高數(shù)課件
發(fā)布時(shí)間:2023-08-15 高數(shù)課件高數(shù)課件11篇。
編輯為您整理的“高數(shù)課件”類內(nèi)容,希望能夠讓您有所收獲。非常感謝您光臨我們的網(wǎng)站,并建議您收藏本頁以便日后再次訪問。一般來說,老師在給學(xué)生上課之前會(huì)提前準(zhǔn)備好教案和課件,編寫教案和課件需要花費(fèi)一些心思。教案是教育教學(xué)實(shí)踐中“以教治學(xué)”的重要體現(xiàn)。
高數(shù)課件【篇1】
一、教材分析
1.教材所處的地位和作用
本節(jié)課主要內(nèi)容是兩種循環(huán)語句。學(xué)生在前面已經(jīng)學(xué)習(xí)了算法的三種基本結(jié)構(gòu)的框圖,學(xué)習(xí)了輸入語句、輸出語句、賦值語句和條件語句,這些都是學(xué)習(xí)本節(jié)內(nèi)容的知識(shí)基礎(chǔ)。
本節(jié)在教材中起著承上啟下的作用。一方面把框圖轉(zhuǎn)化為語言,將循環(huán)結(jié)構(gòu)在計(jì)算機(jī)上實(shí)現(xiàn),另一方面為學(xué)習(xí)較復(fù)雜的流程圖打下基礎(chǔ)。本節(jié)課對(duì)學(xué)生算法語言能力、有條理的思考與清晰地表達(dá)的能力,邏輯思維能力的綜合提升具有重要作用。
2.教學(xué)的重點(diǎn)和難點(diǎn)
重點(diǎn):理解for語句與while語句的結(jié)構(gòu)與含義,并會(huì)應(yīng)用
難點(diǎn):應(yīng)用兩種循環(huán)語句將具體問題程序化,搞清for循環(huán)和while循環(huán)的區(qū)別和聯(lián)系
二、教學(xué)目標(biāo)分析
1.知識(shí)與技能目標(biāo):
初步掌握三種不同的循環(huán)語句的形式、執(zhí)行過程和比較對(duì)循環(huán)語句的作用。
2.過程與方法目標(biāo):
通過本節(jié)課的教學(xué),培養(yǎng)學(xué)生分析問題,解決問題,創(chuàng)造性思維的能力和自學(xué)能力。
3.情感,態(tài)度和價(jià)值觀目標(biāo)
在學(xué)習(xí)過程及解決實(shí)際問題的過程中,盡可能的用基本算法語句描述算法、體會(huì)算法思想的作用及應(yīng)用,增進(jìn)對(duì)算法的了解,形成良好的數(shù)學(xué)學(xué)習(xí)情感、積極的學(xué)習(xí)態(tài)度。
三、教學(xué)方法與手段分析
1.教學(xué)方法:充分發(fā)揮學(xué)生的主體作用和教師的主導(dǎo)作用,采用啟發(fā)式,并遵循循序漸進(jìn)的教學(xué)原則。這有利于學(xué)生掌握從現(xiàn)象到本質(zhì),從已知到未知逐步形成概念的學(xué)習(xí)方法,有利于發(fā)展學(xué)生抽象思維能力和邏輯推理能力。
2.教學(xué)手段:通過各種教學(xué)媒體(計(jì)算機(jī))調(diào)動(dòng)學(xué)生參與課堂教學(xué)的主動(dòng)性與積極性。
四、教學(xué)過程分析
1.復(fù)習(xí)引入
復(fù)習(xí)循環(huán)結(jié)構(gòu),目的是承上啟下,以舊引新,一方面引起學(xué)生對(duì)舊知識(shí)的回憶,另一方面為引入循環(huán)語句作鋪墊。
操作方法:師生共同在黑板上畫出框圖,并對(duì)重點(diǎn)適當(dāng)強(qiáng)調(diào)。
例1.設(shè)計(jì)一個(gè)計(jì)算
的算法并寫出相應(yīng)的框圖。
直到型當(dāng)型
復(fù)習(xí)的時(shí)候通過提問的方式強(qiáng)調(diào)重點(diǎn),學(xué)生通過對(duì)比,發(fā)現(xiàn)差異。
2.探索新知
通過上面的兩種循環(huán)結(jié)構(gòu)程序框圖,引出今天所要學(xué)習(xí)的兩種循環(huán)語句,他們分別對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(wHILE型)和直到型(UNTIL型)兩種語句結(jié)構(gòu)。即wHILE語句和UNTIL語句。
下面就向?qū)W生們介紹這兩種語句的一般格式,并在相應(yīng)位置作出對(duì)應(yīng)的程序框圖。之后提問:通過對(duì)照,大家覺得wHILE型語句與UNTIL型語句之間有什么區(qū)別呢?(學(xué)生獨(dú)立思考,交流討論、教師予以提示,點(diǎn)撥指導(dǎo)。由特殊到一般培養(yǎng)學(xué)生的觀察、歸納、概括能力)
3.例題精析
例2把例1的直到型循環(huán)框圖轉(zhuǎn)化為程序。
教師將直到型語句寫在直到型結(jié)構(gòu)旁邊,并連線,告訴學(xué)生,這就是直到型循環(huán)語句。通過這樣的訓(xùn)練,使學(xué)生意識(shí)到程序和框圖是一一對(duì)應(yīng)的,寫程序只需把框圖翻譯成相應(yīng)的語句即可。并且對(duì)循環(huán)語句有了一個(gè)大體的印象??梢耘囵B(yǎng)學(xué)生的觀察能力和對(duì)比能力
例3.求平方值小于1000的最大整數(shù)
.(wHILE型)語句的理解
4.課堂小結(jié)
⑴循環(huán)語句的兩種不同形式:wHILE語句和UNTIL語句(另補(bǔ)充了for語句),掌握它們的一般格式。
⑵在用wHILE語句和UNTIL語句編寫程序解決問題時(shí),一定要注意它們的格式及條件的表述方法。
⑶循環(huán)語句主要用來實(shí)現(xiàn)算法中的循環(huán)結(jié)構(gòu),在處理一些需要反復(fù)執(zhí)行的運(yùn)算任務(wù)。如累加求和,累乘求積等問題中常用到。
(通過師生合作總結(jié),使學(xué)生對(duì)本節(jié)課所學(xué)的知識(shí)結(jié)構(gòu)有一個(gè)明確的認(rèn)識(shí),抓住本節(jié)的重點(diǎn)。)
5.布置作業(yè)
必做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫出程序框圖,寫出相應(yīng)程序。
選做:設(shè)計(jì)一個(gè)計(jì)算
的算法,畫出程序框圖,寫出相應(yīng)程序。
[設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對(duì)本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。對(duì)作業(yè)實(shí)施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。
6.板書設(shè)計(jì)
總結(jié):
高數(shù)課件【篇2】
(1)知識(shí)目標(biāo):
1.在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程;
2.會(huì)由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.
(2)能力目標(biāo):
1.進(jìn)一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;
2.使學(xué)生加深對(duì)數(shù)形結(jié)合思想和待定系數(shù)法的理解;
3.增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí).
(3)情感目標(biāo):培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí),在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.
2.教學(xué)重點(diǎn).難點(diǎn)
(1)教學(xué)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.
(2)教學(xué)難點(diǎn):會(huì)根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰
當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題.
3.教學(xué)過程
(一)創(chuàng)設(shè)情境(啟迪思維)
問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧道?
[引導(dǎo)] 畫圖建系
[學(xué)生活動(dòng)]:嘗試寫出曲線的方程(對(duì)求曲線的方程的步驟及圓的定義進(jìn)行提示性復(fù)習(xí))
解:以某一截面半圓的圓心為坐標(biāo)原點(diǎn),半圓的直徑AB所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)
將x=2.7代入,得 .
即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個(gè)隧道。
(二)深入探究(獲得新知)
問題二:1.根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為 的圓的方程?
答:x2 y2=r2
2.如果圓心在 ,半徑為 時(shí)又如何呢?
[學(xué)生活動(dòng)] 探究圓的方程。
[教師預(yù)設(shè)] 方法一:坐標(biāo)法
如圖,設(shè)M(x,y)是圓上任意一點(diǎn),根據(jù)定義點(diǎn)M到圓心C的距離等于r,所以圓C就是集合P={M||MC|=r}
由兩點(diǎn)間的距離公式,點(diǎn)M適合的條件可表示為 ①
把①式兩邊平方,得(x―a)2 (y―b)2=r2
方法二:圖形變換法
方法三:向量平移法
(三)應(yīng)用舉例(鞏固提高)
I.直接應(yīng)用(內(nèi)化新知)
問題三:1.寫出下列各圓的方程(課本P77練習(xí)1)
(1)圓心在原點(diǎn),半徑為3;
(2)圓心在 ,半徑為 ;
(3)經(jīng)過點(diǎn) ,圓心在點(diǎn) .
2.根據(jù)圓的方程寫出圓心和半徑
(1) ; (2) .
II.靈活應(yīng)用(提升能力)
問題四:1.求以 為圓心,并且和直線 相切的圓的方程.
[教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.
2.已知圓的方程為 ,求過圓上一點(diǎn) 的切線方程.
[學(xué)生活動(dòng)]探究方法
[教師預(yù)設(shè)]
方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)
方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)
方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]
方法四:軌跡法(利用向量垂直列關(guān)系式)
3.你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是: .
III.實(shí)際應(yīng)用(回歸自然)
問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度AB=20m,拱高OP=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱 的長度(精確到0.01m).
[多媒體課件演示創(chuàng)設(shè)實(shí)際問題情境]
(四)反饋訓(xùn)練(形成方法)
問題六:1.求以C(-1,-5)為圓心,并且和y軸相切的圓的方程.
2.已知點(diǎn)A(-4,-5),B(6,-1),求以AB為直徑的圓的方程.
3.求圓x2 y2=13過點(diǎn)(-2,3)的切線方程.
4.已知圓的方程為 ,求過點(diǎn) 的切線方程.
(五)小結(jié)反思(拓展引申)
1.課堂小結(jié):
(1)圓心為C(a,b),半徑為r 的圓的標(biāo)準(zhǔn)方程為:
當(dāng)圓心在原點(diǎn)時(shí),圓的標(biāo)準(zhǔn)方程為:
(2) 求圓的方程的方法:①找出圓心和半徑;②待定系數(shù)法
(3) 已知圓的方程是 ,經(jīng)過圓上一點(diǎn) 的切線的方程是:
(4) 求解應(yīng)用問題的一般方法
2.分層作業(yè):(A)鞏固型作業(yè):課本P81-82:(習(xí)題7.6)1.2.4
(B)思維拓展型作業(yè):
試推導(dǎo)過圓 上一點(diǎn) 的切線方程.
3.激發(fā)新疑:
問題七:1.把圓的標(biāo)準(zhǔn)方程展開后是什么形式?
2.方程: 的曲線是什么圖形?
教學(xué)設(shè)計(jì)說明
圓是學(xué)生比較熟悉的曲線,初中平面幾何對(duì)圓的基本性質(zhì)作了比較系統(tǒng)的研究,因此這節(jié)課的重點(diǎn)確定為用解析法研究圓的標(biāo)準(zhǔn)方程及其簡單應(yīng)用。.首先,在已有圓的定義和求曲線方程的一般步驟的基礎(chǔ)上,用實(shí)際問題引導(dǎo)學(xué)生探究獲得圓的標(biāo)準(zhǔn)方程,然后,利用圓的標(biāo)準(zhǔn)方程由淺入深的解決問題,并通過圓的方程在實(shí)際問題中的應(yīng)用,增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。另外,為了培養(yǎng)學(xué)生的理性思維,我分別在引例和問題四中,設(shè)計(jì)了兩次由特殊到一般的學(xué)習(xí)思路,培養(yǎng)學(xué)生的歸納概括能力。在問題的設(shè)計(jì)中,我用一題多解的探究,縱向挖掘知識(shí)深度,橫向加強(qiáng)知識(shí)間的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新精神,并且使學(xué)生的有效思維量加大,隨時(shí)對(duì)所學(xué)知識(shí)和方法產(chǎn)生有意注意,能力與知識(shí)的形成相伴而行,這樣的設(shè)計(jì)不但突出了重點(diǎn),更使難點(diǎn)的突破水到渠成.
本節(jié)課的設(shè)計(jì)了五個(gè)環(huán)節(jié),以問題為紐帶,以探究活動(dòng)為載體,使學(xué)生在問題的指引下、教師的指導(dǎo)下把探究活動(dòng)層層展開、步步深入,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的指導(dǎo)思想。應(yīng)用啟發(fā)式的教學(xué)方法把學(xué)生學(xué)習(xí)知識(shí)的過程轉(zhuǎn)變?yōu)閷W(xué)生觀察問題、發(fā)現(xiàn)問題、分析問題、解決問題的過程,在解決問題的同時(shí)鍛煉了思維.提高了能力。
高數(shù)課件【篇3】
一.說教材
1.1 教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊(cè))》5.6函數(shù)圖象的定位作圖法的第一課時(shí),主要內(nèi)容為基本函數(shù) 與一般函數(shù) 間的圖象平移變換規(guī)律。
函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對(duì)應(yīng)思想、換元方法等。
1.2 教學(xué)目標(biāo)
1.2.1知識(shí)目標(biāo)
⑴、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正確掌握平移方向與 、 符號(hào)的關(guān)系。
⑵、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對(duì)應(yīng)的基本函數(shù)模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。
⑶、初步學(xué)會(huì)應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)(如值域、單調(diào)性等)。
1.2.2能力目標(biāo)
⑴、在數(shù)學(xué)實(shí)驗(yàn)平臺(tái)上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、概括能力。
⑵、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會(huì)借助于數(shù)學(xué)軟件等工具研究、探索和解決問題,學(xué)會(huì)數(shù)學(xué)
地解決問題。
⑶、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。
1.2.3情感目標(biāo)
培養(yǎng)學(xué)生積極參與、合作交流的主體意識(shí),在知識(shí)的探索和發(fā)現(xiàn)的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)度、興趣等)。
1.3 教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用
難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)
教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性知識(shí)的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡單的記住結(jié)論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其然,更要知其所以然。”
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
⑴、從學(xué)生已有知識(shí)出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)驗(yàn)平臺(tái),分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中 、 符號(hào)的關(guān)系,抽象、歸納出平移變換規(guī)律。 ⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯(cuò)誤原因,使學(xué)生認(rèn)識(shí)到形如 的函數(shù)須提取 前的系數(shù)化為 的形式,從而真正認(rèn)識(shí)解析式形式化的特點(diǎn)。
⑶、數(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡單實(shí)驗(yàn)報(bào)告的形式,通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對(duì)平移變換規(guī)律知識(shí)的建構(gòu)。
二.說教法
針對(duì)職高一年級(jí)學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、猜想,親歷數(shù)學(xué)知識(shí)建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。
本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動(dòng)的過程,因此不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)驗(yàn)的方式,使學(xué)生有機(jī)會(huì)經(jīng)受足夠的親身體驗(yàn),親歷知識(shí)的自主建構(gòu)過程;使學(xué)生學(xué)會(huì)從具體情境中提取適當(dāng)?shù)母拍睿瑥挠^察到的實(shí)例中進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概括與抽象;從而學(xué)會(huì)數(shù)學(xué)地思考。
另一方面,注重創(chuàng)設(shè)機(jī)會(huì)使學(xué)生有機(jī)會(huì)看到數(shù)學(xué)的全貌,體會(huì)數(shù)學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題“函數(shù) 的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會(huì)如何應(yīng)用規(guī)律解決問題,體會(huì)知識(shí)的價(jià)值,增強(qiáng)求知欲。
總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說學(xué)法
“學(xué)之道在于悟,教之道在于度。”學(xué)生是學(xué)習(xí)的主體,教師在教學(xué)過程中須將學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生。
美國某大學(xué)有一句名言:“讓我聽見的,我會(huì)忘記;讓我看見的,我就領(lǐng)會(huì)了;讓我做過的,我就理解了?!蓖ㄟ^學(xué)生的自主實(shí)驗(yàn),在探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì)知識(shí)”,更主要的是要讓學(xué)生“會(huì)學(xué)知識(shí)”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識(shí)既不是教出來的,也不是學(xué)出來的,而是研究出來的?!北竟?jié)課的教學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知識(shí)與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時(shí)學(xué)會(huì)數(shù)學(xué)地思考。
四.說程序
4.1創(chuàng)設(shè)情境,引入課題
在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、冪函數(shù)、三角函數(shù)等)性質(zhì)后,提出問題“如何研究 的性質(zhì)?”
