關(guān)鍵是充分利用圖形面積的各種表示方法構(gòu)造恒等式。

為了講清重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,使學(xué)生達(dá)到預(yù)定目標(biāo),我對(duì)教法和學(xué)法分析如下:

教法分析:

新課程標(biāo)準(zhǔn)強(qiáng)調(diào)要從學(xué)生已有的經(jīng)驗(yàn)出發(fā),最大限度的激發(fā)學(xué)生學(xué)習(xí)積極性,新課程下的數(shù)學(xué)教師更應(yīng)是學(xué)生學(xué)習(xí)活動(dòng)的組織者、引導(dǎo)者、合作者,因此,鑒于教材的重點(diǎn)和初二學(xué)生的認(rèn)知水平,我以學(xué)生充分預(yù)習(xí)為前提,以學(xué)生的動(dòng)手操作、講解為中心,讓學(xué)生親歷親為,體會(huì)做數(shù)學(xué)的過程,激發(fā)學(xué)生的探索興趣,使課堂活躍起來(lái),提高課堂效率。運(yùn)用觀察法、歸納法、引導(dǎo)發(fā)現(xiàn)法、討論法等多種教學(xué)方法相結(jié)合的形式,讓學(xué)生充分展示預(yù)習(xí)成果,體驗(yàn)成功的快樂,為終身學(xué)習(xí)和發(fā)展打下堅(jiān)實(shí)的基礎(chǔ)。為了增大課堂容量、給學(xué)生創(chuàng)設(shè)高效的數(shù)學(xué)課堂,給學(xué)生提供足夠從事數(shù)學(xué)活動(dòng)的時(shí)間,以導(dǎo)學(xué)案的形式、運(yùn)用多媒體輔助教學(xué)。

學(xué)法分析:

學(xué)法是學(xué)生再生知識(shí)的法寶,為了把學(xué)生學(xué)習(xí)過程當(dāng)作認(rèn)知事物的過程來(lái)解決,教學(xué)中我首先引導(dǎo)學(xué)生先動(dòng)手操作,再合作交流,培養(yǎng)學(xué)生良好的學(xué)習(xí)品質(zhì)和與人合作的能力;接下來(lái),我讓學(xué)生獨(dú)立思考,點(diǎn)撥學(xué)生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點(diǎn),然后通過學(xué)生展示成果讓學(xué)生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關(guān)健,以自己拼圖操作、講解展示預(yù)習(xí)成果突破定理證明這一難點(diǎn),指導(dǎo)學(xué)生嚴(yán)謹(jǐn)、合理的書寫格式,培養(yǎng)學(xué)生的邏輯思維能力和語(yǔ)言表達(dá)能力。

為了充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,創(chuàng)設(shè)優(yōu)化高效的數(shù)學(xué)課堂,我以導(dǎo)學(xué)案的方式循序見進(jìn)的設(shè)計(jì)教學(xué)流程。

以學(xué)生必讀課本48—52頁(yè),選讀課本55、56頁(yè)的課前預(yù)習(xí)為前提,共分四個(gè)環(huán)節(jié)來(lái)進(jìn)行教學(xué)

1、勾股定理的探究:讓學(xué)生歷經(jīng)量一量、算一算、想一想的由特殊到一般的數(shù)學(xué)思想引導(dǎo)好學(xué)生課前預(yù)習(xí),再以檢查預(yù)習(xí)成果的形式為新知的探究作好鋪墊。

2、勾股定理的證明:以學(xué)生拼圖展示、講解預(yù)習(xí)成果的形式完成對(duì)定理的證明。

3、勾股定理的應(yīng)用:以課堂練習(xí)、學(xué)生個(gè)性補(bǔ)充和老師適當(dāng)?shù)膫€(gè)性化追加的形式實(shí)現(xiàn)對(duì)定理的靈活應(yīng)用。

4、學(xué)后反思:以學(xué)生小結(jié)的形式引導(dǎo)學(xué)生從知識(shí)、情感兩方面實(shí)現(xiàn)對(duì)本節(jié)內(nèi)容的鞏固與升華。

說創(chuàng)新點(diǎn):

為了給學(xué)生營(yíng)造一個(gè)和諧、民主、平等而高效的數(shù)學(xué)課堂,我以新課程標(biāo)準(zhǔn)的基本理念和總體目標(biāo)為指導(dǎo)思想,面向全體學(xué)生,選擇適當(dāng)?shù)钠瘘c(diǎn)和方法,充分發(fā)揮學(xué)生的主體地位與教師主導(dǎo)作用相統(tǒng)一的原則。教學(xué)中注重學(xué)生的動(dòng)手操作能力的培養(yǎng),化繁為簡(jiǎn),化抽象為直觀。例如我以展示預(yù)習(xí)成果為主線,以學(xué)生動(dòng)手操作、講解等直觀方式代替老師畫圖、剪圖、講評(píng)費(fèi)時(shí)費(fèi)力的方式,既讓每個(gè)學(xué)生都能積極的參與進(jìn)來(lái),培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力、邏輯推理能力,又達(dá)到了直觀高效的效果。

教學(xué)中我注重人文環(huán)境的創(chuàng)設(shè),使數(shù)學(xué)課堂充滿親切、民主的氣氛,例如整節(jié)課我以學(xué)生的操作、展示、講解、個(gè)性補(bǔ)充為主,拉近了數(shù)學(xué)與學(xué)生的距離,激發(fā)了學(xué)生的學(xué)習(xí)興趣;為了使不同的學(xué)生得到不同的發(fā)展,人人學(xué)有價(jià)值的數(shù)學(xué),在教學(xué)中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設(shè)身邊暖房工程為情境,體現(xiàn)數(shù)學(xué)的生活化;以一題多變、中考題改編等形式進(jìn)行練習(xí)題的層層深入,體現(xiàn)數(shù)學(xué)的變化美。

以學(xué)生個(gè)性補(bǔ)充的形式促進(jìn)課堂新的生成,最大限度的培養(yǎng)學(xué)生創(chuàng)新思維,使不同的人在數(shù)學(xué)上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學(xué)生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設(shè)了具有獨(dú)特教學(xué)風(fēng)格的作文式數(shù)學(xué)課堂。而多媒體教學(xué)的引入更為學(xué)生提供了廣闊的思考空間和時(shí)間;同時(shí),我注重對(duì)學(xué)生進(jìn)行數(shù)學(xué)文化的薰陶和數(shù)學(xué)思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結(jié)時(shí)由“勾股樹”到“智慧樹”的希望寄語(yǔ)。

勾股定理教案(篇6)

一、教材分析

勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問題的能力,通過實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

據(jù)此,制定教學(xué)目標(biāo)如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

4、通過介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國(guó)與熱愛祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

教學(xué)難點(diǎn):勾股定理的證明。

二、教法和學(xué)法

教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過程。

2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問題和解決問題的能力。

3、通過演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

三、教學(xué)程序

本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

(一)創(chuàng)設(shè)情境 以古引新

1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂學(xué)狀態(tài)。

3、板書課題,出示學(xué)習(xí)目標(biāo)。

(二)初步感知 理解教材

教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

(三)質(zhì)疑解難 討論歸納

1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

(1)這兩個(gè)圖形有什么特點(diǎn)?

(2)你能寫出這兩個(gè)圖形的面積嗎?

(3)如何運(yùn)用勾股定理?是否還有其他形式?

這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對(duì)問題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,教師學(xué)生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習(xí) 強(qiáng)化提高

1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

2、出示例1學(xué)生試解,教師學(xué)生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

(五)歸納總結(jié) 練習(xí)反饋

引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的教師學(xué)生關(guān)系。加強(qiáng)教師學(xué)生間的合作,營(yíng)造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理教案(篇7)

一、 教材分析

(一)教材地位

這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)教學(xué)目標(biāo)

知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題.

過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

(三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

二、教法與學(xué)法分析:

學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。

學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

三、 教學(xué)過程設(shè)計(jì)1.創(chuàng)設(shè)情境,提出問題 2.實(shí)驗(yàn)操作,模型構(gòu)建 3.回歸生活,應(yīng)用新知

4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

(一)創(chuàng)設(shè)情境提出問題

(1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國(guó)際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

(2) 某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?

設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié).

二、實(shí)驗(yàn)操作模型構(gòu)建

1.等腰直角三角形(數(shù)格子)

2.一般直角三角形(割補(bǔ))

問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無(wú)形中得到提高.

通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

三.回歸生活應(yīng)用新知

讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心.

四、知識(shí)拓展鞏固深化

基礎(chǔ)題,情境題,探索題.

設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?

設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?

作業(yè): 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

板書設(shè)計(jì) 探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設(shè)計(jì)說明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

勾股定理教案精選


宜未雨綢而繆,毋臨竭而掘井。作為幼兒園老師的我們的課堂上能更好的發(fā)揮教學(xué)效果,因此,老師們都會(huì)選擇準(zhǔn)備一份教案,有了教案上課才能夠?yàn)橥瑢W(xué)講更多的,更全面的知識(shí)。幼兒園教案的內(nèi)容具體要怎樣寫呢?有請(qǐng)駐留一會(huì),閱讀小編為你整理的勾股定理教案精選,歡迎分享給你的朋友!

勾股定理教案 篇1

一、學(xué)生知識(shí)狀況分析

本節(jié)將利用勾股定理及其逆定理解決一些具體的實(shí)際問題,其中需要學(xué)生了解空間圖形、對(duì)一些空間圖形進(jìn)行展開、折疊等活動(dòng)。學(xué)生在學(xué)習(xí)七年級(jí)上第一章時(shí)對(duì)生活中的立體圖形已經(jīng)有了一定的認(rèn)識(shí),并從事過相應(yīng)的實(shí)踐活動(dòng),因而學(xué)生已經(jīng)具備解決本課問題所需的知識(shí)基礎(chǔ)和活動(dòng)經(jīng)驗(yàn)基礎(chǔ)。

二、教學(xué)任務(wù)分析

本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實(shí)驗(yàn)教科書八年級(jí)(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運(yùn)用勾股定理及其逆定理解決簡(jiǎn)單的實(shí)際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實(shí)踐活動(dòng),這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識(shí);一些探究活動(dòng)具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。

三、本節(jié)課的教學(xué)目標(biāo)是:

1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

2.在將實(shí)際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3.在利用勾股定理解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題是本節(jié)課的重點(diǎn)也是難點(diǎn).

四、教法學(xué)法

1.教學(xué)方法

引導(dǎo)—探究—?dú)w納

本節(jié)課的教學(xué)對(duì)象是初二學(xué)生,他們的參與意識(shí)教強(qiáng),思維活躍,為了實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個(gè)方面對(duì)學(xué)生進(jìn)行引導(dǎo):

(1)從創(chuàng)設(shè)問題情景入手,通過知識(shí)再現(xiàn),孕育教學(xué)過程;

(2)從學(xué)生活動(dòng)出發(fā),順勢(shì)教學(xué)過程;

(3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

2.課前準(zhǔn)備

教具:教材、電腦、多媒體課件.