引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點(diǎn)法作出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將 的性質(zhì)問題化歸為 的問題,借助于基本函數(shù) 的性質(zhì)解決新問題。
從而自然地引出課題,關(guān)鍵是找出 與 的關(guān)系,尤其是圖象間的聯(lián)系。更一般地,就是基本函數(shù) 與 間的聯(lián)系。
4.2數(shù)學(xué)實(shí)驗(yàn),自主探索
這一環(huán)節(jié)主要分兩階段。
1、嘗試初探
引例、函數(shù) 與 圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫板的度量功能,給出兩個(gè)對(duì)應(yīng)點(diǎn)的坐標(biāo),易于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。
2、實(shí)驗(yàn)發(fā)現(xiàn)
本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報(bào)告的形式完成探索規(guī)律的任務(wù)。 實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺(tái)1中的參數(shù) 、 ,觀察由 的圖象到 的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中的平移變換規(guī)律。
函數(shù) 解析式平移變換規(guī)律12向左平移2個(gè)單位,向上平移1個(gè)單位 實(shí)驗(yàn)結(jié)論
高數(shù)課件【篇4】
通過一年來的學(xué)習(xí)與摸索,如何引導(dǎo)學(xué)生在高三數(shù)學(xué)復(fù)習(xí)的過程中抓住根本,合理利用時(shí)間,提高學(xué)習(xí)效律,對(duì)于高三的教學(xué)工作有一些體會(huì)和反思,我結(jié)合高三教學(xué)的實(shí)際情況,認(rèn)為以下幾點(diǎn)在當(dāng)前的教學(xué)形勢(shì)下依然不可忽視,自我小結(jié)如下:
一、不可忽視課本。
對(duì)于一個(gè)沒有高考教學(xué)經(jīng)驗(yàn)的教師來說,如何盡快地進(jìn)入角色,在有限的時(shí)間里達(dá)到最佳的復(fù)習(xí)效果,就必須深入了解高考,解答大量的高考題,了解哪些是重點(diǎn)。首先,我仔細(xì)地研究了近年數(shù)學(xué)高考試題,在試卷內(nèi)容上變化不大,重點(diǎn)難點(diǎn)也較穩(wěn)定,沒有大的變化,但是每年都會(huì)出現(xiàn)一些新的題型,或是讓我們意料不到的題。但是,他們都不脫離課本的基本知識(shí)。而且基本知識(shí)考查分?jǐn)?shù)占到70%以上。其次,關(guān)注教材和新大綱的變化也很重要。每年的試題都與教材有著密切的聯(lián)系,有的是直接利用教材中的例題、習(xí)題、公式定理的證明作為高考題;有的是將教材中的題目略加修改、變形后作為高考題目;還有的是將教材中的題目合理拼湊、組合作為高考題的。
二、不可忽視"雙基"。
從近幾年來高考命題事實(shí)中我們可以看到:基本知識(shí)、基本技能、基本方法始終是高考數(shù)學(xué)試題考查的重點(diǎn)。開始在教學(xué)中過于粗疏或?qū)W生在學(xué)習(xí)中對(duì)基本知識(shí)不求甚解,很容易導(dǎo)致學(xué)生在考試中判斷錯(cuò)誤。然而,近幾年的高考數(shù)學(xué)試題對(duì)基礎(chǔ)知識(shí)的要求更高、更嚴(yán)了,只有基礎(chǔ)扎實(shí)的考生才能正確地判斷。也只能有扎實(shí)的基礎(chǔ)知識(shí)、基本技能,才能在一些難題中思路清晰,充分發(fā)揮解題能力,取得高分;另一方面,由于試題量大,解題速度慢的考生往往無法完成全部試卷的解答,而解題速度的快慢主要取決于基本技能、基本方法的熟練程度及能力的高低。很多學(xué)生考試結(jié)束后就這樣感嘆:不是做不來,是不粗心了。我卻不這么認(rèn)為。往往基本知識(shí)出現(xiàn)了錯(cuò)誤,主要原因還是在平時(shí)練習(xí)中不注重細(xì)節(jié),沒有嚴(yán)格的答題步驟,甚至很多學(xué)生做題只是看題,感覺做的來就不管他了,沒有認(rèn)真的去完成基本格式及其步驟。以至于考試時(shí),時(shí)間、準(zhǔn)確度、書寫格式等均出現(xiàn)或多或少的問題,從而導(dǎo)致丟分。
三、不可忽視《考試大綱》和《新課程標(biāo)準(zhǔn)》。
《考試大綱》是高考命題的依據(jù)。研究《考試說明》可以同時(shí)分析歷年的高考試題,以加深對(duì)它的理解,體會(huì)平時(shí)教學(xué)與命題的專家們?cè)诶斫狻犊荚嚧缶V》上的差距,并爭取縮小這一差距,才能克服盲目性,增強(qiáng)自覺性,更好地指導(dǎo)考生進(jìn)行復(fù)習(xí)。比如,《考試大綱》指出:"考試要求分成4個(gè)不同的層次,這4個(gè)層次由低到高依次為了解、理解、掌握、靈活運(yùn)用和綜合運(yùn)用"。但如何界定"了解、理解、掌握、靈活運(yùn)用和綜合運(yùn)用",《考試大綱》并未明確指出。同樣,《考試大綱》還指出:"考試旨在測試中學(xué)數(shù)學(xué)基礎(chǔ)知識(shí)、基本技能、基本方法,運(yùn)算能力、邏輯思維能力、空間想象能力以及運(yùn)用所學(xué)數(shù)決問題的能力"。這些能力如何界定,如何具體化?上述種種都只能通過深入研究近年來的高考數(shù)學(xué)試題才能使之具體化,從而指導(dǎo)我們平時(shí)的教學(xué)工作。從這個(gè)意義上來說,研究《考試大綱》,分析近年來的高考數(shù)學(xué)試題是非常必要的。
四、反思教學(xué)
在復(fù)習(xí)的過程中,特別是做題、單元考試、大型考試后,我都會(huì)經(jīng)常的回頭看一看,停下來想一想,自己的復(fù)習(xí)對(duì)學(xué)生的成績的提高有沒有實(shí)效,是否使學(xué)生掌握的知識(shí)和技能得到了鞏固和深化,分析問題和解決問題的能力是否得到了提高。這樣時(shí)常反思就可以根據(jù)學(xué)生的實(shí)際情況有針對(duì)性的進(jìn)行知識(shí)復(fù)習(xí)和解題訓(xùn)練,而不是簡單做完習(xí)題對(duì)完答案就可以萬事大吉了。同時(shí)對(duì)典型習(xí)題、代表性習(xí)題的練習(xí)更加多下功夫,針對(duì)這方面我采取將省和各市質(zhì)檢卷試題中的易錯(cuò)題、重點(diǎn)題重新拼起來,讓學(xué)生重復(fù)的練習(xí),防止范相同的錯(cuò)誤。這樣學(xué)生遇到做過的題目的時(shí)候就能夠很清楚的了解該題考查了什么內(nèi)容,其特征是什么,還有其他更好的解法嗎?長期堅(jiān)持對(duì)典型習(xí)題的練習(xí)就能化腐朽為神奇、能掌握數(shù)學(xué)知識(shí)及其運(yùn)用的內(nèi)在規(guī)律和聯(lián)系,善于抓住關(guān)鍵,靈活的解決數(shù)學(xué)問題,從而能夠達(dá)到舉一反三的目的,久而久之,學(xué)生分析問題和解決問題的能力就會(huì)有所提升。反思高三的教學(xué)其實(shí)最重要的就是“抓落實(shí)”。一模過后,學(xué)生對(duì)于自己知識(shí)的掌握情況有所了解,我就要求每個(gè)學(xué)生針對(duì)自己的情況并且對(duì)照高考大綱的要求找出自己還有哪些知識(shí)點(diǎn)掌握的不是很好,然后由我歸納出來,挑出重點(diǎn)來,再根據(jù)這些相應(yīng)的出些習(xí)題,希望在這個(gè)環(huán)節(jié)中將學(xué)生的薄弱環(huán)節(jié)全都消滅掉。復(fù)習(xí)過程中我一直注意知識(shí)的全面性、重點(diǎn)性、精確性、聯(lián)系性和應(yīng)用性,這也是我去年教學(xué)主要遵守的原則以及復(fù)習(xí)的主導(dǎo)思想,我認(rèn)為這樣的復(fù)習(xí)針對(duì)我班學(xué)生是有一定效果的。另外,我還時(shí)常在每次月考后,找一些考試成績變化大的學(xué)生交流下學(xué)習(xí)問題,找到他們?cè)趯W(xué)習(xí)過程中出現(xiàn)的問題,幫助他們找正學(xué)習(xí)方法。
高數(shù)課件【篇5】
一、課題:
人教版全日制普通高級(jí)中學(xué)教科書數(shù)學(xué)第一冊(cè)(上)《2.7對(duì)數(shù)》
二、指導(dǎo)思想與理論依據(jù):
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:高中數(shù)學(xué)課程應(yīng)講清一些基本內(nèi)容的實(shí)際背景和應(yīng)用價(jià)值,開展“數(shù)學(xué)建?!钡膶W(xué)習(xí)活動(dòng),把數(shù)學(xué)的應(yīng)用自然地融合在平常的教學(xué)中。任何一個(gè)數(shù)學(xué)概念的引入,總有它的現(xiàn)實(shí)或數(shù)學(xué)理論發(fā)展的需要。都應(yīng)強(qiáng)調(diào)它的現(xiàn)實(shí)背景、數(shù)學(xué)理論發(fā)展背景或數(shù)學(xué)發(fā)展歷史上的背景,這樣才能使教學(xué)內(nèi)容顯得自然和親切,讓學(xué)生感到知識(shí)的發(fā)展水到渠成而不是強(qiáng)加于人,從而有利于學(xué)生認(rèn)識(shí)數(shù)學(xué)內(nèi)容的實(shí)際背景和應(yīng)用的價(jià)值。在教學(xué)設(shè)計(jì)時(shí),既要關(guān)注學(xué)生在數(shù)學(xué)情感態(tài)度和科學(xué)價(jià)值觀方面的發(fā)展,也要幫助學(xué)生理解和掌握數(shù)學(xué)基礎(chǔ)知識(shí)和基本技能,發(fā)展能力。在課程實(shí)施中,應(yīng)結(jié)合教學(xué)內(nèi)容介紹一些對(duì)數(shù)學(xué)發(fā)展起重大作用的歷史事件和人物,用以反映數(shù)學(xué)在人類社會(huì)進(jìn)步、人類文化建設(shè)中的作用,同時(shí)反映社會(huì)發(fā)展對(duì)數(shù)學(xué)發(fā)展的促進(jìn)作用。
三、教材分析:
本節(jié)內(nèi)容主要學(xué)習(xí)對(duì)數(shù)的概念及其對(duì)數(shù)式與指數(shù)式的互化。它屬于函數(shù)領(lǐng)域的知識(shí)。而對(duì)數(shù)的概念是對(duì)數(shù)函數(shù)部分教學(xué)中的核心概念之一,而函數(shù)的思想方法貫穿在高中數(shù)學(xué)教學(xué)的始終。通過對(duì)數(shù)的學(xué)習(xí),可以解決數(shù)學(xué)中知道底數(shù)和冪值求指數(shù)的問題,以及對(duì)數(shù)函數(shù)的相關(guān)問題。
四、學(xué)情分析:
在ab=N(a>0,a≠1)中,知道底數(shù)和指數(shù)可以求冪值,那么知道底數(shù)和冪值如何求求指數(shù),從學(xué)生認(rèn)知的角度自然就產(chǎn)生了這樣的需要。因此,在前面學(xué)習(xí)指數(shù)的基礎(chǔ)上學(xué)習(xí)對(duì)數(shù)的概念是水到渠成的事。
五、教學(xué)目標(biāo):
(一)教學(xué)知識(shí)點(diǎn):
1.對(duì)數(shù)的概念。
2.對(duì)數(shù)式與指數(shù)式的互化。Yjs21.cOm
(二)能力目標(biāo):
1.理解對(duì)數(shù)的概念。
2.能夠進(jìn)行對(duì)數(shù)式與指數(shù)式的互化。
(三)德育滲透目標(biāo):
1.認(rèn)識(shí)事物之間的相互聯(lián)系與相互轉(zhuǎn)化,
2.用聯(lián)系的觀點(diǎn)看問題。
六、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn)是對(duì)數(shù)定義,難點(diǎn)是對(duì)數(shù)概念的理解。
七、教學(xué)方法:
講練結(jié)合法八、教學(xué)流程:
問題情景(復(fù)習(xí)引入)——實(shí)例分析、形成概念(導(dǎo)入新課)——深刻認(rèn)識(shí)概念(對(duì)數(shù)式與指數(shù)式的互化)——變式分析、深化認(rèn)識(shí)(對(duì)數(shù)的性質(zhì)、對(duì)數(shù)恒等式,介紹自然對(duì)數(shù)及常用對(duì)數(shù))——練習(xí)小結(jié)、形成反思(例題,小結(jié))
八、教學(xué)反思:
對(duì)本節(jié)內(nèi)容在進(jìn)行教學(xué)設(shè)計(jì)之前,本人反復(fù)閱讀了課程標(biāo)準(zhǔn)和教材,教材內(nèi)容的處理收到了一定的預(yù)期效果,尤其是練習(xí)的處理,充分發(fā)揮了學(xué)生的主體作用,也提高了學(xué)生主體的合作意識(shí),達(dá)到了設(shè)計(jì)中所預(yù)想的目標(biāo)。然而還有一些缺憾:對(duì)本節(jié)內(nèi)容,難度不高,本人認(rèn)為,教師的干預(yù)(講解)還是太多。在以后的教學(xué)中,對(duì)于一些較簡單的內(nèi)容,應(yīng)放手讓學(xué)生多一些探究與合作。隨著教育改革的深化,教學(xué)理念、教學(xué)模式、教學(xué)內(nèi)容等教學(xué)因素,都在不斷更新,作為數(shù)學(xué)教師要更新教學(xué)觀念,從學(xué)生的全面發(fā)展來設(shè)計(jì)課堂教學(xué),關(guān)注學(xué)生個(gè)性和潛能的發(fā)展,使教學(xué)過程更加切合《課程標(biāo)準(zhǔn)》的要求。
對(duì)于本教學(xué)設(shè)計(jì),時(shí)間倉促,不足之處在所難免,期待與各位同仁交流。
高數(shù)課件【篇6】
一、說教材
1.從在教材中的地位與作用來看
《等比數(shù)列的前n項(xiàng)和》是數(shù)列這一章中的一個(gè)重要內(nèi)容,它不僅在現(xiàn)實(shí)生活中有著廣泛的實(shí)際應(yīng)用,如儲(chǔ)蓄、分期付款的有關(guān)計(jì)算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).
2.從學(xué)生認(rèn)知角度看
從學(xué)生的思維特點(diǎn)看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項(xiàng)和從公式的形成、特點(diǎn)等方面進(jìn)行類比,這是積極因素,應(yīng)因勢(shì)利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項(xiàng)和公式的推導(dǎo)有著本質(zhì)的不同,這對(duì)學(xué)生的思維是一個(gè)突破,另外,對(duì)于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯(cuò).
3.學(xué)情分析
教學(xué)對(duì)象是剛進(jìn)入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).
4.重點(diǎn)、難點(diǎn)
教學(xué)重點(diǎn):公式的推導(dǎo)、公式的特點(diǎn)和公式的運(yùn)用.
教學(xué)難點(diǎn):公式的推導(dǎo)方法和公式的靈活運(yùn)用.
公式推導(dǎo)所使用的“錯(cuò)位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊(yùn)含了重要的數(shù)學(xué)思想,所以既是重點(diǎn)也是難點(diǎn).
二、說目標(biāo)
知識(shí)與技能目標(biāo):
理解并掌握等比數(shù)列前n項(xiàng)和公式的推導(dǎo)過程、公式的特點(diǎn),在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.
過程與方法目標(biāo):
通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.
情感與態(tài)度價(jià)值觀:
通過對(duì)公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價(jià)轉(zhuǎn)化和理論聯(lián)系實(shí)際的辯證唯物主義觀點(diǎn).
三、說過程
學(xué)生是認(rèn)知的主體,設(shè)計(jì)教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識(shí)的形成與發(fā)展過程,結(jié)合本節(jié)課的特點(diǎn),我設(shè)計(jì)了如下的教學(xué)過程:
1.創(chuàng)設(shè)情境,提出問題
在古印度,有個(gè)名叫西薩的人,發(fā)明了國際象棋,當(dāng)時(shí)的印度國王大為贊賞,對(duì)他說:我可以滿足你的任何要求.西薩說:請(qǐng)給我棋盤的64個(gè)方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計(jì)算,結(jié)果出來后,國王大吃一驚.為什么呢?
設(shè)計(jì)意圖:設(shè)計(jì)這個(gè)情境目的是在引入課題的同時(shí)激發(fā)學(xué)生的興趣,調(diào)動(dòng)學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點(diǎn).
此時(shí)我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥??倲?shù).帶著這樣的問題,學(xué)生會(huì)動(dòng)手算了起來,他們想到用計(jì)算器依次算出各項(xiàng)的值,然后再求和.這時(shí)我對(duì)他們的這種思路給予肯定.
設(shè)計(jì)意圖:在實(shí)際教學(xué)中,由于受課堂時(shí)間限制,教師舍不得花時(shí)間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯(cuò)位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個(gè)教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時(shí)間營造知識(shí)形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時(shí),形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的新方法,為后面的教學(xué)埋下伏筆.
2.師生互動(dòng),探究問題
在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?
探討1:,記為(1)式,注意觀察每一項(xiàng)的特征,有何聯(lián)系?(學(xué)生會(huì)發(fā)現(xiàn),后一項(xiàng)都是前一項(xiàng)的2倍)
探討2:如果我們把每一項(xiàng)都乘以2,就變成了它的后一項(xiàng),(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?
設(shè)計(jì)意圖:留出時(shí)間讓學(xué)生充分地比較,等比數(shù)列前n項(xiàng)和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機(jī).
經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項(xiàng),把兩式相減,相同的項(xiàng)就消去了,得到:.老師指出:這就是錯(cuò)位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?
設(shè)計(jì)意圖:經(jīng)過繁難的計(jì)算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗(yàn),從而增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.
3.類比聯(lián)想,解決問題
這時(shí)我再順勢(shì)引導(dǎo)學(xué)生將結(jié)論一般化,
這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對(duì)個(gè)別學(xué)生進(jìn)行指導(dǎo).
設(shè)計(jì)意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗(yàn)到學(xué)習(xí)的愉快和成就感.
對(duì)不對(duì)?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時(shí)是什么數(shù)列?此時(shí)sn=?(這里引導(dǎo)學(xué)生對(duì)q進(jìn)行分類討論,得出公式,同時(shí)為后面的例題教學(xué)打下基礎(chǔ).)
再次追問:結(jié)合等比數(shù)列的通項(xiàng)公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)
設(shè)計(jì)意圖:通過反問精講,一方面使學(xué)生加深對(duì)知識(shí)的認(rèn)識(shí),完善知識(shí)結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷?duì)知識(shí)的主動(dòng)認(rèn)識(shí),從而進(jìn)一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時(shí)間有時(shí)比較少,甚至僅僅幾句話,然而卻有畫龍點(diǎn)睛之妙用.
4.討論交流,延伸拓展
高數(shù)課件【篇7】
教學(xué)目標(biāo)
1.使學(xué)生了解反函數(shù)的概念;
2.使學(xué)生會(huì)求一些簡單函數(shù)的反函數(shù);
3.培養(yǎng)學(xué)生用辯證的觀點(diǎn)觀察、分析解決問題的能力。
教學(xué)重點(diǎn)
1.反函數(shù)的概念;
2.反函數(shù)的求法。
教學(xué)難點(diǎn)
反函數(shù)的概念。
教學(xué)方法
師生共同討論
教具裝備
幻燈片2張
第一張:反函數(shù)的定義、記法、習(xí)慣記法。(記作A);
第二張:本課時(shí)作業(yè)中的預(yù)習(xí)內(nèi)容及提綱。
教學(xué)過程
(I)講授新課
(檢查預(yù)習(xí)情況)
師:這節(jié)課我們來學(xué)習(xí)反函數(shù)(板書課題)§2.4.1反函數(shù)的概念。
同學(xué)們已經(jīng)進(jìn)行了預(yù)習(xí),對(duì)反函數(shù)的概念有了初步的了解,誰來復(fù)述一下反函數(shù)的定義、記法、習(xí)慣記法?
生:(略)
(學(xué)生回答之后,打出幻燈片A)。
師:反函數(shù)的定義著重強(qiáng)調(diào)兩點(diǎn):
(1)根據(jù)y=f(x)中x與y的關(guān)系,用y把x表示出來,得到x=φ(y);
(2)對(duì)于y在c中的任一個(gè)值,通過x=φ(y),x在A中都有惟一的值和它對(duì)應(yīng)。
師:應(yīng)該注意習(xí)慣記法是由記法改寫過來的。
師:由反函數(shù)的定義,同學(xué)們考慮一下,怎樣的映射確定的函數(shù)才有反函數(shù)呢?
生:一一映射確定的函數(shù)才有反函數(shù)。
(學(xué)生作答后,教師板書,若學(xué)生答不來,教師再予以必要的啟示)。
師:在y=f(x)中與y=f-1(y)中的x、y,所表示的量相同。(前者中的x與后者中的x都屬于同一個(gè)集合,y也是如此),但地位不同(前者x是自變量,y是函數(shù)值;后者y是自變量,x是函數(shù)值。)
在y=f(x)中與y=f–1(x)中的x都是自變量,y都是函數(shù)值,即x、y在兩式中所處的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,請(qǐng)同學(xué)們談一下,函數(shù)y=f(x)與它的反函數(shù)y=f–1(x)兩者之間,定義域、值域存在什么關(guān)系呢?
生:(學(xué)生作答,教師板書)函數(shù)的定義域,值域分別是它的反函數(shù)的值域、定義域。
師:從反函數(shù)的概念可知:函數(shù)y=f(x)與y=f–1(x)互為反函數(shù)。
從反函數(shù)的概念我們還可以知道,求函數(shù)的反函數(shù)的方法步驟為:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)將x=f–1(y)改寫成y=f–1(x),即對(duì)調(diào)x=f–1(y)中的x、y。
(3)指出反函數(shù)的定義域。
下面請(qǐng)同學(xué)自看例1
(II)課堂練習(xí)課本P68練習(xí)1、2、3、4。
(III)課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了反函數(shù)的概念,從中知道了怎樣的映射確定的函數(shù)才有反函數(shù)并求函數(shù)的反函數(shù)的方法步驟,大家要熟練掌握。
(IV)課后作業(yè)
一、課本P69習(xí)題2.41、2。
二、預(yù)習(xí):互為反函數(shù)的函數(shù)圖象間的關(guān)系,親自動(dòng)手作題中要求作的圖象。
板書設(shè)計(jì)
課題:求反函數(shù)的方法步驟:
定義:(幻燈片)
注意:小結(jié)
一一映射確定的
函數(shù)才有反函數(shù)
函數(shù)與它的反函
數(shù)定義域、值域的關(guān)系。
高數(shù)課件【篇8】
尊敬的各位評(píng)委、老師們:
大家好!
今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。
一、教材分析
教材的地位和作用:
本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。
學(xué)情分析:
本節(jié)課的學(xué)生是高一學(xué)生,他們?cè)诔踔械臅r(shí)候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對(duì)二次函數(shù)的圖像由感性認(rèn)識(shí)上升到理性認(rèn)識(shí),能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。
二、教學(xué)目標(biāo)分析
基于以上對(duì)教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:
1.知識(shí)與技能
理解二次函數(shù)中參數(shù)a,b,c,h,k對(duì)其圖像的影響;
2.過程與方法
通過體驗(yàn)對(duì)二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。
3.情感態(tài)度與價(jià)值觀
通過本節(jié)的學(xué)習(xí),進(jìn)一步體會(huì)數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。
三、教學(xué)重難點(diǎn)分析
通過以上對(duì)教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)確定如下:
重點(diǎn):二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。
難點(diǎn):探索平移對(duì)函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。
四、教法與學(xué)法分析
1、教法分析
基于以上對(duì)教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。
2、學(xué)法分析
新課改理念告訴我們,學(xué)生不僅要學(xué)知識(shí),更重要的是要學(xué)會(huì)怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進(jìn)行學(xué)習(xí)。
五、教學(xué)過程
為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我將設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。
(1)知識(shí)導(dǎo)入
溫故而知新,我將先從之前學(xué)習(xí)的知識(shí)引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點(diǎn)和不同點(diǎn),由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識(shí),為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗(yàn)。
(2)講授新課
例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像
讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點(diǎn),再讓學(xué)生與多媒體課件展示的圖像進(jìn)行對(duì)比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。
前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實(shí)例的結(jié)論進(jìn)行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a
(3)鞏固練習(xí)
我將組織學(xué)生進(jìn)行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對(duì)圖像的影響。
(4)歸納總結(jié)
我先讓學(xué)生進(jìn)行小結(jié),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識(shí),也有利于教師對(duì)學(xué)生的學(xué)習(xí)情況有一定的了解,可以進(jìn)行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。
高數(shù)課件【篇9】
一、探究式教學(xué)模式概述
1、探究式教學(xué)模式的含義。探究式教學(xué)就是學(xué)生在教師引導(dǎo)下,像科學(xué)家發(fā)現(xiàn)真理那樣以類似科學(xué)探究的方式來展開學(xué)習(xí)活動(dòng),通過自己大腦的獨(dú)立思考和探究,去弄清事物發(fā)展變化的起因和內(nèi)在聯(lián)系,從中探索出知識(shí)規(guī)律的教學(xué)模式。它的基本特征是教師不把跟教學(xué)內(nèi)容有關(guān)的內(nèi)容和認(rèn)知策略直接告訴學(xué)生,而是創(chuàng)造一種適宜的認(rèn)知和合作環(huán)境,讓學(xué)生通過探究形成認(rèn)知策略,從而對(duì)教學(xué)目標(biāo)進(jìn)行一種全方位的學(xué)習(xí),實(shí)現(xiàn)學(xué)生從被動(dòng)學(xué)習(xí)到主動(dòng)學(xué)習(xí),培養(yǎng)學(xué)生的科學(xué)探究能力、創(chuàng)新意識(shí)和科學(xué)精神。可見,探究式教學(xué)主張把學(xué)習(xí)知識(shí)的過程和探究知識(shí)的過程統(tǒng)一起來,充分發(fā)揮學(xué)生學(xué)習(xí)的自主性和參與性。
2、堂探究式教學(xué)的實(shí)質(zhì)。課堂探究式教學(xué)的實(shí)質(zhì)是使學(xué)生通過類似科學(xué)家科學(xué)探究的過程來理解科學(xué)探究概念和科學(xué)規(guī)律的本質(zhì),并培養(yǎng)學(xué)生的科學(xué)探究能力。具體地說,它包括兩個(gè)相互聯(lián)系的方面:一是有一個(gè)以“學(xué)”為中心的探究性學(xué)習(xí)環(huán)境。在這個(gè)環(huán)境中有豐富的教學(xué)資源,而且這些資源是圍繞某個(gè)知識(shí)主題來展開的。這個(gè)學(xué)習(xí)環(huán)境具有民主和諧的課堂氣氛,它使學(xué)生很少感到有壓力,能自主尋找所需要的信息,提出自己的設(shè)想,并以自己的方式檢驗(yàn)其設(shè)想。二是教師可以給學(xué)生提供必要的幫助和指導(dǎo),使學(xué)生在研究中能明確方向。這說明探究式教學(xué)的本質(zhì)特征是不直接把與教學(xué)目標(biāo)有關(guān)的概念和認(rèn)知策略告訴學(xué)生,取而代之的是教師創(chuàng)造出一種智力交流和社會(huì)交往的環(huán)境,讓學(xué)生通過探究自己發(fā)現(xiàn)規(guī)律。
3、探究式教學(xué)模式的特征。
(1)問題性。問題性是探究式教學(xué)模式的關(guān)鍵。能否提出對(duì)學(xué)生具有挑戰(zhàn)性和吸引力的問題,使學(xué)生產(chǎn)生問題意識(shí),是探究教學(xué)成功與否的關(guān)鍵所在。恰當(dāng)?shù)膯栴}會(huì)激起學(xué)生強(qiáng)烈的學(xué)習(xí)愿望,并引發(fā)學(xué)生的求異思維和創(chuàng)造思維。現(xiàn)代教育心理學(xué)研究提出:“學(xué)生的學(xué)習(xí)過程和科學(xué)家的探索過程在本質(zhì)上是一樣的,都是一個(gè)發(fā)現(xiàn)問題、分析問題、解決問題的過程。”所以培養(yǎng)學(xué)生的問題意識(shí)是探究式教學(xué)的重要使命。
(2)過程性。過程性是探究式教學(xué)模式的重點(diǎn)。愛因斯坦說:“結(jié)論總以完成的形式出現(xiàn),讀者體會(huì)不到探索和發(fā)現(xiàn)的喜悅,感覺不到思想形成的生動(dòng)過程,也就很難達(dá)到清楚、全面理解的境界。”探究式教學(xué)模式正是考慮到這些人的認(rèn)知特點(diǎn)來組織教學(xué)的,它強(qiáng)調(diào)學(xué)生探索知識(shí)的經(jīng)歷和獲得新知識(shí)的親身感悟。
(3)開放性。開放性是探究式教學(xué)模式的難點(diǎn)。探究式教學(xué)模式總是綜合合作學(xué)習(xí)、發(fā)現(xiàn)學(xué)習(xí)、自主學(xué)習(xí)等學(xué)習(xí)方式的長處,培養(yǎng)學(xué)生良好的學(xué)習(xí)態(tài)度和學(xué)習(xí)方法,提倡和發(fā)展多樣化的學(xué)習(xí)方式。探究式教學(xué)模式要面對(duì)大量開放性的問題,教學(xué)資源和探究的結(jié)論面對(duì)生活、生產(chǎn)和科研是開放的,這一切都為教師的教與學(xué)生的學(xué)帶來了機(jī)遇與挑戰(zhàn)。
二、教學(xué)設(shè)計(jì)案例
1、教學(xué)內(nèi)容:數(shù)字排列中3、9的探究式教學(xué)。
2、教學(xué)目標(biāo)。
(1)知識(shí)與技能:掌握數(shù)字排列的知識(shí),能靈活運(yùn)用所學(xué)知識(shí)。
(2)過程與方法:在探究過程中掌握分析問題的方法和邏輯推理的方法。
(3)情感態(tài)度與價(jià)值觀:培養(yǎng)學(xué)生觀察、分析、推理、歸納等綜合能力,讓學(xué)生體會(huì)到認(rèn)識(shí)客觀規(guī)律的一般過程。
3、教學(xué)方法:談話探究法,討論探究法。
4、教學(xué)過程。
(1)創(chuàng)設(shè)情境。教師:在高中數(shù)學(xué)第十章的教學(xué)中,有關(guān)數(shù)字排列的問題占有重要位置。我們?cè)?jīng)做過的有關(guān)數(shù)字排列的題目,如“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除。那么能被3整除的數(shù),能被9整除的數(shù)有何特點(diǎn)?
(2)提出問題。
問題1:在用1、2、3、4、5、6六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的共有()
A、36個(gè)B、18個(gè)C、12個(gè)D、24個(gè)
問題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?
(3)探究思考。點(diǎn)評(píng):乍一看問題1,對(duì)于由若干個(gè)數(shù)字排列成9的倍數(shù)的問題,如:81、72、63、54、45、36、27、18、9這些能夠被9整除的數(shù)的個(gè)位數(shù)字依次是1、2、3、4、5、6、7、8、9。因此,要考察能被9整除的數(shù),不能只考慮個(gè)位數(shù)字了。于是,需另辟蹊徑,探究能被9整除的數(shù)的特點(diǎn),尋求解決問題的途徑。
教師:同學(xué)們觀察81、72、63、54、45、36、27、18、9這些數(shù),甚至再寫出幾個(gè)能被9整除的數(shù),如981、1872等,看看它們有何特點(diǎn)?
學(xué)生:它們都滿足“各位數(shù)字之和能被9整除”。
教師:此結(jié)論的正確性如何?
學(xué)生:老師,我們證明此結(jié)論的正確性,好嗎?
教師:好。
學(xué)生:證明:不妨以n是一個(gè)四位數(shù)為例證之。
設(shè)n=1000a+100b+10c+d(a,b,c,d∈N)依條件,有a+b+c+d=9m(m∈N)
則n=1000a+100b+10c+d
=(999a+a)+(99b+b)+(9c+c)+d
=(999a+99b+9c)+(a+b+c+d)
=9(111a+11b+c)+9m
=9(111a+11b+c+m)
∵ a,b,c,m∈N
∴ 111a+11b+c+m∈N
所以n能被9整除
同理可證定理的后半部分。
教師:看來上述結(jié)論正確。所以得到如下定理。
定理:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。
教師:利用該定理可解決“能被3、9整除”的數(shù)字排列問題,請(qǐng)同學(xué)們先解答問題1。
學(xué)生:嘗試1+4+5+6=16,1+3+4+5=13,2+3+4+5=14,2+4+5+6=17,1+2+3+4=10,1+2+5+6=14。
教師:啟發(fā)學(xué)生觀察這些數(shù)字有何特點(diǎn)?提問學(xué)生。
學(xué)生:可以看出只要從1、2、3、4、5、6這六個(gè)數(shù)中,選取的四個(gè)數(shù)字中含1(或2),或者同時(shí)含1、2,選取的四個(gè)數(shù)字之和都不是9的倍數(shù)。
教師:請(qǐng)學(xué)生們繼續(xù)嘗試選取其他數(shù)字試一試。
學(xué)生:3+4+5+6=18是9的倍數(shù)。
教師:因此用1、2、3、4、5、6六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的四位數(shù)中,是9的倍數(shù)的數(shù),就是由3、4、5、6進(jìn)行全排列所得,共有=24(個(gè))。
故應(yīng)選D。
(4)學(xué)以致用。
問題2:在用0、1、2、3、4、5這六個(gè)數(shù)字組成沒有重復(fù)數(shù)字的自然數(shù)中,有多少個(gè)能被6整除的五位數(shù)?
教師:從上面的定理知:如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。同學(xué)們對(duì)問題2有何想法?
學(xué)生討論:
學(xué)生1:被6整除的五位數(shù)必須既能被2整除,又能被3整除,故能被6整除的五位數(shù),即為各位數(shù)字之和能被3整除的五位偶數(shù)。
學(xué)生2:由于1+2+3+4+5=15,能被3整除,所以選取的5個(gè)數(shù)字可分兩類:一類是5個(gè)數(shù)字中無0,另一類是5個(gè)數(shù)字中有0(但不含3)。
學(xué)生3:第一類:5個(gè)數(shù)字中無0的五位偶數(shù)有。
第二類:5個(gè)數(shù)字中含有0不含3的五位偶數(shù)有兩類,第一,0在個(gè)位有個(gè);第二,個(gè)位是2或4有,所以共有+ 。
學(xué)生4:由分類計(jì)數(shù)原理得:能被6整除的無重復(fù)數(shù)字的五位數(shù)共有+ + =108(個(gè))。
(5)概括強(qiáng)化。
重點(diǎn):了解數(shù)字排列問題的特點(diǎn),理解掌握數(shù)字排列中3、9問題的規(guī)律。
難點(diǎn):數(shù)字排列知識(shí)的靈活應(yīng)用。
關(guān)鍵:證明的思路以及定理的得出。
新學(xué)知識(shí)與已知知識(shí)之間的區(qū)別和聯(lián)系:已知知識(shí)“由若干個(gè)數(shù)字排列成偶數(shù)”、“能被5整除的數(shù)”等問題,只要使排列成的數(shù)的個(gè)位數(shù)字為偶數(shù),則這個(gè)數(shù)就是偶數(shù),當(dāng)排列成的數(shù)的個(gè)位數(shù)字為0或5時(shí),則這個(gè)數(shù)就能被5整除”。新學(xué)知識(shí)“如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被9整除,那么這個(gè)數(shù)n就能夠被9整除;如果一個(gè)自然數(shù)n各個(gè)數(shù)位上的數(shù)字之和能被3整除,那么這個(gè)數(shù)n就能夠被3整除。都是數(shù)字排列知識(shí),要學(xué)會(huì)靈活應(yīng)用。
(6)作業(yè)。請(qǐng)同學(xué)們自擬練習(xí)題,以求達(dá)到熟練解決此類問題的目的。
總之,探究式教學(xué)模式是針對(duì)傳統(tǒng)教學(xué)的種種弊端提出來的,新課程改革強(qiáng)調(diào)改變課程過于注重知識(shí)的傳授和過于強(qiáng)調(diào)接受式學(xué)習(xí)的狀況,倡導(dǎo)學(xué)生主動(dòng)參與樂于探究、勤于動(dòng)手,讓學(xué)生經(jīng)歷科學(xué)探究過程,學(xué)習(xí)科學(xué)研究方法,并強(qiáng)調(diào)獲得知識(shí)、技能的過程成為學(xué)會(huì)學(xué)習(xí)和形成價(jià)值觀的過程,以培養(yǎng)學(xué)生的探究精神、創(chuàng)新意識(shí)和實(shí)踐能力。