學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

五、教學(xué)過程分析

本節(jié)課設(shè)計(jì)了七個(gè)環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

1.3勾股定理的應(yīng)用:課后練習(xí)

一、問題引入:

1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

2、勾股定理逆定理:如果三角形三邊長(zhǎng)a,b,c滿足________,那么這個(gè)三角形是直角三角形

1.3勾股定理的應(yīng)用:同步檢測(cè)

1.為迎接新年的到來(lái),同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會(huì),小劉搬來(lái)一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )

A.0.7米B.0.8米C.0.9米D.1.0米

2.小華和小剛兄弟兩個(gè)同時(shí)從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個(gè)( )

A.銳角彎B.鈍角彎C.直角彎D.不能確定

3.如圖,是一個(gè)圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個(gè)小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長(zhǎng)度(罐壁的厚度和小圓孔的大小忽略不計(jì))范圍是( )

A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

4.一個(gè)木工師傅測(cè)量了一個(gè)等腰三角形木板的腰、底邊和高的長(zhǎng),但他把這三個(gè)數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請(qǐng)你幫助他找出來(lái),是第( )組.

A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理教案 篇2

教材分析:

這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版),八年級(jí)上冊(cè)第三

章第一節(jié)“勾股定理”的第一課時(shí)、勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的重要性質(zhì),它把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,它是數(shù)形結(jié)合的典范,它可以解決許多直角三角形中的計(jì)算問題、學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解、

教學(xué)目標(biāo):

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,從探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程、培養(yǎng)學(xué)生主動(dòng)探究意識(shí),發(fā)展合理推理能力,體會(huì)數(shù)形結(jié)合思想、

2、能說出勾股定理,并能用勾股定理解決簡(jiǎn)單問題、

3、在經(jīng)歷數(shù)學(xué)知識(shí)的形成與應(yīng)用過程中培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;感受勾股定理的文化價(jià)值、

教學(xué)重點(diǎn):

探索勾股定理的過程,會(huì)利用兩邊長(zhǎng)求直角三角形的另一邊長(zhǎng)、

教學(xué)難點(diǎn):

用割、補(bǔ)法求面積探索勾股定理、

教學(xué)方法與教學(xué)手段:

采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境、給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有方向地探索、

1、同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識(shí),如果一個(gè)三角形的兩條邊分別長(zhǎng)6和8,你能確定第三邊的長(zhǎng)嗎?你能確定第三邊的長(zhǎng)的范圍嗎?

2、如果這兩邊所夾的角確定了,那么第三邊的長(zhǎng)確定嗎?第三邊的長(zhǎng)是多少?

3、直角三角形兩邊長(zhǎng)確定了,第三邊的長(zhǎng)確定嗎?如何求第三邊的長(zhǎng)呢?這節(jié)課就讓我們一起來(lái)探討這個(gè)問題、板書:直角三角形三邊數(shù)量關(guān)系、

(這是對(duì)三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生的原有認(rèn)知出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo)、當(dāng)一般性的問題不好解決時(shí),可以先將一般問題轉(zhuǎn)化為特殊問題來(lái)研究)

1、(幾何畫板出示),觀察圖形,我們以直角三角形ABC三邊為邊向形外作三個(gè)正方形、若將圖形①②③④⑤剪下,用它們可以拼一個(gè)與正方形ABDE大小一樣的正方形嗎?

(同桌同學(xué)合作拼圖)通過拼圖,你有什么發(fā)現(xiàn)?

(以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積)

(拼圖活動(dòng),引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動(dòng)手能力,體現(xiàn)了活動(dòng)——數(shù)學(xué))

2、拼圖活動(dòng)引發(fā)我們的靈感,運(yùn)算推演證實(shí)我們的猜想、為了計(jì)算面積方便,我們可將這幅圖形放在方格紙中、如果每一個(gè)小方格的邊長(zhǎng)記作“1”,請(qǐng)你求出此時(shí)三個(gè)正方形的面積(SP=9,SQ=16)

如何求SR?(SR的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺(tái)前展示)

(旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,而且此時(shí)斜邊的長(zhǎng)還不能求出來(lái).若有學(xué)生提出,應(yīng)提醒學(xué)生)

肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示、從小明、小麗的方法中你能得到什么啟發(fā)?

(把圖形進(jìn)行“割”和“補(bǔ)“,即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計(jì)算面積的圖形、這種思想方法,稱為化歸思想)

3、變化直角三角形,仿照以上方法計(jì)算直角邊為5和3的直角三角形中以斜邊為邊的正方形面積

(這是“割”和“補(bǔ)”思想的再一次應(yīng)用、讓學(xué)生感受所學(xué)即所用,體驗(yàn)成功的樂趣)

4、通過計(jì)算,你發(fā)現(xiàn)這三個(gè)正方形面積間有什么關(guān)系嗎?

5、利用方格紙,我們方便計(jì)算直角邊為整數(shù)的情況,若直角邊為小數(shù)時(shí),所得到的正方形面積間也有如上關(guān)系嗎?

(利用幾何畫板的高效性、動(dòng)態(tài)性反映這一過程,讓學(xué)生體會(huì)到更多一般的情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻)

6、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系、至此,你對(duì)直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?

(面積是邊長(zhǎng)的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長(zhǎng)間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于斜邊的平方)

(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié)、交流、表達(dá))

7、用彎曲的手臂形象地表示勾、股、弦的概念,再給出勾股定理,進(jìn)而給出字母表達(dá)式、一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音

(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國(guó)悠久歷史文化,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)的情感)

(1)求下列直角三角形中未知邊的長(zhǎng):

(2)求下列圖中未知數(shù)x、y、z的值:

在學(xué)生回答的基礎(chǔ)上,老師規(guī)范板書一題、

(在對(duì)勾股定理基本應(yīng)用的基礎(chǔ)上,讓學(xué)生體會(huì)知道直角三角形三邊中的任意兩邊,可以求第三邊)

學(xué)生可以談本節(jié)課的收獲,也可以提出本節(jié)課的疑問、教師引導(dǎo)學(xué)生思考特殊的三角形直角三角形三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?這是我們今后將要探討的內(nèi)容、

(學(xué)生總結(jié)本堂課的收獲,從內(nèi)容、應(yīng)用,到數(shù)學(xué)思想方法,獲取知識(shí)的途徑等方面,給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說、這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力、最后提及的問題與引入首尾呼應(yīng),激發(fā)了學(xué)生深入研究的興趣)

勾股定理教案 篇3

教學(xué)目標(biāo)

知識(shí)與技能:

了解勾股定理的一些證明方法,會(huì)簡(jiǎn)單應(yīng)用勾股定理解決問題

過程與方法:

在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會(huì)數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

情感態(tài)度價(jià)值觀:

通過對(duì)我國(guó)古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

教學(xué)過程

1、創(chuàng)設(shè)情境

問題1國(guó)際數(shù)學(xué)家大會(huì)是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的“奧運(yùn)會(huì)”。2002年在北京召開了第24屆國(guó)際數(shù)學(xué)家大會(huì)。下圖就是大會(huì)會(huì)徽的圖案。你見過這個(gè)圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個(gè)圖案有什么特別的含義?

師生活動(dòng):教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會(huì)徽?qǐng)D案的含義。

設(shè)計(jì)意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國(guó)際數(shù)學(xué)家大會(huì)的會(huì)徽說起,設(shè)置懸念,引入課題。

2、探究勾股定理

觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界

問題2相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時(shí),發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請(qǐng)你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?

師生活動(dòng):學(xué)生先獨(dú)立觀察思考一分鐘后,小組交流合作分析圖形中兩個(gè)藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論

追問:由這三個(gè)正方形的邊長(zhǎng)構(gòu)成的等腰直角三角形三條邊長(zhǎng)之間又有怎么樣的關(guān)系?

師生活動(dòng):教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長(zhǎng)的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

設(shè)計(jì)意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論

問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測(cè)在一般的直角三角形(在下圖的方格紙中,每個(gè)方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

師生活動(dòng):學(xué)生獨(dú)立思考后小組討論,難點(diǎn)是如何證明求以斜邊為邊長(zhǎng)的正方形的面積,可由師生共同總結(jié)得出可以通過割、補(bǔ)兩種方法,求出其面積。

勾股定理教案 篇4

一、教材分析

(一)教材所處的地位

這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)第十八章第一節(jié)勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

1、知識(shí)技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過程。

2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會(huì)數(shù)形結(jié)合的思想。

3、解決問題:①通過拼圖活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。

②在探究過程中,學(xué)會(huì)與人合作并能與他人交流思維的過程和探究的結(jié)果。

4、情感態(tài)度:①通過介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛祖國(guó),熱愛祖國(guó)悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。

②在探究過程中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神。

(三)本課的教學(xué)重點(diǎn):探索和證明勾股定理

本課的教學(xué)難點(diǎn):用拼圖的方法證明勾股定理

二、教法與學(xué)法分析:

教法分析:針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實(shí)驗(yàn)操作歸納驗(yàn)證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。

學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

三、教學(xué)過程設(shè)計(jì)

(一)提出問題:

首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,2002年在北京召開了第24屆國(guó)際數(shù)學(xué)家大會(huì),它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會(huì)議,被譽(yù)為數(shù)學(xué)界的奧運(yùn)會(huì),這就是本屆大會(huì)會(huì)徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。

其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說,把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。

勾股定理教案 篇5

教學(xué)目標(biāo)

1、知識(shí)與技能目標(biāo)

學(xué)會(huì)觀察圖形,勇于探索圖形間的關(guān)系,培養(yǎng)學(xué)生的空間觀念.

2、過程與方法

(1)經(jīng)歷一般規(guī)律的探索過程,發(fā)展學(xué)生的抽象思維能力.

(2)在將實(shí)際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

3、情感態(tài)度與價(jià)值觀

(1)通過有趣的問題提高學(xué)習(xí)數(shù)學(xué)的興趣.

(2)在解決實(shí)際問題的過程中,體驗(yàn)數(shù)學(xué)學(xué)習(xí)的實(shí)用性.

教學(xué)重點(diǎn):

探索、發(fā)現(xiàn)事物中隱含的勾股定理及其逆及理,并用它們解決生活實(shí)際問題.

教學(xué)難點(diǎn):

利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實(shí)際問題.

教學(xué)準(zhǔn)備:

多媒體

教學(xué)過程:

第一環(huán)節(jié):創(chuàng)設(shè)情境,引入新課(3分鐘,學(xué)生觀察、猜想)

情景:

如圖:在一個(gè)圓柱石凳上,若小明在吃東西時(shí)留下了一點(diǎn)食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

第二環(huán)節(jié):合作探究(15分鐘,學(xué)生分組合作探究)

學(xué)生分為4人活動(dòng)小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計(jì)算方法,通過具體計(jì)算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究?jī)牲c(diǎn)連線最短問題,引導(dǎo)學(xué)生體會(huì)利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計(jì)算.

學(xué)生匯總了四種方案:

(1) (2) (3)(4)

學(xué)生很容易算出:情形(1)中A→B的路線長(zhǎng)為:AA’+d,情形(2)中A→B的路線長(zhǎng)為:AA’+πd/2所以情形(1)的路線比情形(2)要短.

學(xué)生在情形(3)和(4)的比較中出現(xiàn)困難,但還是有學(xué)生提出用剪刀沿母線AA’剪開圓柱得到矩形,前三種情形A→B是折線,而情形(4)是線段,故根據(jù)兩點(diǎn)之間線段最短可判斷(4)最短.

如圖:

(1)中A→B的路線長(zhǎng)為:AA’+d;

(2)中A→B的路線長(zhǎng)為:AA’+A’B>AB;

(3)中A→B的路線長(zhǎng)為:AO+OB>AB;

(4)中A→B的路線長(zhǎng)為:AB.

得出結(jié)論:利用展開圖中兩點(diǎn)之間,線段最短解決問題.在這個(gè)環(huán)節(jié)中,可讓學(xué)生沿母線剪開圓柱體,具體觀察.接下來(lái)后提問:怎樣計(jì)算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圓柱體高為12c,底面半徑為3c,π取3,則.