高數(shù)課件【篇10】
教學(xué)目的:使學(xué)生熟練掌握奇偶函數(shù)的判定以及奇偶函數(shù)性質(zhì)的靈活應(yīng)用;
培養(yǎng)學(xué)生化歸、分類以及數(shù)形結(jié)合等數(shù)學(xué)思想;提高學(xué)生分析、解題的能力。
教學(xué)過程:
一、知識(shí)要點(diǎn)回顧
1、奇偶函數(shù)的定義:應(yīng)注意兩點(diǎn):①定義域在數(shù)軸上關(guān)于原點(diǎn)對(duì)稱是函數(shù)為奇偶函數(shù)的必要非充分條件。②f(x)f(x)或f(x)f(x)是定義域上的恒等式(對(duì)定義域中任一x均成立)。
2、判定函數(shù)奇偶性的方法(首先注意定義域是否為關(guān)于原點(diǎn)的對(duì)稱區(qū)間)
①定義法判定(有時(shí)需將函數(shù)化簡,或應(yīng)用定義的變式:f(x)f(x)f(x)f(x)0f(x)1(f(x)0)。f(x)
②圖象法。
③性質(zhì)法。
3、奇偶函數(shù)的性質(zhì)及其應(yīng)用
①奇偶函數(shù)的定義域關(guān)于原點(diǎn)對(duì)稱;②奇函數(shù)圖象關(guān)于原點(diǎn)對(duì)稱,并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上有相同的單調(diào)性;③偶函數(shù)圖象關(guān)于y軸對(duì)稱,并且在兩個(gè)關(guān)于原點(diǎn)對(duì)稱的區(qū)間上單調(diào)性相反;④若奇函數(shù)f(x)的定義域包含0,則f(0)=0;⑤f(x)為偶函數(shù),則f(x)f(x);⑥y=f(x+a)為偶函數(shù)
而偶函數(shù)y=f(x+a)的對(duì)稱軸為f(xa)f(xa)f(x)對(duì)稱軸為x=a,x=0(y軸);⑦兩個(gè)奇函數(shù)的和差是奇函數(shù),積商是偶函數(shù);兩個(gè)偶函數(shù)的和差、積商都是偶函數(shù);一奇一偶的兩個(gè)函數(shù)的積商是奇函數(shù)。
二、典例分析
例1:試判斷下列函數(shù)的奇偶性
|x|(x1)0;(1)f(x)|x2||x2|;(2)f(x);(3)f(x)x2x1__(x0)(4)f(x);(5)ylog2(x;(6)f(x)loga。2x1__(x0)
解:(1)偶;(2)奇;(3)非奇非偶;(4)奇;(5)奇;(6)奇。簡析:(1)用定義判定;
(2)先求定義域?yàn)閇,再化簡函數(shù)得f(x)則f(x)f(x),為奇函數(shù);
(3)定義域不對(duì)稱;
(4)x注意分段函數(shù)奇偶性的判定;
(5)、均利用f(x)f(x)0判定。
例2,(1)已知f(x)是奇函數(shù)且當(dāng)x>0時(shí),f(x)x32x21則xR時(shí)x32x21(x0)f(x)0(x0)32x2x1(x0)
(2)設(shè)函數(shù)yf(x1)為偶函數(shù),若x1時(shí)yx21,則x>1時(shí),yx24x5。
簡析:本題為奇偶函數(shù)對(duì)稱性的靈活應(yīng)用。
(1)中當(dāng)x
也可畫出示意圖,由原點(diǎn)左邊圖象上任一點(diǎn)(x,y)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)(x,y)在右邊的圖象上可得y(x)32(x)21yx32x21。
(2)中yf(x1)為偶函數(shù)f(x1)f(x1)f(x)的對(duì)稱軸為
x=1故x=1右邊的圖象上任一點(diǎn)(x,y)關(guān)于x=1的對(duì)稱點(diǎn)(x2,y)在
(可畫圖幫助分析)。yx21上,∴y(x2)21x24x5。
本題也可利用二次函數(shù)的性質(zhì)確定出解析式。
練習(xí):設(shè)f(x)是定義在[—1,1]上的偶函數(shù),g(x)與f(x)圖象關(guān)于直線x=1對(duì)稱,當(dāng)x[2,3]時(shí)g(x)2t(x2)4(x2)3(t為常數(shù)),則f(x)的表達(dá)式為xx。
例3:若奇函數(shù)f(x)是定義在(—1,1)上的增函數(shù),試解關(guān)于a的不等式f(a2)f(a24)0。
分析:抽象函數(shù)組成的不等式的求解,常利用函數(shù)的單調(diào)性脫去“f”符號(hào),轉(zhuǎn)化為關(guān)于自變量的不等式求解,但要注意定義域)。
解:依題意得f(a2)f(a24)f(4a2)(∵f(x)為奇函數(shù))又∵f(x)是定義在(—1,1)上的單調(diào)增函數(shù)
1a21∴1a241
2a24aa2
∴解集是{aa2}
變式1:設(shè)定義在[—2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1m)f(m),求實(shí)數(shù)m的取值范圍。|1m||m|簡解:依題意得21m2
2m2121m
(注意數(shù)形結(jié)合解題)
變式2:設(shè)定義在[—2,2]上的偶函數(shù)y=f(x+1)在區(qū)間[0,2]上單調(diào)遞減,若f(1—m)
11m3簡解:依題意得1m3
|1m1||m1|1m22
例4,已知函數(shù)f(x)滿足f(x+y)+f(x—y)=2f(x)·f(y),(x,yR),且
(1)f(0)=1,(2)f(x)的圖象關(guān)于y軸對(duì)稱。f(0)0,試證:
(分析:抽象函數(shù)奇偶性的證明,常用到賦值法及奇偶性的定義)。解:(1)令x=y=0,有f(0)f(0)2f2(0),又f(0)0∴f(0)1。
(2)令x=0,得f(y)f(y)2f(0)f(y)2f(y)
∴f(y)f(y)(yR)
∴f(x)為偶函數(shù),∴f(x)的圖象關(guān)于y軸對(duì)稱。
歸類總結(jié)出抽象函數(shù)的解題方法與技巧。
變式訓(xùn)練:設(shè)f(x)是定義在(0,)上的減函數(shù),且對(duì)于任意x,y(0,)x都有f()f(x)f(y)y
1(1)求f(1);(2)若f(4)=1,解不等式f(x6)f()2x
(點(diǎn)明題型特征及解題方法)
三、小結(jié)
1、奇偶性的判定方法;
2、奇偶性的靈活應(yīng)用(特別是對(duì)稱性);
3、求解抽象不等式及抽象函數(shù)的常用方法。
四、課后練習(xí)及作業(yè)
1、完成《教學(xué)與測試》相應(yīng)習(xí)題。
2、完成《導(dǎo)與練》相應(yīng)習(xí)題。
高數(shù)課件【篇11】
高中一年級(jí)的新同學(xué)們,當(dāng)你們踏進(jìn)高中校門,漫步在優(yōu)美的校園時(shí),看見老師嚴(yán)謹(jǐn)而熱心的教學(xué)和師兄、師姐深切的關(guān)懷時(shí),我想你們會(huì)暗暗決心:爭取學(xué)好高中階段的各門學(xué)科。在新的高考制度"3+綜合"普遍吹散全國大地之時(shí),代表人們基本素質(zhì)的"3"科中,數(shù)學(xué)是最能體現(xiàn)一個(gè)人的思維能力,判斷能力、反應(yīng)敏捷能力和聰明程度的學(xué)科。數(shù)學(xué)直接影響著國民的基本素質(zhì)和生活質(zhì)量,良好的數(shù)學(xué)修養(yǎng)將為人的一生可持續(xù)發(fā)展奠定基礎(chǔ),高中階段則應(yīng)可能充分反映學(xué)習(xí)者對(duì)數(shù)學(xué)的不同需求,使每個(gè)學(xué)生都能學(xué)習(xí)適合他們自己的數(shù)學(xué)。
一、高中數(shù)學(xué)課的設(shè)置
高中數(shù)學(xué)內(nèi)容豐富,知識(shí)面廣泛,高一年級(jí)上學(xué)期學(xué)習(xí)第一冊(cè)(上):第一章集合與簡易邏輯;第二章函數(shù);第三章數(shù)列。高一年級(jí)下學(xué)期學(xué)習(xí)第一冊(cè)(下):第四章三角函數(shù);第五章平面向量。高二年級(jí)上學(xué)期學(xué)習(xí)第二冊(cè)(上):第六章不等式;第七章直線和圓的方程;第八章圓錐曲線方程。高二年級(jí)下學(xué)期學(xué)習(xí)第二冊(cè)(下):第九章直線、平面、簡單幾何體;第十章排列、組合和概率。高二結(jié)束將有數(shù)學(xué)"會(huì)考"。高三年級(jí)文科生學(xué)習(xí)第三冊(cè)(選修1):第一章統(tǒng)計(jì);第二章極限與導(dǎo)數(shù)。高三年級(jí)理科生學(xué)習(xí)第三冊(cè)(選修2):第一章概率與統(tǒng)計(jì);第二章極限;第三章導(dǎo)數(shù);第四章復(fù)數(shù)。高三還將進(jìn)行全面復(fù)習(xí),并有重要的"高考"。
二、初中數(shù)學(xué)與高中數(shù)學(xué)的差異。
1、知識(shí)差異。初中數(shù)學(xué)知識(shí)少、淺、難度容易、知識(shí)面笮。高中數(shù)學(xué)知識(shí)廣泛,將對(duì)初中的數(shù)學(xué)知識(shí)推廣和引伸,也是對(duì)初中數(shù)學(xué)知識(shí)的完善。如:初中學(xué)習(xí)的角的概念只是"0-1800"范圍內(nèi)的,但實(shí)際當(dāng)中也有7200和"-300"等角,為此,高中將把角的概念推廣到任意角,可表示包括正、負(fù)在內(nèi)的所有大小角。又如:高中要學(xué)習(xí)《立體幾何》(第九章直線、平面、簡單幾何體),將在三維空間中求角和距離等。
還將學(xué)習(xí)"排列組合"知識(shí),以便解決排隊(duì)方法種數(shù)等問題。如:①三個(gè)人排成一行,有幾種排隊(duì)方法,(=6種);②四人進(jìn)行乒乓球雙打比賽,有幾種比賽場次?(答:=3種)高中將學(xué)習(xí)統(tǒng)計(jì)這些排列的數(shù)學(xué)方法。初中中對(duì)一個(gè)負(fù)數(shù)開平方無意義,但在高中規(guī)定了i2=--1,就使-1的平方根為±i.即可把數(shù)的概念進(jìn)行推廣,使數(shù)的概念擴(kuò)大到復(fù)數(shù)范圍等。這些知識(shí)同學(xué)們?cè)谝院蟮膶W(xué)習(xí)中將逐漸學(xué)習(xí)到。
2、學(xué)習(xí)方法的差異。
(1)初中課堂教學(xué)量小、知識(shí)簡單,通過教師課堂教慢的速度,爭取讓全面同學(xué)理解知識(shí)點(diǎn)和解題方法,課后老師布置作業(yè),然后通過大量的課堂內(nèi)、外練習(xí)、課外指導(dǎo)達(dá)到對(duì)知識(shí)的反反復(fù)復(fù)理解,直到學(xué)生掌握。而高中數(shù)學(xué)的學(xué)習(xí)隨著課程開設(shè)多(有九們課學(xué)生同時(shí)學(xué)習(xí)),每天至少上六節(jié)課,自習(xí)時(shí)間三節(jié)課,這樣各科學(xué)習(xí)時(shí)間將大大減少,而教師布置課外題量相對(duì)初中減少,這樣集中數(shù)學(xué)學(xué)習(xí)的時(shí)間相對(duì)比初中少,數(shù)學(xué)教師將相初中那樣監(jiān)督每個(gè)學(xué)生的作業(yè)和課外練習(xí),就能達(dá)到相初中那樣把知識(shí)讓每個(gè)學(xué)生掌握后再進(jìn)行新課。
(2)模仿與創(chuàng)新的區(qū)別。
初中學(xué)生模仿做題,他們模仿老師思維推理教多,而高中模仿做題、思維學(xué)生有,但隨著知識(shí)的難度大和知識(shí)面廣泛,學(xué)生不能全部模仿,即就是學(xué)生全部模仿訓(xùn)練做題,也不能開拓學(xué)生自我思維能力,學(xué)生的數(shù)學(xué)成績也只能是一般程度?,F(xiàn)在高考數(shù)學(xué)考察,旨在考察學(xué)生能力,避免學(xué)生高分低能,避免定勢(shì)思維,提倡創(chuàng)新思維和培養(yǎng)學(xué)生的創(chuàng)造能力培養(yǎng)。初中學(xué)生大量地模仿使學(xué)生帶來了不利的思維定勢(shì),對(duì)高中學(xué)生帶來了保守的、僵化的思想,封閉了學(xué)生的豐富反對(duì)創(chuàng)造精神。如學(xué)生在解決:比較a與2a的大小時(shí)要不就錯(cuò)、要不就答不全面。大多數(shù)學(xué)生不會(huì)分類討論。
3、學(xué)生自學(xué)能力的差異
初中學(xué)生自學(xué)那能力低,大凡考試中所用的解題方法和數(shù)學(xué)思想,在初中教師基本上已反復(fù)訓(xùn)練,老師把學(xué)生要學(xué)生自己高度深刻理解的問題,都集中表現(xiàn)在他的耐心的講解和大量的訓(xùn)練中,而且學(xué)生的聽課只需要熟記結(jié)論就可以做題(不全是),學(xué)生不需自學(xué)。但高中的知識(shí)面廣,知識(shí)要全部要教師訓(xùn)練完高考中的習(xí)題類型是不可能的,只有通過較少的、較典型的一兩道例題講解去融會(huì)貫通這一類型習(xí)題,如果不自學(xué)、不靠大量的閱讀理解,將會(huì)使學(xué)生失去一類型習(xí)題的解法。另外,科學(xué)在不斷的發(fā)展,考試在不斷的改革,高考也隨著全面的改革不斷的深入,數(shù)學(xué)題型的開發(fā)在不斷的多樣化,近年來提出了應(yīng)用型題、探索型題和開放型題,只有靠學(xué)生的自學(xué)去深刻理解和創(chuàng)新才能適應(yīng)現(xiàn)代科學(xué)的發(fā)展。
其實(shí),自學(xué)能力的提高也是一個(gè)人生活的需要,他從一個(gè)方面也代表了一個(gè)人的素養(yǎng),人的一生只有18---24年時(shí)間是有導(dǎo)師的學(xué)習(xí),其后半生,最精彩的人生是人在一生學(xué)習(xí),靠的自學(xué)最終達(dá)到了自強(qiáng)。
4、思維習(xí)慣上的差異
初中學(xué)生由于學(xué)習(xí)數(shù)學(xué)知識(shí)的范圍小,知識(shí)層次低,知識(shí)面笮,對(duì)實(shí)際問題的思維受到了局限,就幾何來說,我們都接觸的是現(xiàn)實(shí)生活中三維空間,但初中只學(xué)了平面幾何,那么就不能對(duì)三維空間進(jìn)行嚴(yán)格的邏輯思維和判斷。代數(shù)中數(shù)的范圍只限定在實(shí)數(shù)中思維,就不能深刻的解決方程根的類型等。高中數(shù)學(xué)知識(shí)的多元化和廣泛性,將會(huì)使學(xué)生全面、細(xì)致、深刻、嚴(yán)密的分析和解決問題。也將培養(yǎng)學(xué)生高素質(zhì)思維。提高學(xué)生的思維遞進(jìn)性。
5、定量與變量的差異
初中數(shù)學(xué)中,題目、已知和結(jié)論用常數(shù)給出的較多,一般地,答案是常數(shù)和定量。學(xué)生在分析問題時(shí),大多是按定量來分析問題,這樣的思維和問題的解決過程,只能片面地、局限地解決問題,在高中數(shù)學(xué)學(xué)習(xí)中我們將會(huì)大量地、廣泛地應(yīng)用代數(shù)的可變性去探索問題的普遍性和特殊性。如:求解一元二次方程時(shí)我們采用對(duì)方程ax2+bx+c=0(a≠0)的求解,討論它是否有根和有根時(shí)的所有根的情形,使學(xué)生很快的掌握了對(duì)所有一元二次方程的解法。另外,在高中學(xué)習(xí)中我們還會(huì)通過對(duì)變量的分析,探索出分析、解決問題的思路和解題所用的數(shù)學(xué)思想。
三、如何學(xué)好高中數(shù)學(xué)
良好的開端是成功的一半,高中數(shù)學(xué)課即將開始與初中知識(shí)有聯(lián)系,但比初中數(shù)學(xué)知識(shí)系統(tǒng)。高一數(shù)學(xué)中我們將學(xué)習(xí)函數(shù),函數(shù)是高中數(shù)學(xué)的重點(diǎn),它在高中數(shù)學(xué)中是起著提綱的作用,它融匯在整個(gè)高中數(shù)學(xué)知識(shí)中,其中有數(shù)學(xué)中重要的數(shù)學(xué)思想方法;如:函數(shù)與方程思想、數(shù)形結(jié)合思想等,它也是高考的重點(diǎn),近年來,高考?jí)狠S題都以函數(shù)題為考察方法的。高考題中與函數(shù)思想方法有關(guān)的習(xí)題占整個(gè)試題的60%以上。
1、有良好的學(xué)習(xí)興趣
兩千多年前孔子說過:"知之者不如好之者,好之者不如樂之者。"意思說,干一件事,知道它,了解它不如愛好它,愛好它不如樂在其中。"好"和"樂"就是愿意學(xué),喜歡學(xué),這就是興趣。興趣是最好的老師,有興趣才能產(chǎn)生愛好,愛好它就要去實(shí)踐它,達(dá)到樂在其中,有興趣才會(huì)形成學(xué)習(xí)的主動(dòng)性和積極性。在數(shù)學(xué)學(xué)習(xí)中,我們把這種從自發(fā)的感性的樂趣出發(fā)上升為自覺的理性的"認(rèn)識(shí)"過程,這自然會(huì)變?yōu)榱⒅緦W(xué)好數(shù)學(xué),成為數(shù)學(xué)學(xué)習(xí)的成功者。那么如何才能建立好的學(xué)習(xí)數(shù)學(xué)興趣呢?
(1)課前預(yù)習(xí),對(duì)所學(xué)知識(shí)產(chǎn)生疑問,產(chǎn)生好奇心。
(2)聽課中要配合老師講課,滿足感官的興奮性。聽課中重點(diǎn)解決預(yù)習(xí)中疑問,把老師課堂的提問、停頓、教具和模型的演示都視為欣賞音樂,及時(shí)回答老師課堂提問,培養(yǎng)思考與老師同步性,提高精神,把老師對(duì)你的提問的評(píng)價(jià),變?yōu)楸薏邔W(xué)習(xí)的動(dòng)力。
(3)思考問題注意歸納,挖掘你學(xué)習(xí)的潛力。
(4)聽課中注意老師講解時(shí)的數(shù)學(xué)思想,多問為什么要這樣思考,這樣的方法怎樣是產(chǎn)生的?
(5)把概念回歸自然。所有學(xué)科都是從實(shí)際問題中產(chǎn)生歸納的,數(shù)學(xué)概念也回歸于現(xiàn)實(shí)生活,如角的概念、至交坐標(biāo)系的產(chǎn)生、極坐標(biāo)系的產(chǎn)生都是從實(shí)際生活中抽象出來的。只有回歸現(xiàn)實(shí)才能使對(duì)概念的理解切實(shí)可靠,在應(yīng)用概念判斷、推理時(shí)會(huì)準(zhǔn)確。
2、建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。
習(xí)慣是經(jīng)過重復(fù)練習(xí)而鞏固下來的穩(wěn)重持久的條件反射和自然需要。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會(huì)使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動(dòng)手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識(shí)翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。另外還要保證每天有一定的自學(xué)時(shí)間,以便加寬知識(shí)面和培養(yǎng)自己再學(xué)習(xí)能力。
3、有意識(shí)培養(yǎng)自己的各方面能力
數(shù)學(xué)能力包括:邏輯推理能力、抽象思維能力、計(jì)算能力、空間想象能力和分析解決問題能力共五大能力。這些能力是在不同的數(shù)學(xué)學(xué)習(xí)環(huán)境中得到培養(yǎng)的。在平時(shí)學(xué)習(xí)中要注意開發(fā)不同的學(xué)習(xí)場所,參與一切有益的學(xué)習(xí)實(shí)踐活動(dòng),如數(shù)學(xué)第二課堂、數(shù)學(xué)競賽、智力競賽等活動(dòng)。
平時(shí)注意觀察,比如,空間想象能力是通過實(shí)例凈化思維,把空間中的實(shí)體高度抽象在大腦中,并在大腦中進(jìn)行分析推理。其它能力的培養(yǎng)都必須學(xué)習(xí)、理解、訓(xùn)練、應(yīng)用中得到發(fā)展。特別是,教師為了培養(yǎng)這些能力,會(huì)精心設(shè)計(jì)"智力課"和"智力問題"比如對(duì)習(xí)題的解答時(shí)的一題多解、舉一反三的訓(xùn)練歸類,應(yīng)用模型、電腦等多媒體教學(xué)等,都是為數(shù)學(xué)能力的培養(yǎng)開設(shè)的好課型,在這些課型中,學(xué)生務(wù)必要用全身心投入、全方位智力參與,最終達(dá)到自己各方面能力的全面發(fā)展。
四、其它注意事項(xiàng)
1、注意化歸轉(zhuǎn)化思想學(xué)習(xí)。
人們學(xué)習(xí)過程就是用掌握的知識(shí)去理解、解決未知知識(shí)。數(shù)學(xué)學(xué)習(xí)過程都是用舊知識(shí)引出和解決新問題,當(dāng)新的知識(shí)掌握后再利用它去解決更新知識(shí)。初中知識(shí)是基礎(chǔ),如果能把新知識(shí)用舊知識(shí)解答,你就有了化歸轉(zhuǎn)化思想了??梢姡瑢W(xué)習(xí)就是不斷地化歸轉(zhuǎn)化,不斷地繼承和發(fā)展更新舊知識(shí)。
2、學(xué)會(huì)數(shù)學(xué)教材的數(shù)學(xué)思想方法。
數(shù)學(xué)教材是采用蘊(yùn)含披露的方式將數(shù)學(xué)思想溶于數(shù)學(xué)知識(shí)體系中,因此,適時(shí)對(duì)數(shù)學(xué)思想作出歸納、概括是十分必要的。概括數(shù)學(xué)思想一般可分為兩步進(jìn)行:一是揭示數(shù)學(xué)思想內(nèi)容規(guī)律,即將數(shù)學(xué)對(duì)象其具有的屬性或關(guān)系抽取出來,二是明確數(shù)學(xué)思想方法知識(shí)的聯(lián)系,抽取解決全體的框架。實(shí)施這兩步的措施可在課堂的聽講和課外的自學(xué)中進(jìn)行。
課堂學(xué)習(xí)是數(shù)學(xué)學(xué)習(xí)的主戰(zhàn)場。課堂中教師通過講解、分解教材中的數(shù)學(xué)思想和進(jìn)行數(shù)學(xué)技能地訓(xùn)練,使高中學(xué)生學(xué)習(xí)所得到豐富的數(shù)學(xué)知識(shí),教師組織的科研活動(dòng),使教材中的數(shù)學(xué)概念、定理、原理得到最大程度的理解、挖掘。如初中學(xué)習(xí)的相反數(shù)概念教學(xué)中,教師的課堂教學(xué)往往有以下理解:①從定義角度求3、-5的相反數(shù),相反數(shù)是的數(shù)是_____.②從數(shù)軸角度理解:什么樣的兩點(diǎn)表示數(shù)是互為相反數(shù)的。(關(guān)于原點(diǎn)對(duì)稱的點(diǎn))③從絕對(duì)值角度理解:絕對(duì)值_______的兩個(gè)數(shù)是互為相反數(shù)的。④相加為零的兩個(gè)數(shù)互為相反數(shù)嗎?這些不同角度的教學(xué)會(huì)開闊學(xué)生思維,提高思維品質(zhì)。望同學(xué)們把握好課堂這個(gè)學(xué)習(xí)的主戰(zhàn)場。
五、學(xué)數(shù)學(xué)的幾個(gè)建議。
1、記數(shù)學(xué)筆記,特別是對(duì)概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師為備戰(zhàn)高考而加的課外知識(shí)。
2、建立數(shù)學(xué)糾錯(cuò)本。把平時(shí)容易出現(xiàn)錯(cuò)誤的知識(shí)或推理記載下來,以防再犯。爭取做到:找錯(cuò)、析錯(cuò)、改錯(cuò)、防錯(cuò)。達(dá)到:能從反面入手深入理解正確東西;能由果朔因把錯(cuò)誤原因弄個(gè)水落石出、以便對(duì)癥下藥;解答問題完整、推理嚴(yán)密。
3、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。
4、與同學(xué)建立好關(guān)系,爭做"小老師",形成數(shù)學(xué)學(xué)習(xí)"互助組"。
5、爭做數(shù)學(xué)課外題,加大自學(xué)力度。
6、反復(fù)鞏固,消滅前學(xué)后忘。
7、學(xué)會(huì)總結(jié)歸類??桑孩購臄?shù)學(xué)思想分類②從解題方法歸類③從知識(shí)應(yīng)用上分類
同學(xué)們?cè)诟咧杏袃?yōu)美的學(xué)習(xí)環(huán)境,有一群樂于事業(yè)的熱心教師,全體教師經(jīng)驗(yàn)豐富,他們甘愿為你們做鋪路石直至你們走進(jìn)高等學(xué)校大門。我們數(shù)學(xué)組的全體教師一定會(huì)使你們成為數(shù)學(xué)學(xué)習(xí)的成功。
Yjs21.coM更多幼師資料延伸讀
2024高一函數(shù)課件(模板11篇)
作為一名辛苦耕耘的教育工作者,有必要進(jìn)行細(xì)致的教案準(zhǔn)備工作,借助教案可以有效提升自己的教學(xué)能力。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編為大家整理的高一數(shù)學(xué)教案《函數(shù)概念》,希望能夠幫助到大家。
高一函數(shù)課件 篇1
第二十四教時(shí)
教材:倍角公式,推導(dǎo)和差化積及積化和差公式
目的:繼續(xù)復(fù)習(xí)鞏固倍角公式,加強(qiáng)對(duì)公式靈活運(yùn)用的訓(xùn)練;同時(shí),讓學(xué)生推導(dǎo)出和差化積和積化和差公式,并對(duì)此有所了解。
過程:
一、 復(fù)習(xí)倍角公式、半角公式和萬能公式的推導(dǎo)過程:
例一、 已知 , ,tan = ,tan = ,求2 +
(《教學(xué)與測試》P115 例三)
解:
又∵tan2 0,tan 0 ,
2 + =
例二、 已知sin cos = , ,求 和tan的'值
解:∵sin cos =
化簡得:
∵ 即
二、 積化和差公式的推導(dǎo)
sin( + ) + sin( ) = 2sincos sincos = [sin( + ) + sin( )]
sin( + ) sin( ) = 2cossin cossin = [sin( + ) sin( )]
cos( + ) + cos( ) = 2coscos coscos = [cos( + ) + cos( )]
cos( + ) cos( ) = 2sinsin sinsin = [cos( + ) cos( )]
這套公式稱為三角函數(shù)積化和差公式,熟悉結(jié)構(gòu),不要求記憶,它的優(yōu)點(diǎn)在于將積式化為和差,有利于簡化計(jì)算。(在告知公式前提下)
例三、 求證:sin3sin3 + cos3cos3 = cos32
證:左邊 = (sin3sin)sin2 + (cos3cos)cos2
= (cos4 cos2)sin2 + (cos4 + cos2)cos2
= cos4sin2 + cos2sin2 + cos4cos2 + cos2cos2
= cos4cos2 + cos2 = cos2(cos4 + 1)
= cos22cos22 = cos32 = 右邊
原式得證
三、 和差化積公式的推導(dǎo)
若令 + = , = ,則 , 代入得:
這套公式稱為和差化積公式,其特點(diǎn)是同名的正(余)弦才能使用,它與積化和差公式相輔相成,配合使用。
例四、 已知cos cos = ,sin sin = ,求sin( + )的值
解:∵cos cos = , ①
sin sin = , ②
四、 小結(jié):和差化積,積化和差
五、 作業(yè):《課課練》P3637 例題推薦 13
P3839 例題推薦 13
P40 例題推薦 13
高一函數(shù)課件 篇2
教學(xué)目標(biāo)
1、掌握對(duì)數(shù)函數(shù)的概念,圖象和性質(zhì),且在掌握性質(zhì)的基礎(chǔ)上能進(jìn)行初步的應(yīng)用。
(1)能在指數(shù)函數(shù)及反函數(shù)的概念的基礎(chǔ)上理解對(duì)數(shù)函數(shù)的定義,了解對(duì)底數(shù)的要求,及對(duì)定義域的要求,能利用互為反函數(shù)的兩個(gè)函數(shù)圖象間的關(guān)系正確描繪對(duì)數(shù)函數(shù)的圖象。
(2)能把握指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的實(shí)質(zhì)去研究認(rèn)識(shí)對(duì)數(shù)函數(shù)的性質(zhì),初步學(xué)會(huì)用對(duì)數(shù)函數(shù)的性質(zhì)解決簡單的問題。
2、通過對(duì)數(shù)函數(shù)概念的學(xué)習(xí),樹立相互聯(lián)系相互轉(zhuǎn)化的觀點(diǎn),通過對(duì)數(shù)函數(shù)圖象和性質(zhì)的學(xué)習(xí),滲透數(shù)形結(jié)合,分類討論等思想,注重培養(yǎng)學(xué)生的觀察,分析,歸納等邏輯思維能力。
3、通過指數(shù)函數(shù)與對(duì)數(shù)函數(shù)在圖象與性質(zhì)上的對(duì)比,對(duì)學(xué)生進(jìn)行對(duì)稱美,簡潔美等審美教育,調(diào)動(dòng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性。
教學(xué)建議
教材分析
(1)對(duì)數(shù)函數(shù)又是函數(shù)中一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的`進(jìn)一步認(rèn)識(shí)與理解。對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸。它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ)。
(2)本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì)。難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì)。由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,故應(yīng)成為教學(xué)的重點(diǎn)。
(3)本節(jié)課的主線是對(duì)數(shù)函數(shù)是指數(shù)函數(shù)的反函數(shù),所有的問題都應(yīng)圍繞著這條主線展開。而通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,所以應(yīng)是本節(jié)課的難點(diǎn)。
教法建議
(1)對(duì)數(shù)函數(shù)在引入時(shí),就應(yīng)從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì)。
(2)在本節(jié)課中結(jié)合對(duì)數(shù)函數(shù)教學(xué)的特點(diǎn),一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向。這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,從而提高學(xué)習(xí)興趣。
高一函數(shù)課件 篇3
概念反思:
變式:關(guān)于 的不等式 在 上恒成立,則實(shí)數(shù) 的范圍為__ ____
變式:設(shè) ,則函數(shù)( 的最小值是 .
課后拓展:
1.下列說法正確的.有 (填序號(hào))
①若 ,當(dāng) 時(shí), ,則 在I上是增函數(shù).
②函數(shù) 在R上是增函數(shù).
③函數(shù) 在定義域上是增函數(shù).
④ 的單調(diào)區(qū)間是 .
2.若函數(shù) 的零點(diǎn) , ,則所有滿足條件的 的和為?
3. 已知函數(shù) ( 為實(shí)常數(shù)).
(1)若 ,求 的單調(diào)區(qū)間;
(2)若 ,設(shè) 在區(qū)間 的最小值為 ,求 的表達(dá)式;
(3)設(shè) ,若函數(shù) 在區(qū)間 上是增函數(shù),求實(shí)數(shù) 的取值范圍.
解析:(1) 2分
∴ 的單調(diào)增區(qū)間為( ),(- ,0), 的單調(diào)減區(qū)間為(- ),( )
(2)由于 ,當(dāng) ∈[1,2]時(shí),
10 即
20 即
30 即 時(shí)
綜上可得
(3) 在區(qū)間[1,2]上任取 、 ,且
則
(*)
∵ ∴
∴(*)可轉(zhuǎn)化為 對(duì)任意 、
即
10 當(dāng)
20 由 得 解得
30 得 所以實(shí)數(shù) 的取值范圍是
高一函數(shù)課件 篇4
一、教學(xué)目標(biāo):
1、知識(shí)與技能:
(1) 結(jié)合實(shí)例,了解正整數(shù)指數(shù)函數(shù)的概念.
(2)能夠求出正整數(shù)指數(shù)函數(shù)的解析式,進(jìn)一步研究其性質(zhì).
2、 過程與方法:
(1)讓學(xué)生借助實(shí)例,了解正整數(shù)指數(shù)函數(shù),體會(huì)從具體到一般,從個(gè)別到整體的研究過程和研究方法.
(2)從圖像上觀察體會(huì)正整數(shù)指數(shù)函數(shù)的性質(zhì),為這一章的學(xué)習(xí)作好鋪墊.
3、情感.態(tài)度與價(jià)值觀:使學(xué)生通過學(xué)習(xí)正整數(shù)指數(shù)函數(shù)體會(huì)學(xué)習(xí)指數(shù)函數(shù)的重要意義,增強(qiáng)學(xué)習(xí)研究函數(shù)的積極性和自信心.
二、教學(xué)重點(diǎn): 正整數(shù)指數(shù)函數(shù)的定義.教學(xué)難點(diǎn):正整數(shù)指數(shù)函數(shù)的解析式的確定.
三、學(xué)法指導(dǎo):學(xué)生觀察、思考、探究.教學(xué)方法:探究交流,講練結(jié)合。
四、教學(xué)過程
(一)新課導(dǎo)入
[互動(dòng)過程1]:
(1)請(qǐng)你用列表表示1個(gè)細(xì)胞分裂次數(shù)分別
為1,2,3,4,5,6,7,8時(shí),得到的細(xì)胞個(gè)數(shù);
(2)請(qǐng)你用圖像表示1個(gè)細(xì)胞分裂的次數(shù)n( )與得到的細(xì)
胞個(gè)數(shù)y之間的關(guān)系;
(3)請(qǐng)你寫出得到的細(xì)胞個(gè)數(shù)y與分裂次數(shù)n之間的關(guān)系式,試用
科學(xué)計(jì)算器計(jì)算細(xì)胞分裂15次、20次得到的`細(xì)胞個(gè)數(shù).
解:
(1)利用正整數(shù)指數(shù)冪的運(yùn)算法則,可以算出1個(gè)細(xì)胞分裂1,2,3,
4,5,6,7,8次后,得到的細(xì)胞個(gè)數(shù)
分裂次數(shù) 1 2 3 4 5 6 7 8
細(xì)胞個(gè)數(shù) 2 4 8 16 32 64 128 256
(2)1個(gè)細(xì)胞分裂的次數(shù) 與得到的細(xì)胞個(gè)數(shù) 之間的關(guān)系可以用圖像表示,它的圖像是由一些孤立的點(diǎn)組成
(3)細(xì)胞個(gè)數(shù) 與分裂次數(shù) 之間的關(guān)系式為 ,用科學(xué)計(jì)算器算得 ,
所以細(xì)胞分裂15次、20次得到的細(xì)胞個(gè)數(shù)分別為32768和1048576.
探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別是什么?此函數(shù)是什么類型的函數(shù)? 細(xì)胞個(gè)數(shù) 隨著分裂次數(shù) 發(fā)生怎樣變化?你從哪里看出?
小結(jié):從本題中可以看出我們得到的細(xì)胞分裂個(gè)數(shù)都是底數(shù)為2的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 細(xì)胞個(gè)數(shù) 與分裂次數(shù) 之間的關(guān)系式為 .細(xì)胞個(gè)數(shù) 隨著分裂次數(shù) 的增多而逐漸增多.
[互動(dòng)過程2]:問題2.電冰箱使用的氟化物的釋放破壞了大氣上層的臭氧層,臭氧含量Q近似滿足關(guān)系式Q=Q00.9975 t,其中Q0是臭氧的初始量,t是時(shí)間(年),這里設(shè)Q0=1.
(1)計(jì)算經(jīng)過20,40,60,80,100年,臭氧含量Q;
(2)用圖像表示每隔20年臭氧含量Q的變化;
(3)試分析隨著時(shí)間的增加,臭氧含量Q是增加還是減少.
解:(1)使用科學(xué)計(jì)算器可算得,經(jīng)過20,40,60,80,100年,臭氧含量Q的值分別為0.997520=0.9512, 0.997540=0.9047, 0.997560=0.8605, 0.997580=0.8185, 0.9975100=0.7786;
(2)用圖像表示每隔20年臭氧含量Q的變化如圖所
示,它的圖像是由一些孤立的點(diǎn)組成.
(3)通過計(jì)算和觀察圖形可以知道, 隨著時(shí)間的增加,
臭氧含量Q在逐漸減少.
探究:從本題中得到的函數(shù)來看,自變量和函數(shù)值分別
又是什么?此函數(shù)是什么類型的函數(shù)?,臭氧含量Q隨著
時(shí)間的增加發(fā)生怎樣變化?你從哪里看出?
小結(jié):從本題中可以看出我們得到的臭氧含量Q都是底數(shù)為0.9975的指數(shù),而且指數(shù)是變量,取值為正整數(shù). 臭氧含量Q近似滿足關(guān)系式Q=0.9975 t, 隨著時(shí)間的增加,臭氧含量Q在逐漸減少.
[互動(dòng)過程3]:上面兩個(gè)問題所得的函數(shù)有沒有共同點(diǎn)?你能統(tǒng)一嗎?自變量的取值范圍又是什么?這樣的函數(shù)圖像又是什么樣的?為什么?
正整數(shù)指數(shù)函數(shù)的定義:一般地,函數(shù) 叫作正整數(shù)指數(shù)函數(shù),其中 是自變量,定義域是正整數(shù)集 .
說明: 1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(二)、例題:某地現(xiàn)有森林面積為1000 ,每年增長5%,經(jīng)過 年,森林面積為 .寫出 , 間的函數(shù)關(guān)系式,并求出經(jīng)過5年,森林的面積.
分析:要得到 , 間的函數(shù)關(guān)系式,可以先一年一年的增長變化,找出規(guī)律,再寫出 , 間的函數(shù)關(guān)系式.
解: 根據(jù)題意,經(jīng)過一年, 森林面積為1000(1+5%) ;經(jīng)過兩年, 森林面積為1000(1+5%)2 ;經(jīng)過三年, 森林面積為1000(1+5%)3 ;所以 與 之間的函數(shù)關(guān)系式為 ,經(jīng)過5年,森林的面積為1000(1+5%)5=1276.28(hm2).
練習(xí):課本練習(xí)1,2
補(bǔ)充例題:高一某學(xué)生家長去年年底到銀行存入20xx元,銀行月利率為2.38%,那么如果他第n個(gè)月后從銀行全部取回,他應(yīng)取回錢數(shù)為y,請(qǐng)寫出n與y之間的關(guān)系,一年后他全部取回,他能取回多少?
解:一個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%),二個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)2;,三個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)3,, n個(gè)月后他應(yīng)取回的錢數(shù)為y=20xx(1+2.38%)n; 所以n與y之間的關(guān)系為y=20xx(1+2.38%)n (nN+),一年后他全部取回,他能取回的錢數(shù)為y=20xx(1+2.38%)12.
補(bǔ)充練習(xí):某工廠年產(chǎn)值逐年按8%的速度遞增,今年的年產(chǎn)值為200萬元,那么第n年后該廠的年產(chǎn)值為多少?
(三)、小結(jié):1.正整數(shù)指數(shù)函數(shù)的圖像是一些孤立的點(diǎn),這是因?yàn)楹瘮?shù)的定義域是正整數(shù)集.2.在研究增長問題、復(fù)利問題、質(zhì)量濃度問題中常見這類函數(shù).
(四)、作業(yè):課本習(xí)題3-1 1,2,3
高一函數(shù)課件 篇5
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系。
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過程:
Ⅰ.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問題:
問題一:y=1(xR)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認(rèn)識(shí)函數(shù)概念(板書課題).
Ⅱ.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個(gè)問題.
y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說y是x的函數(shù).
Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
②符號(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-20,即x2時(shí),1x-2 有意義
這個(gè)函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時(shí)3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的集合(即使每個(gè)部分有意義的`實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬萬不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語:是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問題都要多問幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎]想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,
當(dāng)x[-3,1]時(shí),得y[-1,8]
Ⅳ.課堂練習(xí)
課本P24練習(xí)17.
Ⅴ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2. 文 章來
高一函數(shù)課件 篇6
案例背景:
對(duì)數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對(duì)數(shù)與常用對(duì)數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對(duì)上述知識(shí)的應(yīng)用,也是對(duì)函數(shù)這一重要數(shù)學(xué)思想的進(jìn)一步認(rèn)識(shí)與理解.對(duì)數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識(shí)體系更加完整,系統(tǒng),同時(shí)又是對(duì)數(shù)和函數(shù)知識(shí)的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實(shí)際問題的重要工具,是學(xué)生今后學(xué)習(xí)對(duì)數(shù)方程,對(duì)數(shù)不等式的基礎(chǔ).
案例敘述:
(一).創(chuàng)設(shè)情境
(師):前面的幾種函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).
反函數(shù)的實(shí)質(zhì)是研究兩個(gè)函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個(gè)熟悉的.函數(shù)就是指數(shù)函數(shù).
(提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?
(學(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.
(師):求反函數(shù)的步驟
(由一個(gè)學(xué)生口答求反函數(shù)的過程):
由 得 .又 的值域?yàn)?,
所求反函數(shù)為 .
(師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對(duì)數(shù)函數(shù).
(二)新課
1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對(duì)數(shù)函數(shù).
(師):由于定義就是從反函數(shù)角度給出的,所以下面我們的研究就從這個(gè)角度出發(fā).如從定義中你能了解對(duì)數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識(shí)是什么?