第三環(huán)節(jié):做一做(7分鐘,學(xué)生合作探究)

教材23頁(yè)

李叔叔想要檢測(cè)雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺,

(1)你能替他想辦法完成任務(wù)嗎?

(2)李叔叔量得AD長(zhǎng)是30厘米,AB長(zhǎng)是40厘米,BD長(zhǎng)是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個(gè)長(zhǎng)度為20厘米的刻度尺,他能有辦法檢驗(yàn)AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

第四環(huán)節(jié):鞏固練習(xí)(10分鐘,學(xué)生獨(dú)立完成)

1.甲、乙兩位探險(xiǎn)者到沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時(shí)后乙出發(fā),他以5/h的速度向正北行走.上午10:00,甲、乙兩人相距多遠(yuǎn)?

2.如圖,臺(tái)階A處的螞蟻要爬到B處搬運(yùn)食物,它怎么走最近?并求出最近距離.

3.有一個(gè)高為1.5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0.5米,問這根鐵棒有多長(zhǎng)?

第五環(huán)節(jié) 課堂小結(jié)(3分鐘,師生問答)

內(nèi)容:

1、如何利用勾股定理及逆定理解決最短路程問題?

第六 環(huán)節(jié):布置作業(yè)(2分鐘,學(xué)生分別記錄)

內(nèi)容:

作業(yè):1.課本習(xí)題1.5第1,2,3題.

要求:A組(學(xué)優(yōu)生):1、2、3

B組(中等生):1、2

C組(后三分之一生):1

板書設(shè)計(jì):

教學(xué)反思:

勾股定理教案 篇6

一、 說教材分析

1. 教材的地位和作用

華師大版八年級(jí)上直角三角形三邊關(guān)系是學(xué)生在學(xué)習(xí)數(shù)的開方和整式的乘除后的一段內(nèi)容,它是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用。

因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:

知識(shí)與技能:

1、經(jīng)歷勾股定理的探索過程,體會(huì)數(shù)形結(jié)合思想。

2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問題。

過程與方法:

1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過程,由特殊到一般的解決問題的方法。

2、在觀察、猜想、歸納、驗(yàn)證等過程中培養(yǎng)學(xué)生的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。

情感、態(tài)度與價(jià)值觀:

1、通過對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

2、在探究活動(dòng)中,體驗(yàn)解決問題方法的多樣性,培養(yǎng)學(xué)生的合作意識(shí)和然所精神。

3、讓學(xué)生通過動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。

由于八年級(jí)的學(xué)生具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以

本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過程,并掌握和運(yùn)用它。

教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。

二、說教法學(xué)法分析:

要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

先從學(xué)生熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問題,引導(dǎo)學(xué)生在自主探究與合作交流中解決問題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生自己的課堂。

學(xué)法:我想通過“操作+思考”這樣方式,有效地讓學(xué)生在動(dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現(xiàn)新知,同時(shí)讓學(xué)生感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。

三、 說教學(xué)程序設(shè)計(jì)

1、 故事引入新課,激起學(xué)生學(xué)習(xí)興趣。

牛頓,瓦特的故事,讓學(xué)生科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

2、探索新知

在這里我設(shè)計(jì)了四個(gè)內(nèi)容:

①探索等腰直角三角形三邊的關(guān)系

②邊長(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系

③學(xué)生畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)

⑤勾股定理歷史介紹,讓學(xué)生體會(huì)勾股定理的文化價(jià)值。

體現(xiàn)從特殊到一般的發(fā)現(xiàn)問題的過程。

3、新知運(yùn)用:

①舉出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)

②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問怎么做?

④如圖,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

4、小結(jié)本課:

學(xué)完了這節(jié)課,你有什么收獲?

老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。數(shù)學(xué)來(lái)源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

反思:

教學(xué)設(shè)計(jì)主要是體現(xiàn)從特殊到一般的知識(shí)形成過程,探索問題的設(shè)計(jì)上有點(diǎn)難,第二個(gè)問題應(yīng)加個(gè)3,3為直角邊的等腰直角三角形讓學(xué)生分割或者補(bǔ)全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時(shí),這個(gè)問題可以不用設(shè)計(jì)進(jìn)去,就為后面的練習(xí)留足時(shí)間。探索時(shí)間較長(zhǎng),整個(gè)課程推行進(jìn)度較慢,練習(xí)較少。

對(duì)學(xué)生的啟發(fā)不夠,對(duì)學(xué)生的關(guān)注不夠,學(xué)生對(duì)問題的思考不能及時(shí)想出來(lái),沒有及時(shí)很好的引導(dǎo),啟發(fā),應(yīng)讓學(xué)生多一些思考的空間,并及時(shí)交給思考的方法。學(xué)生反應(yīng)不是太好,能力差,也或許是因?yàn)閱栴}設(shè)計(jì)的較難,沒有很好的體現(xiàn)出探究。

預(yù)期的目標(biāo)沒有很好的達(dá)成,學(xué)生雖然掌握了勾股定理,但探索熱情沒有點(diǎn)燃,思維能力,動(dòng)手能力,探索精神沒有很好的得到發(fā)展。

勾股定理教案 篇7

一、教材分析

本節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(蘇科版)八年級(jí)上冊(cè)第二章第一節(jié)“勾股定理”的第一課時(shí).在本節(jié)課以前,學(xué)生已經(jīng)學(xué)習(xí)了有關(guān)三角形的一些知識(shí),如三角形的三邊不等關(guān)系,三角形全等的判定等。也學(xué)過不少利用圖形面積來(lái)探求數(shù)式運(yùn)算規(guī)律的例子,如探求乘法公式、單項(xiàng)式乘多項(xiàng)式法則、多項(xiàng)式乘多項(xiàng)式法則等。在學(xué)生這些原有的認(rèn)知水平基礎(chǔ)上,探求直角三角形的又一重要性質(zhì)——勾股定理。讓學(xué)生的知識(shí)形成知識(shí)鏈,讓學(xué)生已具有的數(shù)學(xué)思維能力得以充分發(fā)揮和發(fā)展。

在探求勾股定理的過程中,蘊(yùn)涵了豐富的數(shù)學(xué)思想。把三角形有一個(gè)直角“形”的特點(diǎn)轉(zhuǎn)化為三邊之間的“數(shù)”的關(guān)系,是數(shù)形結(jié)合的典范;把探求邊的關(guān)系轉(zhuǎn)化為探求面積的關(guān)系,將邊不在格線上的圖形轉(zhuǎn)化為可計(jì)算的格點(diǎn)圖形,是轉(zhuǎn)化思想的體現(xiàn);先探求特殊的直角三角形的三邊關(guān)系,再猜測(cè)一般直角三角形的三邊關(guān)系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要?jiǎng)?chuàng)設(shè)問題串,提供學(xué)生活動(dòng)的方案,讓學(xué)生在活動(dòng)中思考,在思考中創(chuàng)新,認(rèn)識(shí)和理解勾股定理,并能利用勾股定理解決一些簡(jiǎn)單的有關(guān)直角三角形的計(jì)算問題.

二、教學(xué)目標(biāo)

1、讓學(xué)生經(jīng)歷從數(shù)到形再由形到數(shù)的轉(zhuǎn)化過程,經(jīng)歷探求三個(gè)正方形面積間的關(guān)系轉(zhuǎn)化為三邊數(shù)量關(guān)系的過程。并從過程中讓學(xué)生體會(huì)數(shù)形結(jié)合思想,發(fā)展將未知轉(zhuǎn)化為已知,由特殊推測(cè)一般的合情推理能力。

2、讓學(xué)生經(jīng)歷拼圖實(shí)驗(yàn)、計(jì)算面積的過程,在過程中養(yǎng)成獨(dú)立思考、合作交流的學(xué)習(xí)習(xí)慣;讓各類型的學(xué)生在這些過程中發(fā)揮自己特長(zhǎng),通過解決問題增強(qiáng)自信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣;通過老師的介紹,感受勾股定理的文化價(jià)值.

3、能說出勾股定理,并能用勾股定理解決簡(jiǎn)單問題.

三、教學(xué)重點(diǎn)

勾股定理的探索過程.

四、教學(xué)難點(diǎn)

將邊不在格線上的圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計(jì)算圖形面積.

五、教學(xué)方法與教學(xué)手段

采用探究發(fā)現(xiàn)式教學(xué),提供適當(dāng)?shù)膯栴}情境.給學(xué)生自主探究交流的空間,引導(dǎo)學(xué)生有目的地探索.

六、教學(xué)過程

(一)創(chuàng)設(shè)情境 提出問題

1.同學(xué)們,我們已經(jīng)學(xué)過三角形的一些基本知識(shí),如果一個(gè)三角形的兩條邊分別長(zhǎng)6和8,你知道第三邊的長(zhǎng)嗎?你知道第三邊長(zhǎng)的范圍嗎?

2.如果又已知這兩邊的夾角,那么第三邊的長(zhǎng)是多少?

3.已知直角三角形的兩邊的長(zhǎng),如何求第三邊的長(zhǎng)呢?這節(jié)課就讓我們一起來(lái)探討這個(gè)問題.板書:直角三角形三邊數(shù)量關(guān)系.

(這是對(duì)三角形三邊的不等關(guān)系和三角形全等的判定的回顧,從學(xué)生從原有的認(rèn)知水平出發(fā),揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理,也自然地引出本節(jié)課的目標(biāo).讓學(xué)生體會(huì)到當(dāng)一般性的問題不好解決時(shí),可以先將一般問題轉(zhuǎn)化為特殊問題來(lái)研究.)

(二)實(shí)踐探索 猜想歸納

1、用什么方法來(lái)探求板書:直角三角形三邊數(shù)量關(guān)系呢?

回憶我們?cè)?jīng)利用圖形面積探索過數(shù)學(xué)公式,大家還記得在哪用過嗎?

(學(xué)生討論)

課件展示:平方差公式、完全平方公式、單項(xiàng)式乘多項(xiàng)式、多項(xiàng)式乘多項(xiàng)式.

今天,讓我們?cè)囈辉囃ㄟ^計(jì)算圖形的面積能不能得到直角三角形三邊數(shù)量關(guān)系.

(從學(xué)生已有的學(xué)習(xí)經(jīng)驗(yàn)出發(fā),將探求邊長(zhǎng)之間的關(guān)系轉(zhuǎn)化為探求面積之間的關(guān)系,讓學(xué)生覺得解決今天問題的方法并不陌生,增強(qiáng)探索問題的信心.)

2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個(gè)正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個(gè)與正方形ABDE大小一樣的正方形嗎?

(同位利用教師提供的學(xué)案,合作拼圖。)

通過拼圖,你有什么發(fā)現(xiàn)?

(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動(dòng),引發(fā)了學(xué)生的猜想,增加了研究的趣味性,鍛煉了學(xué)生的空間思維能力和動(dòng)手能力.體現(xiàn)了活動(dòng)——數(shù)學(xué)的思想.)

3、拼圖活動(dòng)引發(fā)我們的靈感;運(yùn)算推演

證實(shí)我們的猜想.為了計(jì)算面積方便,我們可

將這幅圖形放在方格紙中.如果每一個(gè)小方格的邊長(zhǎng)記作“1”,請(qǐng)你求出圖中三個(gè)正方形的面積(圖4).

(學(xué)生容易回答SP=9,SQ=16。)

你是如何得到的?

(可以數(shù)圖形中的小方格的個(gè)數(shù),也可以通

過正方形面積公式計(jì)算得到。)

如何計(jì)算 ?