(教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識(shí),學(xué)生自主探究,合作交流)
(學(xué)生)對(duì)數(shù)函數(shù)的定義域?yàn)?,對(duì)數(shù)函數(shù)的值域?yàn)?,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .
(在此基礎(chǔ)上,我們將一起來研究對(duì)數(shù)函數(shù)的圖像與性質(zhì).)
2.研究對(duì)數(shù)函數(shù)的圖像與性質(zhì)
(提問)用什么方法來畫函數(shù)圖像?
(學(xué)生1)利用互為反函數(shù)的兩個(gè)函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.
(學(xué)生2)用列表描點(diǎn)法也是可以的。
請(qǐng)學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.
(師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對(duì)數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.
具體操作時(shí),要求學(xué)生做到:
(1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點(diǎn)的位置,圖像的變化趨勢(shì)等).
(2) 畫出直線 .
(3) 的圖像在翻折時(shí)先將特殊點(diǎn) 對(duì)稱點(diǎn) 找到,變化趨勢(shì)由靠近 軸對(duì)稱為逐漸靠近 軸,而 的圖像在翻折時(shí)可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.
學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出
和 的圖像.(此時(shí)同底的指數(shù)函數(shù)和對(duì)數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:
教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:
然后提出讓學(xué)生根據(jù)圖像說出對(duì)數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個(gè)角度說明)
3. 性質(zhì)
(1) 定義域:
(2) 值域:
由以上兩條可說明圖像位于 軸的右側(cè).
(3)圖像恒過(1,0)
(4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點(diǎn)對(duì)稱,也不關(guān)于 軸對(duì)稱.
(5) 單調(diào)性:與 有關(guān).當(dāng) 時(shí),在 上是增函數(shù).即圖像是上升的
當(dāng) 時(shí),在 上是減函數(shù),即圖像是下降的.
之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r(shí),可以再問能否看待何時(shí)函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:
當(dāng) 時(shí),有 ;當(dāng) 時(shí),有 .
學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個(gè)結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時(shí)函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時(shí),函數(shù)值為負(fù),并把它當(dāng)作第(6)條性質(zhì)板書記下來.
最后教師在總結(jié)時(shí),強(qiáng)調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對(duì)比記憶.(特別強(qiáng)調(diào)它們單調(diào)性的一致性)
對(duì)圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.
(三).簡單應(yīng)用
1. 研究相關(guān)函數(shù)的性質(zhì)
例1. 求下列函數(shù)的定義域:
(1) (2) (3)
先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對(duì)數(shù)中真數(shù)和底數(shù)的條件限制.
2. 利用單調(diào)性比較大小
例2. 比較下列各組數(shù)的大小
(1) 與 ; (2) 與 ;
(3) 與 ; (4) 與 .
讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對(duì)數(shù)函數(shù)利用單調(diào)性來比大小.最后讓學(xué)生以其中一組為例寫出詳細(xì)的比較過程.
三.拓展練習(xí)
練習(xí):若 ,求 的取值范圍.
四.小結(jié)及作業(yè)
案例反思:
本節(jié)的教學(xué)重點(diǎn)是理解對(duì)數(shù)函數(shù)的定義,掌握對(duì)數(shù)函數(shù)的圖象性質(zhì).難點(diǎn)是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對(duì)數(shù)函數(shù)的圖象和性質(zhì).由于對(duì)數(shù)函數(shù)的概念是一個(gè)抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對(duì)數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過互為反函數(shù)的兩個(gè)函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在教學(xué)上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問題出發(fā),通過對(duì)指數(shù)函數(shù)的認(rèn)識(shí)逐步轉(zhuǎn)化為對(duì)對(duì)數(shù)函數(shù)的認(rèn)識(shí),而且畫對(duì)數(shù)函數(shù)圖象時(shí),既要考慮到對(duì)底數(shù)的分類討論而且對(duì)每一類問題也可以多選幾個(gè)不同的底,畫在同一個(gè)坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).
在教學(xué)中一定要讓學(xué)生動(dòng)手做,動(dòng)腦想,大膽猜,要以學(xué)生的研究為主,教師只是不斷地以反函數(shù)這條主線引導(dǎo)學(xué)生思考的方向.這樣既增強(qiáng)了學(xué)生的參與意識(shí)又教給他們思考問題的方法,獲取知識(shí)的途徑,使學(xué)生學(xué)有所思,思有所得,練有所獲,,從而提高學(xué)習(xí)興趣.
高一函數(shù)課件 篇7
教學(xué)目標(biāo)
1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.
2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識(shí)問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.
3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對(duì)學(xué)生進(jìn)行辯證唯物主義的教育.
教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
教學(xué)難點(diǎn):函數(shù)單調(diào)性的判定.
教學(xué)過程設(shè)計(jì)
一、引入新課
師:請(qǐng)同學(xué)們觀察下面兩組在相應(yīng)區(qū)間上的函數(shù),然后指出這兩組函數(shù)之間在性質(zhì)上的主要區(qū)別是什么?
(用投影幻燈給出兩組函數(shù)的圖象.)
第一組:
第二組:
生:第一組函數(shù),函數(shù)值y隨x的增大而增大;第二組函數(shù),函數(shù)值y隨x的增大而減小.
師:(手執(zhí)投影棒使之沿曲線移動(dòng))對(duì).他(她)答得很好,這正是兩組函數(shù)的主要區(qū)別.當(dāng)x變大時(shí),第一組函數(shù)的函數(shù)值都變大,而第二組函數(shù)的函數(shù)值都變小.雖然在每一組函數(shù)中,函數(shù)值變大或變小的方式并不相同,但每一組函數(shù)卻具有一種共同的性質(zhì).我們?cè)趯W(xué)習(xí)一次函數(shù)、二次函數(shù)、反比例函數(shù)以及冪函數(shù)時(shí),就曾經(jīng)根據(jù)函數(shù)的圖象研究過函數(shù)的函數(shù)值隨自變量的變大而變大或變小的性質(zhì).而這些研究結(jié)論是直觀地由圖象得到的.在函數(shù)的集合中,有很多函數(shù)具有這種性質(zhì),因此我們有必要對(duì)函數(shù)這種性質(zhì)作更進(jìn)一步的一般性的討論和研究,這就是我們今天這一節(jié)課的內(nèi)容.
(點(diǎn)明本節(jié)課的內(nèi)容,既是曾經(jīng)有所認(rèn)識(shí)的,又是新的知識(shí),引起學(xué)生的注意.)
二、對(duì)概念的分析
(板書課題:)
師:請(qǐng)同學(xué)們打開課本第51頁,請(qǐng)××同學(xué)把增函數(shù)、減函數(shù)、單調(diào)區(qū)間的定義朗讀一遍.
(學(xué)生朗讀.)
師:好,請(qǐng)坐.通過剛才閱讀增函數(shù)和減函數(shù)的定義,請(qǐng)同學(xué)們思考一個(gè)問題:這種定義方法和我們剛才所討論的函數(shù)值y隨自變量x的增大而增大或減小是否一致?如果一致,定義中是怎樣描述的?
生:我認(rèn)為是一致的.定義中的“當(dāng)x1<x2時(shí),都有f(x1)<f(x2)”描述了y隨x的增大而增大;“當(dāng)x1<x2時(shí),都有f(x1)>f(x2)”描述了y隨x的增大而減少.
師:說得非常正確.定義中用了兩個(gè)簡單的'不等關(guān)系“x1<x2”和“f(x1)<f(x2)或f(x1)>f(x2)”,它刻劃了函數(shù)的單調(diào)遞增或單調(diào)遞減的性質(zhì).這就是數(shù)學(xué)的魅力!
(通過教師的情緒感染學(xué)生,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.)
師:現(xiàn)在請(qǐng)同學(xué)們和我一起來看剛才的兩組圖中的第一個(gè)函數(shù)y=f1(x)和y=f2(x)的圖象,體會(huì)這種魅力.
(指圖說明.)
師:圖中y=f1(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f1(x1)<f1(x),因此y=f1(x)在區(qū)間[a,b]上是單調(diào)遞增的,區(qū)間[a,b]是函數(shù)y=f1(x)的單調(diào)增區(qū)間;而圖中y=f2(x)對(duì)于區(qū)間[a,b]上的任意x1,x2,當(dāng)x1<x2時(shí),都有f2(x1)>f2(x2),因此y=f2(x)在區(qū)間[a,b]上是單調(diào)遞減的,區(qū)間[a,b]是函數(shù)y=f2(x)的單調(diào)減區(qū)間.
(教師指圖說明分析定義,使學(xué)生把函數(shù)單調(diào)性的定義與直觀圖象結(jié)合起來,使新舊知識(shí)融為一體,加深對(duì)概念的理解.滲透數(shù)形結(jié)合分析問題的數(shù)學(xué)思想方法.)
師:因此我們可以說,增函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)……
(不把話說完,指一名學(xué)生接著說完,讓學(xué)生的思維始終跟著老師.)
生:較大的函數(shù)值的函數(shù).
師:那么減函數(shù)呢?
生:減函數(shù)就其本質(zhì)而言是在相應(yīng)區(qū)間上較大的自變量對(duì)應(yīng)較小的函數(shù)值的函數(shù).
(學(xué)生可能回答得不完整,教師應(yīng)指導(dǎo)他說完整.)
師:好.我們剛剛以增函數(shù)和減函數(shù)的定義作了初步的分析,通過閱讀和分析你認(rèn)為在定義中我們應(yīng)該抓住哪些關(guān)鍵詞語,才能更透徹地認(rèn)識(shí)定義?
(學(xué)生思索.)
學(xué)生在高中階段以至在以后的學(xué)習(xí)中經(jīng)常會(huì)遇到一些概念(或定義),能否抓住定義中的關(guān)鍵詞語,是能否正確地、深入地理解和掌握概念的重要條件,更是學(xué)好數(shù)學(xué)及其他各學(xué)科的重要一環(huán).因此教師應(yīng)該教會(huì)學(xué)生如何深入理解一個(gè)概念,以培養(yǎng)學(xué)生分析問題,認(rèn)識(shí)問題的能力.
(教師在學(xué)生思索過程中,再一次有感情地朗讀定義,并注意在關(guān)鍵詞語處適當(dāng)加重語氣.在學(xué)生感到無從下手時(shí),給以適當(dāng)?shù)奶崾荆?/p>
生:我認(rèn)為在定義中,有一個(gè)詞“給定區(qū)間”是定義中的關(guān)鍵詞語.
師:很好,我們?cè)趯W(xué)習(xí)任何一個(gè)概念的時(shí)候,都要善于抓住定義中的關(guān)鍵詞語,在學(xué)習(xí)幾個(gè)相近的概念時(shí)還要注意區(qū)別它們之間的不同.增函數(shù)和減函數(shù)都是對(duì)相應(yīng)的區(qū)間而言的,離開了相應(yīng)的區(qū)間就根本談不上函數(shù)的增減性.請(qǐng)大家思考一個(gè)問題,我們能否說一個(gè)函數(shù)在x=5時(shí)是遞增或遞減的?為什么?
生:不能.因?yàn)榇藭r(shí)函數(shù)值是一個(gè)數(shù).
師:對(duì).函數(shù)在某一點(diǎn),由于它的函數(shù)值是唯一確定的常數(shù)(注意這四個(gè)字“唯一確定”),因而沒有增減的變化.那么,我們能不能脫離區(qū)間泛泛談?wù)撃骋粋€(gè)函數(shù)是增函數(shù)或是減函數(shù)呢?你能否舉一個(gè)我們學(xué)過的例子?
生:不能.比如二次函數(shù)y=x2,在y軸左側(cè)它是減函數(shù),在y軸右側(cè)它是增函數(shù).因而我們不能說y=x2是增函數(shù)或是減函數(shù).
(在學(xué)生回答問題時(shí),教師板演函數(shù)y=x2的圖像,從“形”上感知.)
師:好.他(她)舉了一個(gè)例子來幫助我們理解定義中的詞語“給定區(qū)間”.這說明是函數(shù)在某一個(gè)區(qū)間上的性質(zhì),但這不排斥有些函數(shù)在其定義域內(nèi)都是增函數(shù)或減函數(shù).因此,今后我們?cè)谡務(wù)摵瘮?shù)的增減性時(shí)必須指明相應(yīng)的區(qū)間.
師:還有沒有其他的關(guān)鍵詞語?
生:還有定義中的“屬于這個(gè)區(qū)間的任意兩個(gè)”和“都有”也是關(guān)鍵詞語.
師:你答的很對(duì).能解釋一下為什么嗎?
(學(xué)生不一定能答全,教師應(yīng)給予必要的提示.)
師:“屬于”是什么意思?
生:就是說兩個(gè)自變量x1,x2必須取自給定的區(qū)間,不能從其他區(qū)間上?。?/p>
師:如果是閉區(qū)間的話,能否取自區(qū)間端點(diǎn)?
生:可以.
師:那么“任意”和“都有”又如何理解?
生:“任意”就是指不能取特定的值來判斷函數(shù)的增減性,而“都有”則是說只要x1<x2,f(x1)就必須都小于f(x2),或f(x1)都大于f(x2).
師:能不能構(gòu)造一個(gè)反例來說明“任意”呢?
(讓學(xué)生思考片刻.)
生:可以構(gòu)造一個(gè)反例.考察函數(shù)y=x2,在區(qū)間[-2,2]上,如果取兩個(gè)特定的值x1=-2,x2=1,顯然x1<x2,而f(x1)=4,f(x2)=1,有f(x1)>f(x2),若由此判定y=x2是[-2,2]上的減函數(shù),那就錯(cuò)了.
師:那么如何來說明“都有”呢?
生:y=x2在[-2,2]上,當(dāng)x1=-2,x2=-1時(shí),有f(x1)>f(x2);當(dāng)x1=1,x2=2時(shí),有f(x1)<f(x2),這時(shí)就不能說y=x2,在[-2,2]上是增函數(shù)或減函數(shù).
師:好極了!通過分析定義和舉反例,我們知道要判斷函數(shù)y=f(x)在某個(gè)區(qū)間內(nèi)是增函數(shù)或減函數(shù),不能由特定的兩個(gè)點(diǎn)的情況來判斷,而必須嚴(yán)格依照定義在給定區(qū)間內(nèi)任取兩個(gè)自變量x1,x2,根據(jù)它們的函數(shù)值f(x1)和f(x2)的大小來判定函數(shù)的增減性.
(教師通過一系列的設(shè)問,使學(xué)生處于積極的思維狀態(tài),從抽象到具體,并通過反例的反襯,使學(xué)生加深對(duì)定義的理解.在概念教學(xué)中,反例常常幫助學(xué)生更深刻地理解概念,鍛煉學(xué)生的發(fā)散思維能力.)
師:反過來,如果我們已知f(x)在某個(gè)區(qū)間上是增函數(shù)或是減函數(shù),那么,我們就可以通過自變量的大小去判定函數(shù)值的大小,也可以由函數(shù)值的大小去判定自變量的大小.即一般成立則特殊成立,反之,特殊成立,一般不一定成立.這恰是辯證法中一般和特殊的關(guān)系.
(用辯證法的原理來解釋數(shù)學(xué)知識(shí),同時(shí)用數(shù)學(xué)知識(shí)去理解辯證法的原理,這樣的分析,有助于深入地理解和掌握概念,分清概念的內(nèi)涵和外延,培養(yǎng)學(xué)生學(xué)習(xí)的能力.)
三、概念的應(yīng)用
例1 圖4所示的是定義在閉區(qū)間[-5,5]上的函數(shù)f(x)的圖象,根據(jù)圖象說出f(x)的單調(diào)區(qū)間,并回答:在每一個(gè)單調(diào)區(qū)間上,f(x)是增函數(shù)還是減函數(shù)?
(用投影幻燈給出圖象.)
生甲:函數(shù)y=f(x)在區(qū)間[-5,-2],[1,3]上是減函數(shù),因此[-5,-2],[1,3]是函數(shù)y=f(x)的單調(diào)減區(qū)間;在區(qū)間[-2,1],[3,5]上是增函數(shù),因此[-2,1],[3,5]是函數(shù)y=f(x)的單調(diào)增區(qū)間.
生乙:我有一個(gè)問題,[-5,-2]是函數(shù)f(x)的單調(diào)減區(qū)間,那么,是否可認(rèn)為(-5,-2)也是f(x)的單調(diào)減區(qū)間呢?
師:問得好.這說明你想的很仔細(xì),思考問題很嚴(yán)謹(jǐn).容易證明:若f(x)在[a,b]上單調(diào)(增或減),則f(x)在(a,b)上單調(diào)(增或減).反之不然,你能舉出反例嗎?一般來說.若f(x)在[a,(增或減).反之不然.
例2 證明函數(shù)f(x)=3x+2在(-∞,+∞)上是增函數(shù).
師:從函數(shù)圖象上觀察固然形象,但在理論上不夠嚴(yán)格,尤其是有些函數(shù)不易畫出圖象,因此必須學(xué)會(huì)根據(jù)解析式和定義從數(shù)量上分析辨認(rèn),這才是我們研究函數(shù)單調(diào)性的基本途徑.
(指出用定義證明的必要性.)
師:怎樣用定義證明呢?請(qǐng)同學(xué)們思考后在筆記本上寫出證明過程.
(教師巡視,并指定一名中等水平的學(xué)生在黑板上板演.學(xué)生可能會(huì)對(duì)如何比較f(x1)和f(x2)的大小關(guān)系感到無從入手,教師應(yīng)給以啟發(fā).)
師:對(duì)于f(x1)和f(x2)我們?nèi)绾伪容^它們的大小呢?我們知道對(duì)兩個(gè)實(shí)數(shù)a,b,如果a>b,那么它們的差a-b就大于零;如果a=b,那么它們的差a—b就等于零;如果a<b,那么它們的差a-b就小于零,反之也成立.因此我們可由差的符號(hào)來決定兩個(gè)數(shù)的大小關(guān)系.
生:(板演)設(shè)x1,x2是(-∞,+∞)上任意兩個(gè)自變量,當(dāng)x1<x2時(shí),
f(x1)-f(x2)=(3x1+2)-(3x2+2)=3x1-3x2=3(x1-x2)<0,
所以f(x)是增函數(shù).
師:他的證明思路是清楚的.一開始設(shè)x1,x2是(-∞,+∞)內(nèi)任意兩個(gè)自變量,并設(shè)x1<x2(邊說邊用彩色粉筆在相應(yīng)的語句下劃線,并標(biāo)注“①→設(shè)”),然后看f(x1)-f(x2),這一步是證明的關(guān)鍵,再對(duì)式子進(jìn)行變形,一般方法是分解因式或配成完全平方的形式,這一步可概括為“作差,變形”(同上,劃線并標(biāo)注”②→作差,變形”).但美中不足的是他沒能說明為什么f(x1)-f(x2)<0,沒有用到開始的假設(shè)“x1<x2”,不要以為其顯而易見,在這里一定要對(duì)變形后的式子說明其符號(hào).應(yīng)寫明“因?yàn)閤1<x2,所以x1-x2<0,從而f(x1)-f(x2)<0,即f(x1)<f(x2).”這一步可概括為“定符號(hào)”(在黑板上板演,并注明“③→定符號(hào)”).最后,作為證明題一定要有結(jié)論,我們把它稱之為第四步“下結(jié)論”(在相應(yīng)位置標(biāo)注“④→下結(jié)論”).
這就是我們用定義證明函數(shù)增減性的四個(gè)步驟,請(qǐng)同學(xué)們記?。枰赋龅氖堑诙?,如果函數(shù)y=f(x)在給定區(qū)間上恒大于零,也可以?。?/p>
(對(duì)學(xué)生的做法進(jìn)行分析,把證明過程步驟化,可以形成思維的定勢(shì).在學(xué)生剛剛接觸一個(gè)新的知識(shí)時(shí),思維定勢(shì)對(duì)理解知識(shí)本身是有益的,同時(shí)對(duì)學(xué)生養(yǎng)成一定的思維習(xí)慣,形成一定的解題思路也是有幫助的.)
調(diào)函數(shù)嗎?并用定義證明你的結(jié)論.
師:你的結(jié)論是什么呢?
上都是減函數(shù),因此我覺得它在定義域(-∞,0)∪(0,+∞)上是減函數(shù).
生乙:我有不同的意見,我認(rèn)為這個(gè)函數(shù)不是整個(gè)定義域內(nèi)的減函數(shù),因?yàn)樗环蠝p函數(shù)的定義.比如取x1∈(-∞,0),取x2∈(0,+∞),x1<x2顯然成立,而f(x1)<0,f(x2)>0,顯然有f(x1)<f(x2),而不是f(x1)>f(x2),因此它不是定義域內(nèi)的減函數(shù).
生:也不能這樣認(rèn)為,因?yàn)橛蓤D象可知,它分別在(-∞,0)和(0,+∞)上都是減函數(shù).
域內(nèi)的增函數(shù),也不是定義域內(nèi)的減函數(shù),它在(-∞,0)和(0,+∞)每一個(gè)單調(diào)區(qū)間內(nèi)都是減函數(shù).因此在函數(shù)的幾個(gè)單調(diào)增(減)區(qū)間之間不要用符號(hào)“∪”連接.另外,x=0不是定義域中的元素,此時(shí)不要寫成閉區(qū)間.
上是減函數(shù).
(教師巡視.對(duì)學(xué)生證明中出現(xiàn)的問題給予點(diǎn)拔.可依據(jù)學(xué)生的問題,給出下面的提示:
(1)分式問題化簡方法一般是通分.
(2)要說明三個(gè)代數(shù)式的符號(hào):k,x1·x2,x2-x1.
要注意在不等式兩邊同乘以一個(gè)負(fù)數(shù)的時(shí)候,不等號(hào)方向要改變.
對(duì)學(xué)生的解答進(jìn)行簡單的分析小結(jié),點(diǎn)出學(xué)生在證明過程中所出現(xiàn)的問題,引起全體學(xué)生的重視.)
四、課堂小結(jié)
師:請(qǐng)同學(xué)小結(jié)一下這節(jié)課的主要內(nèi)容,有哪些是應(yīng)該特別注意的?
(請(qǐng)一個(gè)思路清晰,善于表達(dá)的學(xué)生口述,教師可從中給予提示.)
生:這節(jié)課我們學(xué)習(xí)了函數(shù)單調(diào)性的定義,要特別注意定義中“給定區(qū)間”、“屬于”、“任意”、“都有”這幾個(gè)關(guān)鍵詞語;在寫單調(diào)區(qū)間時(shí)不要輕易用并集的符號(hào)連接;最后在用定義證明時(shí),應(yīng)該注意證明的四個(gè)步驟.
五、作業(yè)
1.課本P53練習(xí)第1,2,3,4題.
數(shù).
=a(x1-x2)(x1+x2)+b(x1-x2)
=(x1-x2)[a(x1+x2)+b].(*)
+b>0.由此可知(*)式小于0,即f(x1)<f(x2).
課堂教學(xué)設(shè)計(jì)說明
是函數(shù)的一個(gè)重要性質(zhì),是研究函數(shù)時(shí)經(jīng)常要注意的一個(gè)性質(zhì).并且在比較幾個(gè)數(shù)的大小、對(duì)函數(shù)作定性分析、以及與其他知識(shí)的綜合應(yīng)用上都有廣泛的應(yīng)用.對(duì)學(xué)生來說,早已有所知,然而沒有給出過定義,只是從直觀上接觸過這一性質(zhì).學(xué)生對(duì)此有一定的感性認(rèn)識(shí),對(duì)概念的理解有一定好處,但另一方面學(xué)生也會(huì)覺得是已經(jīng)學(xué)過的知識(shí),感覺乏味.因此,在設(shè)計(jì)教案時(shí),加強(qiáng)了對(duì)概念的分析,希望能夠使學(xué)生認(rèn)識(shí)到看似簡單的定義中有不少值得去推敲、去琢磨的東西,其中甚至包含著辯證法的原理.
另外,對(duì)概念的分析是在引進(jìn)一個(gè)新概念時(shí)必須要做的,對(duì)概念的深入的正確的理解往往是學(xué)生認(rèn)知過程中的難點(diǎn).因此在本教案的設(shè)計(jì)過程中突出對(duì)概念的分析不僅僅是為了分析函數(shù)單調(diào)性的定義,而且想讓學(xué)生對(duì)如何學(xué)會(huì)、弄懂一個(gè)概念有初步的認(rèn)識(shí),并且在以后的學(xué)習(xí)中學(xué)有所用.
還有,使用函數(shù)單調(diào)性定義證明是一個(gè)難點(diǎn),學(xué)生剛剛接觸這種證明方法,給出一定的步驟是必要的,有利于學(xué)生理解概念,也可以對(duì)學(xué)生掌握證明方法、形成證明思路有所幫助.另外,這也是以后要學(xué)習(xí)的不等式證明方法中的比較化的基本思路,現(xiàn)在提出要求,對(duì)今后的教學(xué)作一定的鋪墊.
高一函數(shù)課件 篇8
教學(xué)目標(biāo):
掌握二倍角的正弦、余弦、正切公式,能用上述公式進(jìn)行簡單的求值、化簡、恒等證明;引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)規(guī)律,讓學(xué)生體會(huì)化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中所起的作用,培養(yǎng)學(xué)生的創(chuàng)新意識(shí).
教學(xué)重點(diǎn):
二倍角公式的推導(dǎo)及簡單應(yīng)用.
教學(xué)難點(diǎn):
理解倍角公式,用單角的三角函數(shù)表示二倍角的三角函數(shù).
教學(xué)過程:
Ⅰ.課題導(dǎo)入
前一段時(shí)間,我們共同探討了和角公式、差角公式,今天,我們繼續(xù)探討一下二倍角公式.我們知道,和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?請(qǐng)同學(xué)們?cè)囃?
先回憶和角公式
sin(α+β)=sinαcosβ+cosαsinβ
當(dāng)α=β時(shí),sin(α+β)=sin2α=2sinαcosα
即:sin2α=2sinαcosα(S2α)
cos(α+β)=cosαcosβ-sinαsinβ
當(dāng)α=β時(shí)cos(α+β)=cos2α=cos2α-sin2α
即:cos2α=cos2α-sin2α(C2α)
tan(α+β)=tanα+tanβ1-tanαtanβ
當(dāng)α=β時(shí),tan2α=2tanα1-tan2α
Ⅱ.講授新課
同學(xué)們推證所得結(jié)果是否與此結(jié)果相同呢?其中由于sin2α+cos2α=1,公式C2α還可以變形為:cos2α=2cos2α-1或:cos2α=1-2sin2α
同學(xué)們是否也考慮到了呢?
另外運(yùn)用這些公式要注意如下幾點(diǎn):
(1)公式S2α、C2α中,角α可以是任意角;但公式T2α只有當(dāng)α≠π2 +kπ及α≠π4 +kπ2 (k∈Z)時(shí)才成立,否則不成立(因?yàn)楫?dāng)α=π2 +kπ,k∈Z時(shí),tanα的值不存在;當(dāng)α=π4 +kπ2 ,k∈Z時(shí)tan2α的值不存在).
當(dāng)α=π2 +kπ(k∈Z)時(shí),雖然tanα的`值不存在,但tan2α的值是存在的,這時(shí)求tan2α的值可利用誘導(dǎo)公式:
即:tan2α=tan2(π2 +kπ)=tan(π+2kπ)=tanπ=0
(2)在一般情況下,sin2α≠2sinα
例如:sinπ3 =32≠2sinπ6 =1;只有在一些特殊的情況下,才有可能成立[當(dāng)且僅當(dāng)α=kπ(k∈Z)時(shí),sin2α=2sinα=0成立].
同樣在一般情況下cos2α≠2cosαtan2α≠2tanα
(3)倍角公式不僅可運(yùn)用于將2α作為α的2倍的情況,還可以運(yùn)用于諸如將4α作為2α的2倍,將α作為 α2 的2倍,將 α2 作為 α4 的2倍,將3α作為 3α2 的2倍等等.
高一函數(shù)課件 篇9
一、教材分析
本節(jié)課選自《普通高中課程標(biāo)準(zhǔn)數(shù)學(xué)教科書-必修1》(人教A版)《1.2.1 函數(shù)的概念》共3課時(shí),本節(jié)課是第1課時(shí)。
托馬斯說:“函數(shù)概念是近代數(shù)學(xué)思想之花”。 生活中的許多現(xiàn)象如物體運(yùn)動(dòng),氣溫升降,投資理財(cái)?shù)榷伎梢杂煤瘮?shù)的模型來刻畫,是我們更好地了解自己、認(rèn)識(shí)世界和預(yù)測未來的重要工具。
函數(shù)是數(shù)學(xué)的重要的基礎(chǔ)概念之一,是高等數(shù)學(xué)重多學(xué)科的基礎(chǔ)概念和重要的研究對(duì)象。同時(shí)函數(shù)也是物理學(xué)等其他學(xué)科的重要基礎(chǔ)知識(shí)和研究工具,教學(xué)內(nèi)容中蘊(yùn)涵著極其豐富的辯證思想。函數(shù)的的重要性正如恩格斯所說:“數(shù)學(xué)中的轉(zhuǎn)折點(diǎn)是笛卡爾的變數(shù),有了變數(shù),運(yùn)動(dòng)就進(jìn)入了數(shù)學(xué);有了變數(shù),辯證法就進(jìn)入了數(shù)學(xué)”。
二、學(xué)生學(xué)習(xí)情況分析
函數(shù)是中學(xué)數(shù)學(xué)的主體內(nèi)容,學(xué)生在中學(xué)階段對(duì)函數(shù)的認(rèn)識(shí)分三個(gè)階段:(一)初中從運(yùn)動(dòng)變化的角度來刻畫函數(shù),初步認(rèn)識(shí)正比例、反比例、一次和二次函數(shù);(二)高中用集合與對(duì)應(yīng)的觀點(diǎn)來刻畫函數(shù),研究函數(shù)的性質(zhì),學(xué)習(xí)典型的對(duì)、指、冪和三解函數(shù);(三)高中用導(dǎo)數(shù)工具研究函數(shù)的單調(diào)性和最值。
1.有利條件
現(xiàn)代教育心理學(xué)的研究認(rèn)為,有效的概念教學(xué)是建立在學(xué)生已有知識(shí)結(jié)構(gòu)的基礎(chǔ)上的,因此教師在設(shè)計(jì)教學(xué)的過程中必須注意在學(xué)生已有知識(shí)結(jié)構(gòu)中尋找新概念的固著點(diǎn),引導(dǎo)學(xué)生通過同化或順應(yīng),掌握新概念,進(jìn)而完善知識(shí)結(jié)構(gòu)。
初中用運(yùn)動(dòng)變化的觀點(diǎn)對(duì)函數(shù)進(jìn)行定義的,它反映了歷史上人們對(duì)它的一種認(rèn)識(shí),而且這個(gè)定義較為直觀,易于接受,因此按照由淺入深、力求符合學(xué)生認(rèn)知規(guī)律的內(nèi)容編排原則,函數(shù)概念在初中介紹到這個(gè)程度是合適的。也為我們用集合與對(duì)應(yīng)的觀點(diǎn)研究函數(shù)打下了一定的'基礎(chǔ)。
2.不利條件
用集合與對(duì)應(yīng)的觀點(diǎn)來定義函數(shù),形式和內(nèi)容上都是比較抽象的,這對(duì)學(xué)生的理解能力是一個(gè)挑戰(zhàn),是本節(jié)課教學(xué)的一個(gè)不利條件。
三、教學(xué)目標(biāo)分析
課標(biāo)要求:通過豐富實(shí)例,進(jìn)一步體會(huì)函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;了解構(gòu)成函數(shù)的要素,會(huì)求一些簡單函數(shù)的定義域和值域.
1.知識(shí)與能力目標(biāo):
⑴能從集合與對(duì)應(yīng)的角度理解函數(shù)的概念,更要理解函數(shù)的本質(zhì)屬性;
⑵理解函數(shù)的三要素的含義及其相互關(guān)系;
⑶會(huì)求簡單函數(shù)的定義域和值域
2.過程與方法目標(biāo):
⑴通過豐富實(shí)例,使學(xué)生建立起函數(shù)概念的背景,體會(huì)函數(shù)是描述變量之間依賴關(guān)系的數(shù)學(xué)模型;
⑵在函數(shù)實(shí)例中,通過對(duì)關(guān)鍵詞的強(qiáng)調(diào)和引導(dǎo)使學(xué)發(fā)現(xiàn)它們的共同特征,在此基礎(chǔ)上再用集合與對(duì)應(yīng)的語言來刻畫函數(shù),體會(huì)對(duì)應(yīng)關(guān)系在刻畫函數(shù)概念中的作用.
3.情感、態(tài)度與價(jià)值觀目標(biāo):
感受生活中的數(shù)學(xué),感悟事物之間聯(lián)系與變化的辯證唯物主義觀點(diǎn)。
四、教學(xué)重點(diǎn)、難點(diǎn)分析
1.教學(xué)重點(diǎn):對(duì)函數(shù)概念的理解,用集合與對(duì)應(yīng)的語言來刻畫函數(shù);
重點(diǎn)依據(jù):初中是從變量的角度來定義函數(shù),高中是用集合與對(duì)應(yīng)的語言來刻畫函數(shù)。二者反映的本質(zhì)是一致的,即“函數(shù)是一種對(duì)應(yīng)關(guān)系”。 但是,初中定義并未完全揭示出函數(shù)概念的本質(zhì),對(duì)y?1這樣的函數(shù)用運(yùn)動(dòng)變化的觀點(diǎn)也很難解釋。在以函數(shù)為重要內(nèi)容的高中階段,課本應(yīng)將函數(shù)定義為兩個(gè)數(shù)集之間的一種對(duì)應(yīng)關(guān)系,按照這種觀點(diǎn),使我們對(duì)函數(shù)概念有了更深一層的認(rèn)識(shí),也很容易說明y?1這函數(shù)表達(dá)式。因此,分析兩種函數(shù)概念的關(guān)系,讓學(xué)生融會(huì)貫通地理解函數(shù)的概念應(yīng)為本節(jié)課的重點(diǎn)。
突出重點(diǎn):重點(diǎn)的突出依賴于對(duì)函數(shù)概念本質(zhì)屬性的把握,使學(xué)生通過表面的語言描述抓住概念的精髓。
2.教學(xué)難點(diǎn):第一:從實(shí)際問題中提煉出抽象的概念;第二:符號(hào)“y=f(x)”的含義的理解.
難點(diǎn)依據(jù):數(shù)學(xué)語言的抽象概括難度較大,對(duì)符號(hào)y=f(x)的理解會(huì)受到以前知識(shí)的負(fù)遷移。
突破難點(diǎn):難點(diǎn)的突破要依托豐富的實(shí)例,從集合與對(duì)應(yīng)的角度恰當(dāng)?shù)匾龑?dǎo),而對(duì)抽象符號(hào)的理解則要結(jié)合函數(shù)的三要素和小例子進(jìn)行說明。
五、教法與學(xué)法分析
1.教法分析
本節(jié)課我主要采用教師導(dǎo)學(xué)法、知識(shí)遷移法和知識(shí)對(duì)比法,從學(xué)生熟悉的豐富實(shí)例出發(fā),關(guān)注學(xué)生的原有的知識(shí)基礎(chǔ),注重概念的形成過程,從初中的函數(shù)概念自然過度到函數(shù)的近代定我。
2.學(xué)法分析
在教學(xué)過程中我注意在教學(xué)中引導(dǎo)學(xué)生用模型法分析函數(shù)問題、通過自主學(xué)習(xí)法總結(jié)“區(qū)間”的知識(shí)。
高一函數(shù)課件 篇10
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析
普通高中課標(biāo)教材必修1共安排了三章內(nèi)容,第一章是《集合與函數(shù)的概念》,第二章是《基本初等函數(shù)(Ⅰ)》,第三章是《函數(shù)的應(yīng)用》。第三章編排了兩塊內(nèi)容,第一部分是函數(shù)與方程,第二部分是函數(shù)模型及其應(yīng)用。本節(jié)課方程的根與函數(shù)的零點(diǎn),正是在這種建立和運(yùn)用函數(shù)模型的大背景下展開的。本節(jié)課的主要教學(xué)內(nèi)容是函數(shù)零點(diǎn)的定義和函數(shù)零點(diǎn)存在的判定依據(jù),這兩者顯然是為下節(jié)“用二分法求方程近似解”這一“函數(shù)的應(yīng)用”服務(wù)的,同時(shí)也為后續(xù)學(xué)習(xí)的算法埋下伏筆。由此可見,它起著承上啟下的作用,與整章、整冊(cè)綜合成一個(gè)整體,學(xué)好本節(jié)意義重大。
函數(shù)在數(shù)學(xué)中占據(jù)著不可替代的核心地位,根本原因之一在于函數(shù)與其他知識(shí)具有廣泛的聯(lián)系,而函數(shù)的零點(diǎn)就是其中的一個(gè)鏈結(jié)點(diǎn),它從不同的角度,將數(shù)與形,函數(shù)與方程有機(jī)地聯(lián)系在一起。方程本身就是函數(shù)的一部分,用函數(shù)的觀點(diǎn)來研究方程,就是將局部放入整體中研究,進(jìn)而對(duì)整體和局部都有一個(gè)更深層次的理解,并學(xué)會(huì)用聯(lián)系的觀點(diǎn)解決問題,為后面函數(shù)與不等式和數(shù)列等其他知識(shí)的聯(lián)系奠定基礎(chǔ)。
二、教學(xué)目標(biāo)分析
本節(jié)內(nèi)容包含三大知識(shí)點(diǎn):
1、函數(shù)零點(diǎn)的定義;
2、方程的根與函數(shù)零點(diǎn)的等價(jià)關(guān)系;
3、零點(diǎn)存在性定理。
結(jié)合本節(jié)課引入三大知識(shí)點(diǎn)的方法,設(shè)定本節(jié)課的知識(shí)與技能目標(biāo)如下:
1.結(jié)合方程根的幾何意義,理解函數(shù)零點(diǎn)的定義;
2.結(jié)合零點(diǎn)定義的探究,掌握方程的實(shí)根與其相應(yīng)函數(shù)零點(diǎn)之間的等價(jià)關(guān)系;
3.結(jié)合幾類基本初等函數(shù)的圖象特征,掌握判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法.