(的求法是這節(jié)課的難點(diǎn),這時(shí)可讓學(xué)生先在學(xué)案上獨(dú)立分析,再通過小組交流,最后由小組代表到臺(tái)前展示.學(xué)生可能提出割(圖5)、補(bǔ)(圖6)、平移(圖7)、旋轉(zhuǎn)(圖8)等方法,旋轉(zhuǎn)這種方法只適用于斜邊為整數(shù)的情況,沒有一般性,若有學(xué)生提出,應(yīng)提醒學(xué)生.)

4、肯定學(xué)生的研究成果,進(jìn)而讓學(xué)生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?

(把圖形進(jìn)行“割”和“補(bǔ)”,即把不能利用網(wǎng)格線直接計(jì)算面積的圖形轉(zhuǎn)化成可以利用網(wǎng)格線直接計(jì)算面積的圖形,讓學(xué)生體會(huì)將較難的問題轉(zhuǎn)化為簡(jiǎn)單問題的思想)

5、再給出直角邊為5和3的直角三角形(圖9),讓學(xué)生計(jì)算分別以三邊作為邊所作的正方形面積.

(這是轉(zhuǎn)化思想,也是“割補(bǔ)”方法的再一次應(yīng)用.在

前面的探求過程中有的學(xué)生沒能自己做出來(lái),提供再一次的機(jī)會(huì),可讓全體學(xué)生再次感受轉(zhuǎn)化思想,體驗(yàn)成功的樂趣.)

通過計(jì)算,你發(fā)現(xiàn)這三個(gè)正方形面積間有什么關(guān)系嗎?

(SP+SQ=SR,要給學(xué)生留有思考時(shí)間.)

6、通過以上的實(shí)驗(yàn)、操作、計(jì)算,我們發(fā)現(xiàn)以直角三角形的各邊為邊所作的正方形的面積之間有什么關(guān)系呢?同學(xué)們還有什么疑問嗎?

(以直角邊為邊所作的`正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學(xué)生提出我們討論的都是邊長(zhǎng)為整數(shù)的直角三角形情況,那么邊長(zhǎng)是小數(shù)時(shí),結(jié)論是否成立?教師就演示以下實(shí)驗(yàn)。)

利用方格紙,我們方便計(jì)算直角邊為整數(shù)的情況,若直角邊為小數(shù)時(shí),所得到的正方形面積之間也有如上關(guān)系嗎?

將網(wǎng)格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

(利用幾何畫板的高效性、動(dòng)態(tài)性反映這一過程,讓學(xué)生體會(huì)到更多的特殊情形,從而為歸納提供基礎(chǔ),這樣歸納的結(jié)論更具有一般性,學(xué)生的印象也更深刻.)

7、我們這節(jié)課是探索直角三角形三邊數(shù)量關(guān)系.至此,你對(duì)直角三角形三邊的數(shù)量關(guān)系有什么發(fā)現(xiàn)?

(面積是邊長(zhǎng)的平方,面積間的等量關(guān)系轉(zhuǎn)化為邊長(zhǎng)間的等量關(guān)系,即直角三角形三邊的等量關(guān)系:兩直角邊的平方和等于下邊的平方.)

(這一問題的結(jié)論是本節(jié)課的點(diǎn)睛之筆,應(yīng)充分讓學(xué)生總結(jié),交流,表達(dá).)

8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進(jìn)而給出字母表達(dá)式.一段緊張的探索過程之后,播放一段有關(guān)勾股歷史的錄音.

(這樣既活躍了課堂氣氛,又展現(xiàn)了勾股歷史,激發(fā)學(xué)生熱愛祖國(guó)悠久歷史文化,

激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)的情感.)

9、閱讀課本,提出問題

(讓學(xué)生有將知識(shí)內(nèi)化為自己的知識(shí)結(jié)構(gòu)的過程,教師巡視,對(duì)有困難的同學(xué)給予幫助,促進(jìn)全班同學(xué)共同進(jìn)步,體現(xiàn)面向全體的教學(xué)原則.)

(三)課堂練習(xí) 鞏固新知

1.完成課本第45頁(yè)練習(xí)第1題、第2題.

(1)求下列直角三角形中未知邊的長(zhǎng):

(2)求下列圖中未知數(shù)x、y、z的值:

(充分利用課本,在前面閱讀的基礎(chǔ)上做課本上的練習(xí)題。提問學(xué)生口答,老師再規(guī)范板書一題.通過對(duì)勾股定理的基本應(yīng)用,讓學(xué)生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

2、 如圖:一塊長(zhǎng)約80 m、寬約60 m的長(zhǎng)方形草坪,被幾個(gè)不自覺的學(xué)生沿對(duì)角線踏出了一條斜“路”,這種情況在生活中時(shí)有發(fā)生。請(qǐng)問同學(xué)們:

(1)這幾位同學(xué)為什么不走正路,走斜“路”?

(2)他們知道走斜“路”比正路少走幾步嗎?

(3)他們這樣這樣做,值得嗎?

(這是一道貼近學(xué)生生活的實(shí)例,在勾股定理的運(yùn)用中滲透了德育教育.)

(四)課堂小結(jié) 布置作業(yè)

1、通過本節(jié)課的學(xué)習(xí),大家有什么收獲?有什么疑問?你認(rèn)為還有什么要繼續(xù)探索的問題?

(學(xué)生總結(jié)本堂課的收獲,可以是知識(shí)、應(yīng)用、數(shù)學(xué)思想方法以及獲取新知的途徑等.給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生的綜合表達(dá)能力.如果學(xué)生沒有提出繼續(xù)要探討的問題,教師可以引導(dǎo)學(xué)生思考:直角三角形的三邊有特殊的等量關(guān)系,一般三角形三邊是否也存在一種等量關(guān)系呢?再展示上課開始的問題:如果一個(gè)三角形的兩條邊分別長(zhǎng)6和8,這兩邊的夾角確定了,你知道第三邊的長(zhǎng)是多少?這是我們今后將要探討的內(nèi)容,首尾呼應(yīng),激發(fā)學(xué)生不滿足于現(xiàn)狀,有不斷提出新問題的欲望,即培養(yǎng)學(xué)生的創(chuàng)新意識(shí).)

2、作業(yè)

(1)課本第471頁(yè)第2題,并完成第45頁(yè)的實(shí)驗(yàn)。

(2)在以下網(wǎng)頁(yè)中你可以找到有關(guān)勾股定理的豐富的內(nèi)容,請(qǐng)你結(jié)合本節(jié)課的學(xué)習(xí)

和從網(wǎng)上或書本上自學(xué)到的知識(shí)寫一篇有關(guān)勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

n

(作業(yè)的多元化、多層次,有利于全體學(xué)生的全面素質(zhì)發(fā)展。)教育大全

七、教學(xué)設(shè)計(jì)說明:

本節(jié)課根據(jù)學(xué)生的認(rèn)知結(jié)構(gòu)采用“觀察--猜想--歸納--驗(yàn)證--應(yīng)用”的教學(xué)方法,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想.

本節(jié)課從學(xué)生的原有認(rèn)知出發(fā)提出問題,揭示這節(jié)課產(chǎn)生的根源,符合學(xué)生的認(rèn)知心理.教科書設(shè)計(jì)了在方格紙上通過計(jì)算面積的方法探究勾股定理的活動(dòng),在此基礎(chǔ)上,為了更好地展示這一探索過程,本節(jié)課先讓學(xué)生回顧利用圖形面積探求數(shù)學(xué)公式的經(jīng)歷,以此確定研究方法.繼而設(shè)計(jì)了剪紙活動(dòng),從中引發(fā)學(xué)生的猜想,再利用幾何畫板這一工具帶領(lǐng)學(xué)生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學(xué)生充分經(jīng)歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點(diǎn),應(yīng)讓學(xué)生充分地思考、討論、總結(jié)方法.通過對(duì)特殊到一般的考查,讓學(xué)生主動(dòng)建立由數(shù)到形,由形到數(shù)的聯(lián)想,從中使學(xué)生不斷積累數(shù)學(xué)活動(dòng)的經(jīng)驗(yàn),歸納出直角三角形三邊數(shù)量之間的關(guān)系.在教學(xué)中鼓勵(lì)學(xué)生采用觀察分析,自主探索,合作交流的學(xué)習(xí)方法,培養(yǎng)學(xué)生主動(dòng)的動(dòng)手,動(dòng)腦,動(dòng)口的學(xué)習(xí)習(xí)慣和能力,使學(xué)生真正成為學(xué)習(xí)的主人.

除了探究出勾股定理的內(nèi)容以外,本節(jié)課還適時(shí)地向?qū)W生展現(xiàn)勾股定理的歷史,特別是通過介紹我國(guó)古代在勾股定理研究和運(yùn)用方面的成就,激發(fā)學(xué)生愛國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感和探索創(chuàng)新的精神.

練習(xí)反饋中既有勾股定理的基本應(yīng)用,還有貼近學(xué)生生活的實(shí)例,既讓學(xué)生感受到學(xué)習(xí)知識(shí)應(yīng)用于生活的成就感,又使學(xué)生深刻了解勾股定理的廣泛應(yīng)用.題目的設(shè)計(jì)中滲透了德育教育,拓展了學(xué)生的空間思維,使得一節(jié)幾何課全面地考查了學(xué)生的各方面思維.

讓學(xué)生總結(jié)本堂課的收獲,從內(nèi)容,到數(shù)學(xué)思想方法,到獲取知識(shí)的途徑等方面.給學(xué)生自由的空間,鼓勵(lì)學(xué)生多說.這樣引導(dǎo)學(xué)生從多角度對(duì)本節(jié)課歸納總結(jié),感悟點(diǎn)滴,使學(xué)生將知識(shí)系統(tǒng)化,提高學(xué)生素質(zhì),鍛煉學(xué)生的綜合及表達(dá)能力.

作業(yè)為了達(dá)到提高鞏固的目的,提供給學(xué)生網(wǎng)址是為了拓展學(xué)生的視野,以期學(xué)生能主動(dòng)地探求對(duì)勾股定理更深入的認(rèn)識(shí).

勾股定理教案15篇


俗話說,做什么事都要有計(jì)劃和準(zhǔn)備。幼兒園的老師都希望自己講的課學(xué)生們愛聽,能學(xué)習(xí)的更好,為了防止學(xué)生抓不住重點(diǎn),教案就顯得非常重要,教案有利于老師在課堂上與學(xué)生更好的交流。寫好一份優(yōu)質(zhì)的幼兒園教案要怎么做呢?或許你正在查找類似"勾股定理教案15篇"這樣的內(nèi)容,歡迎閱讀,希望大家能夠喜歡!

勾股定理教案【篇1】

1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).

創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.

⑵依題意畫出圖形;

⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR―∠QPS=45°.

小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).

例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.

分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);

⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;

⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

解略.

本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí).

勾股定理教案【篇2】

(一)創(chuàng)設(shè)情景

多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?

問題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

(二)動(dòng)手操作

⒈課件出示課本P99圖19.2.1:

觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

⒉緊接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過程,提高學(xué)生的分析問題和解決問題的能力。

⒊再問:當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

(三)歸納驗(yàn)證

【歸納】通過動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過程中感受學(xué)數(shù)學(xué)的樂趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問題。

【驗(yàn)證】先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

(四)問題解決

⒈讓學(xué)生解決開始上課前所提出的問題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂。

⒉自學(xué)課本P101例1,然后完成P102練習(xí)。

(五)課堂小結(jié)

1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

2.教師用多媒體介紹“勾股定理史話”

①《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

目的是對(duì)學(xué)生進(jìn)行愛國(guó)主義教育,激勵(lì)學(xué)生奮發(fā)向上。

(六)布置作業(yè)

課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

以上內(nèi)容,我僅從“說教材”,“說學(xué)情”、“說教法”、“說學(xué)法”、“說教學(xué)過程”上來(lái)說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對(duì)本次說課提出寶貴的意見,謝謝!

勾股定理教案【篇3】

1、勾股定理

勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.

即直角三角形兩直角的平方和等于斜邊的平方.

因此,在運(yùn)用勾股定理計(jì)算三角形的邊長(zhǎng)時(shí),要注意如下三點(diǎn):

(1)注意勾股定理的使用條件:只對(duì)直角三角形適用,而不適用于銳角三角形和鈍角三角形;

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯(cuò);

(3)注意勾股定理公式的變形:在直角三角形中,已知任意兩邊,可求第三邊長(zhǎng).即c2=a2+b2,a2=c2-b2,b2=c2-a2.

2.學(xué)會(huì)用拼圖法驗(yàn)證勾股定理

拼圖法驗(yàn)證勾股定理的基本思想是:借助于圖形的面積來(lái)驗(yàn)證,依據(jù)是對(duì)圖形經(jīng)過割補(bǔ)、拼接后面積不變的原理.

如,利用四個(gè)如圖1所示的直角三角形三角形,拼出如圖2所示的三個(gè)圖形.

請(qǐng)讀者證明.

如上圖示,在圖(1)中,利用圖1邊長(zhǎng)為a,b,c的四個(gè)直角三角形拼成的一個(gè)以c為邊長(zhǎng)的正方形,則圖2(1)中的小正方形的邊長(zhǎng)為(b-a),面積為(b-a)2,四個(gè)直角三角形的面積為4×ab=2ab.

由圖(1)可知,大正方形的面積=四個(gè)直角三角形的面積+小正方形的的面積,即c2=(b-a)2+2ab,則a2+b2=c2問題得證.

請(qǐng)同學(xué)們自己證明圖(2)、(3).

3.在數(shù)軸上表示無(wú)理數(shù)

將在數(shù)軸上表示無(wú)理數(shù)的問題轉(zhuǎn)化為化長(zhǎng)為無(wú)理數(shù)的線段長(zhǎng)問題.第一步:利用勾股定理拆分出哪兩條線段長(zhǎng)的平方和等于所畫線段(斜邊)長(zhǎng)的平方,注意一般其中一條線段的長(zhǎng)是整數(shù);第二步:以數(shù)軸原點(diǎn)為直角三角形斜邊的頂點(diǎn),構(gòu)造直角三角形;第三步:以數(shù)軸原點(diǎn)圓心,以斜邊長(zhǎng)為半徑畫弧,即可在數(shù)軸上找到表示該無(wú)理數(shù)的點(diǎn).

二、典例精析

例1如果直角三角形的斜邊與一條直角邊的長(zhǎng)分別是13cm和5cm,那么這個(gè)直角三角形的面積是cm2.

分析:欲求直角三角形的面積,已知一直角三角形的斜邊與一條直角邊的長(zhǎng),則求得另一直角邊的長(zhǎng)即可.根據(jù)勾股定理公式的變形,可求得.

解:由勾股定理,得

132-52=144,所以另一條直角邊的長(zhǎng)為12.

所以這個(gè)直角三角形的面積是×12×5=30(cm2).

例2如圖3(1),一只螞蟻沿棱長(zhǎng)為a的正方體表面從頂點(diǎn)A爬到

頂點(diǎn)B,則它走過的最短路程為()

A.B.C.3aD.分析:本題顯然與例2屬同種類型,思路相同.但正方體的

各棱長(zhǎng)相等,因此只有一種展開圖.

解:將正方體側(cè)面展開

勾股定理教案【篇4】

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

(二)、教學(xué)目標(biāo):

根據(jù)數(shù)學(xué)課標(biāo)的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實(shí)際我確定了本節(jié)課的教學(xué)目標(biāo)。

知識(shí)技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個(gè)三角形是不是直角三角形

過程與方法:

1、通過對(duì)勾股定理的逆定理的探索,經(jīng)歷知識(shí)的發(fā)生、發(fā)展與形成的過程

2、通過用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形結(jié)合方法的應(yīng)用

3、通過勾股定理的逆定理的證明,體會(huì)數(shù)與形結(jié)合方法在問題解決中的作用,并能運(yùn)用勾股定理的逆定理解決相關(guān)問題。

情感態(tài)度:

1、通過用三角形三邊的數(shù)量關(guān)系來(lái)判斷三角形的形狀,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系

2、在探究勾股定理的逆定理的活動(dòng)中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識(shí)和探究精神

(三)、學(xué)情分析:

盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣如何添輔助線就是解決它的關(guān)鍵,這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)和關(guān)鍵。

二、教學(xué)過程:

本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的,

(一)、復(fù)習(xí)回顧: 復(fù)習(xí)回顧與勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

一開課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的'知識(shí)可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?……。這個(gè)問題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)造了我要學(xué)的氣氛,同時(shí)也說明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

(三)、學(xué)生在教師的指導(dǎo)下嘗試解決問題,總結(jié)規(guī)律(包括難點(diǎn)突破)

因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過動(dòng)手折紙?jiān)诰唧w的實(shí)踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手裁出了一個(gè)兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過程中享受到自我創(chuàng)造的快樂。

在同學(xué)們完成證明之后,可讓他們對(duì)照課本把證明過程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學(xué)生看書的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

勾股定理教案【篇5】

1.掌握勾股定理,了解利用拼圖驗(yàn)證勾股定理的方法.

1.學(xué)會(huì)用拼圖的方法驗(yàn)證勾股定理,培養(yǎng)學(xué)生的'創(chuàng)新能力和解決實(shí)際問題的能力.

2.在拼圖過程中,鼓勵(lì)學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí).

利用拼圖的方法驗(yàn)證勾股定理,是我國(guó)古代數(shù)學(xué)家的一大貢獻(xiàn).借助對(duì)學(xué)生進(jìn)行愛國(guó)主義教育.并在拼圖的過程中獲得學(xué)習(xí)數(shù)學(xué)的快樂,提高學(xué)習(xí)數(shù)學(xué)的興趣.

教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法.

在用拼圖的方法驗(yàn)證勾股定理的過程中.教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來(lái),讓學(xué)生自主探索,大膽地聯(lián)系前面知識(shí),推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實(shí)際問題.

1.每個(gè)學(xué)生準(zhǔn)備一張硬紙板;

[師]我們?cè)鴮W(xué)習(xí)過整式的運(yùn)算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰(shuí)還能記得當(dāng)時(shí)這兩個(gè)公式是如何推出的?

[生]利用多項(xiàng)式乘以多項(xiàng)式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

[生]還可以用拼圖的方法來(lái)推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個(gè)邊長(zhǎng)為a的正方形,一個(gè)邊長(zhǎng)為b的正方形,兩個(gè)長(zhǎng)和寬分別為a和b的長(zhǎng)方形可拼成如下圖所示的邊長(zhǎng)為(a+b)的正方形,那么這個(gè)大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理教案【篇6】

一、說教材分析

本節(jié)研究的是勾股定理的探索及其應(yīng)用。它從邊的角度進(jìn)一步對(duì)直角三角形的特征進(jìn)行了刻畫。 它的主要內(nèi)容是探索勾股定理,驗(yàn)證勾股定理的正確性,在此基礎(chǔ)上,讓學(xué)生利用勾股定理來(lái)解決一些實(shí)際問題。本節(jié)課是在學(xué)生認(rèn)識(shí)直角三角形的基礎(chǔ)上,在了解正方形和等腰直角三角形以后進(jìn)行學(xué)習(xí)的,它是前面所學(xué)知識(shí)的延伸和拓展,又是后面學(xué)習(xí)勾股定理逆定理的基礎(chǔ),具有承上啟下的作用。

二、說教學(xué)目標(biāo)

教學(xué)目標(biāo)的確定:教學(xué)目標(biāo)是一堂課的中心任務(wù),它只有在豐富多彩的數(shù)學(xué)活動(dòng)中才能充分實(shí)現(xiàn)。一堂課的教學(xué)目標(biāo)應(yīng)全面、適度、明確、具體,便于檢測(cè)。因此根據(jù)學(xué)生已有的認(rèn)知基礎(chǔ)和新課程標(biāo)準(zhǔn),我確定了本節(jié)課教學(xué)目標(biāo)為:

1、知識(shí)技能:

(1)了解勾股定理的文化背景,體驗(yàn)勾股定理的探索和驗(yàn)證過程。

(2)運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和解釋生活中的實(shí)際問題。

(3)運(yùn)用勾股定理會(huì)在數(shù)軸上畫出表示無(wú)理數(shù)的點(diǎn)。

2、數(shù)學(xué)思考:

在勾股定理的探索、從實(shí)際問題抽象出直角三角形和在數(shù)軸上畫出表示無(wú)理數(shù)的點(diǎn)的過程中,發(fā)展合情推理能力,初步體會(huì)、掌握轉(zhuǎn)化和數(shù)形結(jié)合的思想方法。

3、解決問題:

通過拼圖、探究活動(dòng),體驗(yàn)數(shù)學(xué)思維的嚴(yán)謹(jǐn)性,發(fā)展形象思維。學(xué)會(huì)與人合作并能與他人交流思維的過程和探究的結(jié)果。能夠運(yùn)用勾股定理解決直角三角形,在數(shù)軸上畫出表示無(wú)理數(shù)的點(diǎn)等有關(guān)實(shí)際問題。

4、情感態(tài)度:

(1)通過對(duì)勾股定理歷史的了解和實(shí)例應(yīng)用,體會(huì)勾股定理的文化價(jià)值,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)熱情。

(2)通過獲得成功的經(jīng)驗(yàn)和克服困難的經(jīng)歷,增進(jìn)數(shù)學(xué)學(xué)習(xí)的信心。

(3)通過研究一系列富有探究性的問題,培養(yǎng)學(xué)生與他人交流、合作的意識(shí)和品質(zhì)。

三、說教學(xué)重、難點(diǎn)

教學(xué)重、難點(diǎn)的確定:關(guān)注學(xué)生是否能與同伴進(jìn)行有效的合作交流;關(guān)注學(xué)生是否積極的進(jìn)行思考;關(guān)注學(xué)生能否探索出解決問題的方法。

重點(diǎn):通過探索、拼圖驗(yàn)證勾股定理及勾股定理的應(yīng)用過程,使學(xué)生獲得一些研究問題與合作交流的方法經(jīng)驗(yàn)。

難點(diǎn):利用數(shù)形結(jié)合的方法探索發(fā)現(xiàn)、驗(yàn)證勾股定理及其在實(shí)際生活中的應(yīng)用。

四、知識(shí)反映出來(lái)的技能、能力、方法、德育等因素

本節(jié)知識(shí)通過 “ 探索發(fā)現(xiàn)---拼圖實(shí)踐—探索驗(yàn)證—分析結(jié)果—運(yùn)用定理 ” 等活動(dòng)過程,使學(xué)生進(jìn)一步理解勾股定理,并從中學(xué)會(huì)思考,學(xué)會(huì)探索,學(xué)會(huì)運(yùn)用,學(xué)會(huì)交流,體會(huì)知識(shí)反映出來(lái)的豐富的文化內(nèi)涵,指導(dǎo)學(xué)生認(rèn)識(shí)現(xiàn)實(shí)世界中蘊(yùn)涵著的數(shù)學(xué)信息。

五、教學(xué)方法

數(shù)學(xué)知識(shí)、數(shù)學(xué)思想和方法必須由學(xué)生在現(xiàn)實(shí)的數(shù)學(xué)活動(dòng)實(shí)踐中理解和發(fā)展;教學(xué)中,以學(xué)生為本位,充分挖掘教材的空間,為學(xué)生搭建動(dòng)手實(shí)踐、自主探索、合作交流的平臺(tái);

注重讓學(xué)生經(jīng)歷數(shù)學(xué)知識(shí)的形成過程,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,并通過這個(gè)過程,使學(xué)生體驗(yàn)學(xué)習(xí)成功的樂趣,在積極的思維中獲取知識(shí),發(fā)展能力。

六、教學(xué)程序設(shè)計(jì):

為充分發(fā)揮學(xué)生的主體性和教師的主導(dǎo)輔助作用,設(shè)計(jì)了以下幾個(gè)環(huán)節(jié):

(1)創(chuàng)設(shè)情境,引入新課

問題

某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問消防隊(duì)能否進(jìn)入三樓滅火?

師生行為:教師出示照片及圖片,并提出問題,學(xué)生觀察圖片發(fā)表見解。

設(shè)計(jì)意圖:從現(xiàn)實(shí)生活中提出勾股定理,為學(xué)生能夠積極主動(dòng)的投入到探索活動(dòng)創(chuàng)設(shè)情景,激發(fā)學(xué)生學(xué)習(xí)熱情。同時(shí)為探索勾股定理提供背景材料。達(dá)到引入新課的目的。

(1)獨(dú)立探究,合作交流。

講述數(shù)學(xué)家畢達(dá)哥拉斯的故事

問題

A、B、C的面積有什么關(guān)系?

SA+SB=SC

直角三角形三邊有什么關(guān)系?

兩直邊的平方和等于斜邊的平方

設(shè)計(jì)意圖:?jiǎn)栴}是思維的起點(diǎn),通過激發(fā)學(xué)生好奇、探究和主動(dòng)學(xué)習(xí)的欲望。利用面積相等法,讓學(xué)生發(fā)現(xiàn)以直角三角形兩直角邊為邊長(zhǎng)的正方形的面積,以斜邊為邊長(zhǎng)的正方形的面積之間的關(guān)系。降低學(xué)生學(xué)習(xí)難度,從(3)自主實(shí)踐,探索驗(yàn)證

《課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動(dòng)的教學(xué)?!币髮W(xué)生分學(xué)習(xí)小組,動(dòng)手實(shí)踐,積極思考,獲得技能與解決問題的方法。關(guān)注學(xué)生動(dòng)手實(shí)踐,關(guān)注學(xué)生主動(dòng)探索與合作,關(guān)注學(xué)生積極思考,給學(xué)生思維表達(dá)的時(shí)間、空間,讓學(xué)生經(jīng)歷探索知識(shí)的過程,并在這個(gè)過程中得到發(fā)展.。

兩種拼圖方案

1、2、

師生行為:教師演示動(dòng)畫和圖片,同時(shí)提出問題,學(xué)生在獨(dú)立思考的基礎(chǔ)上以小組為單位,動(dòng)手拼接,教師深入小組活動(dòng)傾聽學(xué)生的交流,幫助、指導(dǎo)學(xué)生完成拼圖活動(dòng)。學(xué)生展示分割、拼接的過程。

設(shè)計(jì)意圖:通過觀察、拼圖、探究活動(dòng),給學(xué)生充分的時(shí)間與空間討論、交流,鼓勵(lì)學(xué)生敢于發(fā)表自己的見解,感受合作的重要性,充分調(diào)動(dòng)學(xué)生思維的積極性,發(fā)展形象思維,使學(xué)生對(duì)定理更加深刻,通過這一教學(xué)過程來(lái)達(dá)到突破難點(diǎn)的目的。

(4)應(yīng)用定理,解決問題

數(shù)學(xué)源于實(shí)踐,運(yùn)用于實(shí)踐;開放性處理教材,鼓勵(lì)學(xué)生充分地發(fā)表意見,表現(xiàn)自我,讓學(xué)生在教師營(yíng)造的“創(chuàng)新土壤”中成為主人;給學(xué)生思維以廣闊的空間,培養(yǎng)學(xué)生從多角度運(yùn)用所學(xué)知識(shí)尋求解決問題的能力.

勾股定理教案【篇7】

一、例題的意圖分析

例1(P83例2)讓學(xué)生養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí)。

例2(補(bǔ)充)培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí)。

二、課堂引入

創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法。

三、例習(xí)題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí)。

例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀。

分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);

⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;

⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形。

解略。

四、課堂練習(xí)

1.小強(qiáng)在操場(chǎng)上向東走80m后,又走了60m,再走100m回到原地。小強(qiáng)在操場(chǎng)上向東走了80m后,又走60m的方向是。

2.如圖,在操場(chǎng)上豎直立著一根長(zhǎng)為2米的測(cè)影竿,早晨測(cè)得它的影長(zhǎng)為4米,中午測(cè)得它的影長(zhǎng)為1米,則A、B、C三點(diǎn)能否構(gòu)成直角三角形?為什么?

3.如圖,在我國(guó)沿海有一艘不明國(guó)籍的輪船進(jìn)入我國(guó)海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個(gè)基地前去攔截,六分鐘后同時(shí)到達(dá)C地將其攔截。已知甲巡邏艇每小時(shí)航行120海里,乙巡邏艇每小時(shí)航行50海里,航向?yàn)楸逼?0°,問:甲巡邏艇的航向

勾股定理教案【篇8】

隨著社會(huì)的發(fā)展,新課程改革的不斷深入,數(shù)學(xué)課已不僅是一些數(shù)學(xué)知識(shí)的學(xué)習(xí),更重要的是體現(xiàn)知識(shí)的認(rèn)知發(fā)展過程。教育的目的是培養(yǎng)具有獨(dú)立思考能力、具有實(shí)踐精神和創(chuàng)新能力的人。一堂好課應(yīng)該是學(xué)生最大限度參與的課?!稊?shù)學(xué)課程標(biāo)準(zhǔn)》中指出學(xué)生的數(shù)學(xué)學(xué)習(xí)應(yīng)當(dāng)是現(xiàn)實(shí)的、有意義的、富有挑戰(zhàn)性的,內(nèi)容要有利與學(xué)生主動(dòng)進(jìn)行觀察、實(shí)驗(yàn)、猜想、驗(yàn)證、推理與交流。內(nèi)容的呈現(xiàn)應(yīng)采取不同的表達(dá)方式,以滿足多樣化的學(xué)習(xí)需求。數(shù)學(xué)活動(dòng)不能單純的依賴模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。

本節(jié)知識(shí)是在學(xué)生掌握了直角三角形的三個(gè)性質(zhì):直角三角形兩銳角互余和30°所對(duì)的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的角為30°的基礎(chǔ)上展開的。勾股定理是直角三角形的一個(gè)非常重要的性質(zhì),它揭示了一個(gè)直角三角形三邊的數(shù)量關(guān)系,可解決直角三角形的許多有關(guān)的計(jì)算,是初三解直角三角形的主要依據(jù)之一,中考中的四邊形和圓等綜合題中也經(jīng)常出現(xiàn)。貫穿了整個(gè)幾何學(xué)習(xí),更是數(shù)形結(jié)合的重要典范。更重要的是學(xué)生在探索定理的過程中,無(wú)論是課前準(zhǔn)備和課上交流以及課下活動(dòng)都讓學(xué)生充分感受到學(xué)習(xí)、思考的重要性,與人合作的重要性以及數(shù)學(xué)在實(shí)際生活中的重要作用,是進(jìn)行愛國(guó)教育的重要題材!

本節(jié)課的教育對(duì)象是初二下的學(xué)生,共性是思維活躍,參與意識(shí)較強(qiáng)。而且一般家庭都有電腦,對(duì)教師布置的網(wǎng)上作業(yè)也頗感興趣,并能制作簡(jiǎn)單課件。形成了一定的數(shù)學(xué)學(xué)習(xí)習(xí)慣。

2、會(huì)利用勾股定理進(jìn)行直角三角形的簡(jiǎn)單計(jì)算。

經(jīng)歷課前預(yù)習(xí)和課上觀察、分析、歸納、猜想、驗(yàn)證并運(yùn)用實(shí)踐的過程,了解數(shù)學(xué)知識(shí)的生成與發(fā)展過程。通過了解勾股定理的幾個(gè)著名證法(趙爽證法、歐幾里得證法等),使學(xué)生感受數(shù)學(xué)證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內(nèi)涵。使學(xué)生自主學(xué)習(xí)能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識(shí)。

1、通過自主學(xué)習(xí)培養(yǎng)學(xué)生探究、發(fā)現(xiàn)問題的能力,體驗(yàn)獲取數(shù)學(xué)知識(shí)的過程。

2、通過小組合作、探索培養(yǎng)學(xué)生的團(tuán)隊(duì)精神,以及不畏艱難,實(shí)事求是的學(xué)習(xí)態(tài)度和嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)學(xué)習(xí)習(xí)慣。

3、通過了解有關(guān)勾股定理的中西歷史知識(shí),激發(fā)學(xué)生的愛國(guó)熱情,培養(yǎng)學(xué)生的民族自豪感。

本節(jié)課在教材處理上,先讓學(xué)生帶著三個(gè)問題預(yù)習(xí)完成網(wǎng)上作業(yè),自制4個(gè)兩條直角邊不等的全等的直角三角形,準(zhǔn)備一張坐標(biāo)紙。從而初步了解勾股定理的歷史和內(nèi)容以及證法,并制作成課件或打印資料,為課上活動(dòng)做了充分的準(zhǔn)備。為突破本課重、難點(diǎn)起到了至關(guān)重要的作用。勾股定理這部分內(nèi)容共計(jì)兩課時(shí),本節(jié)課是第一課時(shí)。教學(xué)重點(diǎn)定位為勾股定理的探索過程及簡(jiǎn)單應(yīng)用。教學(xué)難點(diǎn)是勾股定理的證明。把勾股定理的應(yīng)用放在第二課時(shí)進(jìn)行專題訓(xùn)練。

(一)創(chuàng)設(shè)情境,引入課題。(二)自主探索,獲得定理(三)獨(dú)立思考,應(yīng)用定理(四)暢所欲言,歸納小結(jié)。

勾股定理教案【篇9】

(一)教材地位

這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

(二)教學(xué)目標(biāo)

1、知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問題。

2、過程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。

3、情感態(tài)度與價(jià)值觀: 激發(fā)學(xué)生愛國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

(三)教學(xué)重點(diǎn)

經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問題。

教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

二、教法與學(xué)法分析學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問題情境————建立模型————解釋應(yīng)用———拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過程。學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。三、教學(xué)過程設(shè)計(jì)(一)創(chuàng)設(shè)情境,提出問題(1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)設(shè)計(jì)意圖:通過圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。(2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?設(shè)計(jì)意圖:以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出下面的環(huán)節(jié)。(二)實(shí)驗(yàn)操作模型構(gòu)建1、等腰直角三角形(數(shù)格子)2、一般直角三角形(割補(bǔ))問題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。問題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問題解決問題的能力在無(wú)形中得到提高。通過以上實(shí)驗(yàn)歸納總結(jié)勾股定理。設(shè)計(jì)意圖:學(xué)生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律。(三)回歸生活應(yīng)用新知讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心。(四)知識(shí)拓展鞏固深化基礎(chǔ)題,情境題,探索題。設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華?;A(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問題?你能解決所提出的問題嗎?設(shè)計(jì)意圖:這道題立足于雙基.通過學(xué)生自己創(chuàng)設(shè)情境 ,鍛煉了發(fā)散思維。情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。(五)感悟收獲布置作業(yè)這節(jié)課你的收獲是什么?作業(yè):1、課本習(xí)題2.12、搜集有關(guān)勾股定理證明的資料。

勾股定理教案【篇10】

探索勾股定理第1課時(shí)教學(xué)設(shè)計(jì)

一、教學(xué)目標(biāo)

(1知識(shí)與技能目標(biāo):用數(shù)格子(或割、補(bǔ)等)的方法體驗(yàn)勾股定理的探索過程,)會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。

(2)過程與方法目標(biāo):在探索勾股定理的過程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)過程,并體會(huì)數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想方法。

(3)情感態(tài)度與價(jià)值觀目標(biāo):在探索勾股定理的過程中,體驗(yàn)獲得成功的快樂;通過介紹勾股定理的由來(lái),激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

二、教學(xué)重點(diǎn)及難點(diǎn)

重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問題。

難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

教學(xué)過程:

(一)提出問題

首先創(chuàng)設(shè)這樣一個(gè)問題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是米,請(qǐng)問消防隊(duì)員能否進(jìn)入三樓滅火?問題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問題轉(zhuǎn)化成數(shù)學(xué)問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。

設(shè)計(jì)意圖:這樣的設(shè)計(jì)是以實(shí)際問題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過程,解決問題的過程也是一個(gè)“數(shù)學(xué)化”的過程,從而引出本節(jié)課探究的主題。

(二)實(shí)驗(yàn)驗(yàn)證

1、問題探究

(1邊數(shù)為整數(shù)的直角三角形

類型一:等腰直角三角形。

觀察下圖,你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間有何關(guān)系嗎?

學(xué)生通過觀察,歸納發(fā)現(xiàn):

結(jié)論1:以等腰直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。

類型二:一般的直角三角形

由結(jié)論1我們自然產(chǎn)生聯(lián)想:一般的直角三角形是否也具有該性質(zhì)呢?

觀察下圖,你能發(fā)現(xiàn)各圖中三個(gè)正方形的面積之間有何關(guān)系嗎?

結(jié)論2:“以直角三角形兩直角邊為邊長(zhǎng)的小正方形的面積的和,等于以斜邊為邊長(zhǎng)的正方形的面積。

做一做:

(1)你能用直角三角形的邊長(zhǎng),b,c來(lái)表示上圖中正方形的面積嗎?

(2)你能發(fā)現(xiàn)直角三角形三邊長(zhǎng)度之間存在什么關(guān)系嗎?

(3)分別以3cm,4cm為直角邊作出直角三角形,并測(cè)量斜邊的長(zhǎng)度,(2)中的規(guī)律對(duì)這個(gè)三角形仍然成立嗎?

結(jié)論3:直角三角形兩直角邊的平方和,等于斜邊的平方。

設(shè)計(jì)意圖:由直角三角形三邊長(zhǎng)為邊的三個(gè)正方形的面積關(guān)系,發(fā)現(xiàn)直角三角形三邊的平方關(guān)系,初步得到勾股定理的內(nèi)容.同時(shí),引導(dǎo)學(xué)生具體畫出一個(gè)直角三角形,通過計(jì)算,進(jìn)一步驗(yàn)證勾股定理。

2)數(shù)不為整數(shù)的直角三角形

進(jìn)一步驗(yàn)證上面的結(jié)論,直角三角形三邊為、1.

2、上面猜想的數(shù)量關(guān)系還成立嗎?

設(shè)計(jì)意圖:由于邊數(shù)為整數(shù)直角三角形的三邊的平方關(guān)系,對(duì)于一般的直角三角形是否也成立?在這里,讓學(xué)生利用更細(xì)密的網(wǎng)格紙驗(yàn)證 ,進(jìn)一步探討出本節(jié)課的重點(diǎn)----勾股定理。通過邊數(shù)為整數(shù)和不為整數(shù)兩方面的分類探究,充分地讓學(xué)生經(jīng)歷了探索勾股定理的過程,得出的結(jié)論也更具有一般性,較好的突出了重點(diǎn),突破了難點(diǎn)。

(三)總結(jié)歸納 勾股定理:

為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。 三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。

數(shù)學(xué)小史:勾股定理是我國(guó)最早發(fā)現(xiàn)的,中國(guó)古代把直角三角形中較短的直角邊稱為勾,較長(zhǎng)的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名。(在西方文獻(xiàn)中又稱為畢達(dá)哥拉斯定理)

設(shè)計(jì)意圖:通過介紹勾股定理由來(lái)的歷史,激發(fā)學(xué)生熱愛祖國(guó),激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

四)知識(shí)拓展 ,鞏固深化

讓學(xué)生解決開頭的實(shí)際問題

設(shè)計(jì)意圖:讓學(xué)生解決開頭情景中的問題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂趣和信心。

1.情境題:

小明媽媽買了一部29in(74cm)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58cm長(zhǎng)和46cm寬,他覺得一定是售貨員搞錯(cuò)了,你同意他的想法嗎?你能解釋這是為什么嗎?

設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)知識(shí)源于生活,并用于生活。

2.探索題:

做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過的知識(shí)說明。

設(shè)計(jì)意圖:提升難度,學(xué)生通過交流討論的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

(五)課堂小結(jié),概括要點(diǎn)

教師提問:

1.這一節(jié)課我們一起學(xué)習(xí)了哪些知識(shí)和思想方法?

2.對(duì)這些內(nèi)容你有什么體會(huì)?與同伴進(jìn)行交流。

在學(xué)生自由發(fā)言的基礎(chǔ)上,師生共同總結(jié):

1.知識(shí):勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。

2.思想:分類討論、特殊―一般―特殊、形結(jié)合思想。

設(shè)計(jì)意圖:鼓勵(lì)學(xué)生積極大膽發(fā)言,可增進(jìn)師生、生生之間的交流、互動(dòng),培養(yǎng)學(xué)生語(yǔ)言表達(dá)和交流的能力。

(六)布置作業(yè),思維延伸

1.教科書習(xí)題。

2.思考:是不是任意的三角形的三邊長(zhǎng)都滿足[a2+b2=c2]?若不是,你能探究出它們滿足什么關(guān)系嗎?和同學(xué)們交流。

設(shè)計(jì)意圖:鞏固基礎(chǔ)知識(shí);引發(fā)思考,強(qiáng)化認(rèn)識(shí)勾股定理適用的條件。對(duì)于銳角三角形和鈍角三角形,引導(dǎo)學(xué)生利用本節(jié)課的方法得出相應(yīng)的結(jié)論,將本節(jié)課的研究方法延伸到課外。

勾股定理教案【篇11】

一是讓學(xué)生自己回顧總結(jié)本節(jié)的收獲。(多數(shù)為具體的知識(shí)和方法)。

二是教師要引導(dǎo)學(xué)生學(xué)習(xí)科學(xué)家敏銳的觀察力和勤于思考的作風(fēng),不斷提高自己的數(shù)學(xué)素養(yǎng),適時(shí)對(duì)大家進(jìn)行思想教育。

通過本節(jié)課的教學(xué),讓我更深刻地認(rèn)識(shí)到:

1.新課改理念只有全面滲透到教育教學(xué)工作中,與平時(shí)工作緊密結(jié)合,才能夠促進(jìn)學(xué)生的全面發(fā)展;

2.教師要充分利用課堂內(nèi)容為整體課程目標(biāo)服務(wù),不要僅限于本節(jié)課的知識(shí)目標(biāo)與要求,就知識(shí)“教”知識(shí),而要通過知識(shí)的學(xué)習(xí)獲得學(xué)習(xí)這些知識(shí)的方法,同時(shí),還要充分利用課堂對(duì)學(xué)生進(jìn)行情感態(tài)度價(jià)值觀的教育,真正讓教材成為教育學(xué)生的素材,而不是學(xué)科教學(xué)的全部;

3.要相信學(xué)生的能力,為學(xué)生創(chuàng)造自我學(xué)習(xí)和創(chuàng)造的機(jī)會(huì)。我相信:只要堅(jiān)持不懈地這樣去做,不但能很好地實(shí)施新課改,實(shí)現(xiàn)教育的本來(lái)目標(biāo),而且也一定能讓學(xué)生“考出”好的成績(jī)。

勾股定理教案【篇12】

學(xué)習(xí)目標(biāo)

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2.探索勾股定理的過程,發(fā)展合情推理的能力,體會(huì)數(shù)型結(jié)合的思想。

重點(diǎn)難點(diǎn)

或?qū)W習(xí)建議學(xué)習(xí)重點(diǎn):用面積的方法說明勾股定理的正確.

學(xué)習(xí)難點(diǎn):勾股定理的'應(yīng)用.

學(xué)習(xí)過程教師

二次備課欄

自學(xué)準(zhǔn)備與知識(shí)導(dǎo)學(xué):

這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。

郵票上的圖案是根據(jù)一個(gè)著名的數(shù)學(xué)定理設(shè)計(jì)的。

學(xué)習(xí)交流與問題研討:

1、探索

問題:分別以圖中的直角三角形三邊為邊向三角形外

作正方形,小方格的面積看做1,求這三個(gè)正方形的面積?

S正方形BCED=S正方形ACFG=S正方形ABHI=

發(fā)現(xiàn):

2、實(shí)驗(yàn)

在下面的方格紙上,任意畫幾個(gè)頂點(diǎn)都在格點(diǎn)上的三角形;并分別以這個(gè)三角形的各邊為一邊向三角形外做正方形并計(jì)算出正方形的面積。

請(qǐng)完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系

112

145

41620

91625

發(fā)現(xiàn):

如何用直角三角形的三邊長(zhǎng)來(lái)表示這個(gè)結(jié)論?

這個(gè)結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:

如圖:我國(guó)古代把直角三角形中,較短的直角邊叫做“勾”,較長(zhǎng)的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

練習(xí)檢測(cè)與拓展延伸:

練習(xí)1、求下列直角三角形中未知邊的長(zhǎng)

練習(xí)2、下列各圖中所示的線段的長(zhǎng)度或正方形的面積為多少。

(注:下列各圖中的三角形均為直角三角形)

例1、如圖,在四邊形中,∠,∠,,求.

檢測(cè):

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

(2)b=8,c=17,則S△ABC=________。

2、在Rt△ABC中,∠C=90,周長(zhǎng)為60,斜邊與一條直角邊之比為13∶5,則這個(gè)三角形三邊長(zhǎng)分別是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的兩邊長(zhǎng)為10cm,第三邊長(zhǎng)為16cm,那么第三邊上的高為()

A.12cmB.10cmC.8cmD.6cm

4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長(zhǎng)的梯子?(畫出示意圖)

5、飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到一個(gè)男孩頭頂正上方4千米處,過了20秒,飛機(jī)距離這個(gè)男孩5千米,飛機(jī)每小時(shí)飛行多少千米?

課后反思或經(jīng)驗(yàn)總結(jié):

1、什么叫勾股定理;

2、什么樣的三角形的三邊滿足勾股定理;

3、用勾股定理解決一些實(shí)際問題。

勾股定理教案【篇13】

一、教學(xué)目標(biāo)

1.靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識(shí).

二、重點(diǎn)、難點(diǎn)

1.重點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

2.難點(diǎn):靈活應(yīng)用勾股定理及逆定理解決實(shí)際問題.

3.難點(diǎn)的突破方法:

三、課堂引入

創(chuàng)設(shè)情境:在軍事和航海上經(jīng)常要確定方向和位置,從而使用一些數(shù)學(xué)知識(shí)和數(shù)學(xué)方法.

四、例習(xí)題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因?yàn)?42+182=302,PQ2+PR2=QR2,根據(jù)勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR—∠QPS=45°.

小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識(shí).

例2(補(bǔ)充)一根30米長(zhǎng)的細(xì)繩折成3段,圍成一個(gè)三角形,其中一條邊的長(zhǎng)度比較短邊長(zhǎng)7米,比較長(zhǎng)邊短1米,請(qǐng)你試判斷這個(gè)三角形的形狀.

分析:⑴若判斷三角形的形狀,先求三角形的三邊長(zhǎng);

⑵設(shè)未知數(shù)列方程,求出三角形的三邊長(zhǎng)5、12、13;

⑶根據(jù)勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

解略.

本題幫助培養(yǎng)學(xué)生利用方程思想解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實(shí)際問題的意識(shí).

勾股定理教案【篇14】

教學(xué)目標(biāo)具體要求:

1.知識(shí)與技能目標(biāo):會(huì)用勾股定理及直角三角形的判定條件解決實(shí)際問題。

2.過程與方法目標(biāo):經(jīng)歷勾股定理的應(yīng)用過程,熟練掌握其應(yīng)用方法,明確應(yīng)用的條件。

3.情感態(tài)度與價(jià)值觀目標(biāo):通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識(shí)的感受;通過有關(guān)勾股定理的歷史講解,對(duì)學(xué)生進(jìn)行德育教育。

1.在直角三角形中,若兩直角邊的長(zhǎng)分別為1cm,2cm,則斜邊長(zhǎng)為xx。

2.已知直角三角形的兩邊長(zhǎng)為3、4,則另一條邊長(zhǎng)是xx。

3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長(zhǎng)?

1、如圖,公路上A,B兩點(diǎn)相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現(xiàn)在要在公路AB上建一車站E,

(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

2、如圖,用一張長(zhǎng)方形紙片ABCD進(jìn)行折紙,已知該紙片寬AB為8cm,長(zhǎng)BC為10cm.當(dāng)折疊時(shí),頂點(diǎn)D落在BC邊上的'點(diǎn)F處(折痕為AE).想一想,此時(shí)EC有多長(zhǎng)?

3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點(diǎn)B與點(diǎn)D重合,折痕為EF,求DE的長(zhǎng)。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習(xí)以上習(xí)題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數(shù)學(xué)八年級(jí)下冊(cè)第十七章第一節(jié)第二課時(shí)的內(nèi)容,是學(xué)生在學(xué)習(xí)了三角形的有關(guān)知識(shí),了解了直角三角形的概念,掌握了直角三角形的性質(zhì)和一個(gè)三角形是直角三角形的條件的基礎(chǔ)上學(xué)習(xí)勾股定理,加深對(duì)勾股定理的理解,提高學(xué)生對(duì)數(shù)形結(jié)合的應(yīng)用與理解。本節(jié)第一課時(shí)安排了對(duì)勾股定理的觀察、計(jì)算、猜想、證明及簡(jiǎn)單應(yīng)用的過程;第二課時(shí)是通過例題分析與講解,讓學(xué)生感受勾股定理在實(shí)際生活中的應(yīng)用,通過從實(shí)際問題中抽象出直角三角形這一模型,強(qiáng)化轉(zhuǎn)化思想,培養(yǎng)學(xué)生解決問題的意識(shí)和應(yīng)用能力。

勾股定理教案【篇15】

一、回顧交流,合作學(xué)習(xí)

【活動(dòng)方略】

活動(dòng)設(shè)計(jì):教師先將學(xué)生分成四人小組,交流各自的小結(jié),并結(jié)合課本P87的小結(jié)進(jìn)行反思,教師巡視,并且不斷引導(dǎo)學(xué)生進(jìn)入復(fù)習(xí)軌道.然后進(jìn)行小組匯報(bào),匯報(bào)時(shí)可借助投影儀,要求學(xué)生上臺(tái)匯報(bào),最后教師歸納.

【問題探究1】(投影顯示)

飛機(jī)在空中水平飛行,某一時(shí)刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機(jī)距離小明頭頂5000米,問:飛機(jī)飛行了多少千米?

思路點(diǎn)撥:根據(jù)題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機(jī)這時(shí)飛行多少千米,就要知道飛機(jī)在20秒時(shí)間里飛行的路程,也就是圖中的BC長(zhǎng),在這個(gè)問題中,斜邊和一直角邊是已知的,這樣,我們可以根據(jù)勾股定理來(lái)計(jì)算出BC的長(zhǎng).(3000千米)

【活動(dòng)方略】

教師活動(dòng):操作投影儀,引導(dǎo)學(xué)生解決問題,請(qǐng)兩位學(xué)生上臺(tái)演示,然后講評(píng).

學(xué)生活動(dòng):獨(dú)立完成“問題探究1”,然后踴躍舉手,上臺(tái)演示或與同伴交流.

【問題探究2】(投影顯示)

一個(gè)零件的形狀如右圖,按規(guī)定這個(gè)零件中∠A與∠BDC都應(yīng)為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請(qǐng)你判斷這個(gè)零件符合要求嗎?為什么?

思路點(diǎn)撥:要檢驗(yàn)這個(gè)零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個(gè)零件符合要求.

【活動(dòng)方略】

教師活動(dòng):操作投影儀,關(guān)注學(xué)生的思維,請(qǐng)兩位學(xué)生上講臺(tái)演示之后再評(píng)講.

學(xué)生活動(dòng):思考后,完成“問題探究2”,小結(jié)方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD為直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此這個(gè)零件符合要求.

【問題探究3】

甲、乙兩位探險(xiǎn)者在沙漠進(jìn)行探險(xiǎn),某日早晨8:00甲先出發(fā),他以6千米/時(shí)的速度向東行走,1小時(shí)后乙出發(fā),他以5千米/時(shí)的速度向北行進(jìn),上午10:00,甲、乙兩人相距多遠(yuǎn)?

思路點(diǎn)撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關(guān)系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

【活動(dòng)方略】

教師活動(dòng):操作投影儀,巡視、關(guān)注學(xué)生訓(xùn)練,并請(qǐng)兩位學(xué)生上講臺(tái)“板演”.

學(xué)生活動(dòng):課堂練習(xí),與同伴交流或舉手爭(zhēng)取上臺(tái)演示

相關(guān)推薦

  • 勾股定理課件十五篇 下面是由欄目小編為大家?guī)?lái)的“勾股定理課件”,此文一讀相信您會(huì)有新的收獲。教案課件是老師上課做的提前準(zhǔn)備,因此在寫的時(shí)候就不要草草了事了。教案的編寫需要注重思維方式和習(xí)慣的培養(yǎng)和養(yǎng)成。...
    2023-08-12 閱讀全文
  • 勾股定理課件教案12篇 所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫教案和課件時(shí),老師們尤其需要注意確保教學(xué)重點(diǎn)不會(huì)被忽略。是否也曾有過編寫教案和課件時(shí)的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠?yàn)槟峁└嗟膸椭?..
    2023-06-16 閱讀全文
  • 勾股定理的課件錦集10篇 在教學(xué)過程中,老師的首要任務(wù)是提前準(zhǔn)備好教案和課件,這個(gè)準(zhǔn)備的時(shí)刻已經(jīng)到來(lái)了。教案和課件是教學(xué)方法的具體體現(xiàn)。幼兒教師教育網(wǎng)編輯為了方便您的參考,提供了關(guān)于“勾股定理的課件”的相關(guān)資訊,感謝您來(lái)參考并逐篇閱讀這些文章!...
    2023-11-13 閱讀全文
  • 勾股定理的應(yīng)用課件匯集 俗話說,不打無(wú)準(zhǔn)備之仗。在幼兒園教師的工作中,經(jīng)常會(huì)提前準(zhǔn)備一些需要的資料。資料一般指代可供人們參考的信息知識(shí)等。參考相關(guān)資料會(huì)讓我們的學(xué)習(xí)工作效率更高。所以,您有沒有了解過幼師資料的種類呢?下面是小編精心整理的"勾股定理的應(yīng)用課件匯集",歡迎閱讀,希望你能喜歡!能運(yùn)用勾股定理及直角三角形的判別條件...
    2024-06-27 閱讀全文
  • 勾股定理課件(必備十三篇) 作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么你有了解過教案嗎?以下是小編為大家整理的勾股定理教案,供大家參考借鑒,希望可以幫助到有需要的朋友。勾股定理課件 篇1【學(xué)習(xí)目標(biāo)】能運(yùn)用勾股定理及直角三角形的判別條件解決簡(jiǎn)單的實(shí)際問題.【學(xué)習(xí)重點(diǎn)】勾股...
    2024-12-31 閱讀全文

下面是由欄目小編為大家?guī)?lái)的“勾股定理課件”,此文一讀相信您會(huì)有新的收獲。教案課件是老師上課做的提前準(zhǔn)備,因此在寫的時(shí)候就不要草草了事了。教案的編寫需要注重思維方式和習(xí)慣的培養(yǎng)和養(yǎng)成。...

2023-08-12 閱讀全文

所有老師都必須在教課前準(zhǔn)備自己的教案和教學(xué)資源。為了能夠?qū)懗鐾昝赖慕贪负徒虒W(xué)資源,老師們都需要花費(fèi)相應(yīng)的心思與精力。在編寫教案和課件時(shí),老師們尤其需要注意確保教學(xué)重點(diǎn)不會(huì)被忽略。是否也曾有過編寫教案和課件時(shí)的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠?yàn)槟峁└嗟膸椭?..

2023-06-16 閱讀全文

在教學(xué)過程中,老師的首要任務(wù)是提前準(zhǔn)備好教案和課件,這個(gè)準(zhǔn)備的時(shí)刻已經(jīng)到來(lái)了。教案和課件是教學(xué)方法的具體體現(xiàn)。幼兒教師教育網(wǎng)編輯為了方便您的參考,提供了關(guān)于“勾股定理的課件”的相關(guān)資訊,感謝您來(lái)參考并逐篇閱讀這些文章!...

2023-11-13 閱讀全文

俗話說,不打無(wú)準(zhǔn)備之仗。在幼兒園教師的工作中,經(jīng)常會(huì)提前準(zhǔn)備一些需要的資料。資料一般指代可供人們參考的信息知識(shí)等。參考相關(guān)資料會(huì)讓我們的學(xué)習(xí)工作效率更高。所以,您有沒有了解過幼師資料的種類呢?下面是小編精心整理的"勾股定理的應(yīng)用課件匯集",歡迎閱讀,希望你能喜歡!能運(yùn)用勾股定理及直角三角形的判別條件...

2024-06-27 閱讀全文

作為一位杰出的教職工,總歸要編寫教案,教案是教學(xué)活動(dòng)的依據(jù),有著重要的地位。那么你有了解過教案嗎?以下是小編為大家整理的勾股定理教案,供大家參考借鑒,希望可以幫助到有需要的朋友。勾股定理課件 篇1【學(xué)習(xí)目標(biāo)】能運(yùn)用勾股定理及直角三角形的判別條件解決簡(jiǎn)單的實(shí)際問題.【學(xué)習(xí)重點(diǎn)】勾股...

2024-12-31 閱讀全文