本節(jié)課是學(xué)生在學(xué)習(xí)了函數(shù)的性質(zhì),具備了初步的數(shù)形結(jié)合知識(shí)的基礎(chǔ)上,通過對(duì)特殊函數(shù)圖象的分析進(jìn)行展開的,是培養(yǎng)學(xué)生“化歸與轉(zhuǎn)化思想”,“數(shù)形結(jié)合思想”,“函數(shù)與方程思想”的優(yōu)質(zhì)載體。
結(jié)合本節(jié)課教學(xué)主線的設(shè)計(jì),設(shè)定本節(jié)課的過程與方法目標(biāo)如下:
1.通過化歸與轉(zhuǎn)化思想的引導(dǎo),培養(yǎng)學(xué)生從已有認(rèn)知結(jié)構(gòu)出發(fā),尋求解決棘手問題方法的習(xí)慣;
2.通過數(shù)形結(jié)合思想的滲透,培養(yǎng)學(xué)生主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí);
3.通過習(xí)題與探究知識(shí)的相關(guān)性設(shè)置,引導(dǎo)學(xué)生深入探究得出判斷函數(shù)的零點(diǎn)個(gè)數(shù)和所在區(qū)間的方法;
4.通過對(duì)函數(shù)與方程思想的不斷剖析,促進(jìn)學(xué)生對(duì)知識(shí)靈活應(yīng)用的能力。
由于本節(jié)課將以教師引導(dǎo),學(xué)生探究為主體形式,故設(shè)定本節(jié)課的'情感、態(tài)度與價(jià)值觀目標(biāo)如下:
1.讓學(xué)生體驗(yàn)化歸與轉(zhuǎn)化、數(shù)形結(jié)合、函數(shù)與方程這三大數(shù)學(xué)思想在解決數(shù)學(xué)問題時(shí)的意義與價(jià)值;
2.培養(yǎng)學(xué)生鍥而不舍的探索精神和嚴(yán)密思考的良好學(xué)習(xí)習(xí)慣。
3.使學(xué)生感受學(xué)習(xí)、探索發(fā)現(xiàn)的樂趣與成功感。
三、教學(xué)問題診斷
學(xué)生具備的認(rèn)知基礎(chǔ):
1.基本初等函數(shù)的圖象和性質(zhì);
2.一元二次方程的根和相應(yīng)函數(shù)圖象與x軸的聯(lián)系;
3.將數(shù)與形相結(jié)合轉(zhuǎn)化的意識(shí)。
學(xué)生欠缺的實(shí)際能力:
1.主動(dòng)應(yīng)用數(shù)形結(jié)合思想解決問題的意識(shí)還不強(qiáng);
2.將未知問題已知化,將復(fù)雜問題簡單化的化歸意識(shí)淡薄;
3.從直觀到抽象的概括總結(jié)能力還不夠;
4.概念的內(nèi)涵與外延的探究意識(shí)有待提高。
對(duì)本節(jié)課的教學(xué),教材是利用一組一元二次方程和二次函數(shù)的關(guān)系來引入函數(shù)零點(diǎn)的。這樣處理,主要是想讓學(xué)生在原有二次函數(shù)的認(rèn)知基礎(chǔ)上,使其知識(shí)得到自然的發(fā)生發(fā)展。理解了像二次函數(shù)這樣簡單的函數(shù)零點(diǎn),再來理解其他復(fù)雜的函數(shù)零點(diǎn)就會(huì)容易一些。但學(xué)生對(duì)如何解一元二次方程以及二次函數(shù)的圖象早就熟練了,這樣的引入過程使學(xué)生感到平淡,激發(fā)不起他們的興趣,他們對(duì)零點(diǎn)的理解也只會(huì)浮于表面,也無法使其體會(huì)引入函數(shù)零點(diǎn)的必要性,理解不了方程根存在的本質(zhì)原因是零點(diǎn)的存在。
教材是通過由直觀到抽象的過程,才得到判斷函數(shù)y=f(x)在(a,b)內(nèi)有零點(diǎn)的一種條件的,如果不能有效地對(duì)該過程進(jìn)行引導(dǎo),容易出現(xiàn)學(xué)生被動(dòng)接受,盲目記憶的結(jié)果,而喪失了對(duì)學(xué)生應(yīng)用數(shù)學(xué)思想方法的意識(shí)進(jìn)行培養(yǎng)的機(jī)會(huì)。
教材中零點(diǎn)存在性定理只表述了存在零點(diǎn)的條件,但對(duì)存在零點(diǎn)的個(gè)數(shù)并未多做說明,這就要求教師對(duì)該定理的內(nèi)涵和外延要有清晰的把握,引導(dǎo)學(xué)生探究出只存在一個(gè)零點(diǎn)的條件,否則學(xué)生對(duì)定理的內(nèi)容很容易心存疑慮。
四、本節(jié)課的教法特點(diǎn)以及預(yù)期效果分析
本節(jié)課教法的幾大特點(diǎn)總結(jié)如下:
1.以問題為主線貫穿始終;
2.精心設(shè)置引導(dǎo)性的語言放手讓學(xué)生探究;
3.注重在引導(dǎo)學(xué)生探究問題解法的過程中滲透數(shù)學(xué)思想;
4.在探究過程中引入新知識(shí)點(diǎn),在引入新知識(shí)點(diǎn)后適時(shí)歸納總結(jié),進(jìn)行探究階段性成果的應(yīng)用。
由于所設(shè)置的主線問題具有很高的探究價(jià)值,所以預(yù)期學(xué)生熱情會(huì)很高,積極性調(diào)動(dòng)起來,那整節(jié)課才能活起來;
由于為了更好地組織學(xué)生探究所設(shè)置的引導(dǎo)性語言,重在去挖掘?qū)W生內(nèi)心真實(shí)的想法和他們最真實(shí)體會(huì)到的困難,所以通過學(xué)生活動(dòng)會(huì)更多地暴露他們?cè)诨A(chǔ)知識(shí)掌握方面的缺憾,免不了要隨時(shí)糾正對(duì)過往知識(shí)的錯(cuò)誤理解;
因?yàn)樵谔骄窟^程中不斷滲透數(shù)學(xué)思想,學(xué)生對(duì)親身經(jīng)歷的解題方法就會(huì)有更深的體會(huì),主動(dòng)應(yīng)用數(shù)學(xué)思想的意識(shí)在上升,對(duì)于主線問題也應(yīng)該可以迎刃而解;
因?yàn)樵谔骄窟^程中引入新知識(shí)點(diǎn),學(xué)生對(duì)新知識(shí)產(chǎn)生的必要性會(huì)有更深刻的體會(huì)和認(rèn)識(shí),同時(shí)在新知識(shí)產(chǎn)生后,又適時(shí)地加以應(yīng)用,學(xué)生對(duì)新知識(shí)的應(yīng)用能力不斷提高。
高一函數(shù)課件 篇11
教學(xué)目標(biāo):
使學(xué)生理解函數(shù)的概念,明確決定函數(shù)的三個(gè)要素,學(xué)會(huì)求某些函數(shù)的定義域,掌握判定兩個(gè)函數(shù)是否相同的方法;使學(xué)生理解靜與動(dòng)的辯證關(guān)系.
教學(xué)重點(diǎn):
函數(shù)的概念,函數(shù)定義域的求法.
教學(xué)難點(diǎn):
函數(shù)概念的理解.
教學(xué)過程:
Ⅰ.課題導(dǎo)入
[師]在初中,我們已經(jīng)學(xué)習(xí)了函數(shù)的概念,請(qǐng)同學(xué)們回憶一下,它是怎樣表述的?
(幾位學(xué)生試著表述,之后,教師將學(xué)生的回答梳理,再表述或者啟示學(xué)生將表述補(bǔ)充完整再條理表述).
設(shè)在一個(gè)變化的過程中有兩個(gè)變量x和y,如果對(duì)于x的每一個(gè)值,y都有惟一的值與它對(duì)應(yīng),那么就說y是x的函數(shù),x叫做自變量.
[師]我們學(xué)習(xí)了函數(shù)的概念,并且具體研究了正比例函數(shù),反比例函數(shù),一次函數(shù),二次函數(shù),請(qǐng)同學(xué)們思考下面兩個(gè)問題:
問題一:y=1(xR)是函數(shù)嗎?
問題二:y=x與y=x2x 是同一個(gè)函數(shù)嗎?
(學(xué)生思考,很難回答)
[師]顯然,僅用上述函數(shù)概念很難回答這些問題,因此,需要從新的高度來認(rèn)識(shí)函數(shù)概念(板書課題).
Ⅱ.講授新課
[師]下面我們先看兩個(gè)非空集合A、B的元素之間的一些對(duì)應(yīng)關(guān)系的例子.
在(1)中,對(duì)應(yīng)關(guān)系是乘2,即對(duì)于集合A中的每一個(gè)數(shù)n,集合B中都有一個(gè)數(shù)2n和它對(duì)應(yīng).
在(2)中,對(duì)應(yīng)關(guān)系是求平方,即對(duì)于集合A中的每一個(gè)數(shù)m,集合B中都有一個(gè)平方數(shù)m2和它對(duì)應(yīng).
在(3)中,對(duì)應(yīng)關(guān)系是求倒數(shù),即對(duì)于集合A中的每一個(gè)數(shù)x,集合B中都有一個(gè)數(shù) 1x 和它對(duì)應(yīng).
請(qǐng)同學(xué)們觀察3個(gè)對(duì)應(yīng),它們分別是怎樣形式的對(duì)應(yīng)呢?
[生]一對(duì)一、二對(duì)一、一對(duì)一.
[師]這3個(gè)對(duì)應(yīng)的共同特點(diǎn)是什么呢?
[生甲]對(duì)于集合A中的任意一個(gè)數(shù),按照某種對(duì)應(yīng)關(guān)系,集合B中都有惟一的數(shù)和它對(duì)應(yīng).
[師]生甲回答的很好,不但找到了3個(gè)對(duì)應(yīng)的共同特點(diǎn),還特別強(qiáng)調(diào)了對(duì)應(yīng)關(guān)系,事實(shí)上,一個(gè)集合中的數(shù)與另一集合中的數(shù)的對(duì)應(yīng)是按照一定的關(guān)系對(duì)應(yīng)的,這是不能忽略的. 實(shí)際上,函數(shù)就是從自變量x的集合到函數(shù)值y的集合的一種對(duì)應(yīng)關(guān)系.
現(xiàn)在我們把函數(shù)的概念進(jìn)一步敘述如下:(板書)
設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有惟一確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f︰AB為從集合A到集合B的一個(gè)函數(shù).
記作:y=f(x),xA
其中x叫自變量,x的取值范圍A叫做函數(shù)的定義域,與x的值相對(duì)應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{y|y=f(x),xA}叫函數(shù)的值域.
一次函數(shù)f(x)=ax+b(a0)的定義域是R,值域也是R.對(duì)于R中的任意一個(gè)數(shù)x,在R中都有一個(gè)數(shù)f(x)=ax+b(a0)和它對(duì)應(yīng).
反比例函數(shù)f(x)=kx (k0)的定義域是A={x|x0},值域是B={f(x)|f(x)0},對(duì)于A中的任意一個(gè)實(shí)數(shù)x,在B中都有一個(gè)實(shí)數(shù)f(x)= kx (k0)和它對(duì)應(yīng).
二次函數(shù)f(x)=ax2+bx+c(a0)的定義域是R,值域是當(dāng)a0時(shí)B={f(x)|f(x)4ac-b24a };當(dāng)a0時(shí),B={f(x)|f(x)4ac-b24a },它使得R中的任意一個(gè)數(shù)x與B中的數(shù)f(x)=ax2+bx+c(a0)對(duì)應(yīng).
函數(shù)概念用集合、對(duì)應(yīng)的語言敘述后,我們就很容易回答前面所提出的兩個(gè)問題.
y=1(xR)是函數(shù),因?yàn)閷?duì)于實(shí)數(shù)集R中的任何一個(gè)數(shù)x,按照對(duì)應(yīng)關(guān)系函數(shù)值是1,在R中y都有惟一確定的值1與它對(duì)應(yīng),所以說y是x的函數(shù).
Y=x與y=x2x 不是同一個(gè)函數(shù),因?yàn)楸M管它們的對(duì)應(yīng)關(guān)系一樣,但y=x的定義域是R,而y=x2x 的定義域是{x|x0}. 所以y=x與y=x2x 不是同一個(gè)函數(shù).
[師]理解函數(shù)的定義,我們應(yīng)該注意些什么呢?
(教師提出問題,啟發(fā)、引導(dǎo)學(xué)生思考、討論,并和學(xué)生一起歸納、總結(jié))
注意:①函數(shù)是非空數(shù)集到非空數(shù)集上的一種對(duì)應(yīng).
②符號(hào)f:AB表示A到B的一個(gè)函數(shù),它有三個(gè)要素;定義域、值域、對(duì)應(yīng)關(guān)系,三者缺一不可.
③集合A中數(shù)的任意性,集合B中數(shù)的惟一性.
④f表示對(duì)應(yīng)關(guān)系,在不同的函數(shù)中,f的具體含義不一樣.
⑤f(x)是一個(gè)符號(hào),絕對(duì)不能理解為f與x的乘積.
[師]在研究函數(shù)時(shí),除用符號(hào)f(x)表示函數(shù)外,還常用g(x) 、F(x)、G(x)等符號(hào)來表示
Ⅲ.例題分析
[例1]求下列函數(shù)的定義域.
(1)f(x)=1x-2 (2)f(x)=3x+2 (3)f(x)=x+1 +12-x
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域.那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)x的集合.
解:(1)x-20,即x2時(shí),1x-2 有意義
這個(gè)函數(shù)的定義域是{x|x2}
(2)3x+20,即x-23 時(shí)3x+2 有意義
函數(shù)y=3x+2 的定義域是[-23 ,+)
(3) x+10 x2
這個(gè)函數(shù)的定義域是{x|x{x|x2}=[-1,2)(2,+).
注意:函數(shù)的定義域可用三種方法表示:不等式、集合、區(qū)間.
從上例可以看出,當(dāng)確定用解析式y(tǒng)=f(x)表示的函數(shù)的定義域時(shí),常有以下幾種情況:
(1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R;
(2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合;
(3)如果f(x)是偶次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子不小于零的實(shí)數(shù)的集合;
(4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)的定義域是使各部分式子都有意義的實(shí)數(shù)的`集合(即使每個(gè)部分有意義的實(shí)數(shù)的集合的交集);
(5)如果f(x)是由實(shí)際問題列出的,那么函數(shù)的定義域是使解析式本身有意義且符合實(shí)際意義的實(shí)數(shù)的集合.
例如:一矩形的寬為x m,長是寬的2倍,其面積為y=2x2,此函數(shù)定義域?yàn)閤0而不是全體實(shí)數(shù).
由以上分析可知:函數(shù)的定義域由數(shù)學(xué)式子本身的意義和問題的實(shí)際意義決定.
[師]自變量x在定義域中任取一個(gè)確定的值a時(shí),對(duì)應(yīng)的函數(shù)值用符號(hào)f(a)來表示.例如,函數(shù)f(x)=x2+3x+1,當(dāng)x=2時(shí)的函數(shù)值是f(2)=22+32+1=11
注意:f(a)是常量,f(x)是變量 ,f(a)是函數(shù)f(x)中當(dāng)自變量x=a時(shí)的函數(shù)值.
下面我們來看求函數(shù)式的值應(yīng)該怎樣進(jìn)行呢?
[生甲]求函數(shù)式的值,嚴(yán)格地說是求函數(shù)式中自變量x為某一確定的值時(shí)函數(shù)式的值,因此,求函數(shù)式的值,只要把函數(shù)式中的x換為相應(yīng)確定的數(shù)(或字母,或式子)進(jìn)行計(jì)算即可.
[師]回答正確,不過要準(zhǔn)確地求出函數(shù)式的值,計(jì)算時(shí)萬萬不可粗心大意噢!
[生乙]判定兩個(gè)函數(shù)是否相同,就看其定義域或?qū)?yīng)關(guān)系是否完全一致,完全一致時(shí),這兩個(gè)函數(shù)就相同;不完全一致時(shí),這兩個(gè)函數(shù)就不同.
[師]生乙的回答完整嗎?
[生]完整!(課本上就是如生乙所述那樣寫的).
[師]大家說,判定兩個(gè)函數(shù)是否相同的依據(jù)是什么?
[生]函數(shù)的定義.
[師]函數(shù)的定義有三個(gè)要素:定義域、值域、對(duì)應(yīng)關(guān)系,我們判定兩個(gè)函數(shù)是否相同為什么只看兩個(gè)要素:定義域和對(duì)應(yīng)關(guān)系,而不看值域呢?
(學(xué)生竊竊私語:是啊,函數(shù)的三個(gè)要素不是缺一不可嗎?怎不看值域呢?)
(無人回答)
[師]同學(xué)們預(yù)習(xí)時(shí)還是欠仔細(xì),欠思考!我們做事情,看問題都要多問幾個(gè)為什么!函數(shù)的值域是由什么決定的,不就是由函數(shù)的定義域與對(duì)應(yīng)關(guān)系決定的嗎!關(guān)注了函數(shù)的定義域與對(duì)應(yīng)關(guān)系,三者就全看了!
(生恍然大悟,我們?cè)趺淳蜎]想到呢?)
[例2]求下列函數(shù)的值域
(1)y=1-2x (xR) (2)y=|x|-1 x{-2,-1,0,1,2}
(3)y=x2+4x+3 (-31)
分析:求函數(shù)的值域應(yīng)確定相應(yīng)的定義域后再根據(jù)函數(shù)的具體形式及運(yùn)算確定其值域.
對(duì)于(1)(2)可用直接法根據(jù)它們的定義域及對(duì)應(yīng)法則得到(1)(2)的值域.
對(duì)于(3)可借助數(shù)形結(jié)合思想利用它們的圖象得到值域,即圖象法.
解:(1)yR
(2)y{1,0,-1}
(3)畫出y=x2+4x+3(-31)的圖象,如圖所示,當(dāng)x[-3,1]時(shí),得y[-1,8]
Ⅳ.課堂練習(xí)
課本P24練習(xí)17.
Ⅴ.課時(shí)小結(jié)
本節(jié)課我們學(xué)習(xí)了函數(shù)的定義(包括定義域、值域的概念)、區(qū)間的概念及求函數(shù)定義域的方法.學(xué)習(xí)函數(shù)定義應(yīng)注意的問題及求定義域時(shí)的各種情形應(yīng)該予以重視.(本小結(jié)的內(nèi)容可由學(xué)生自己來歸納)
Ⅵ.課后作業(yè)
課本P28,習(xí)題1、2.
高三數(shù)學(xué)復(fù)習(xí)課件(范本11篇)
在老師日常工作中,教案課件也是其中一種,老師在寫教案課件的時(shí)候不能敷衍了事。教案是教師進(jìn)行教學(xué)設(shè)計(jì)與理論補(bǔ)充的有力工具,優(yōu)質(zhì)教案課件是怎么寫成的?這篇網(wǎng)絡(luò)上的好文“高三數(shù)學(xué)復(fù)習(xí)課件”聽起來很簡單但內(nèi)容實(shí)用,希望本文能夠?yàn)槟峁┮恍┯杏玫男畔p少您的困擾!
高三數(shù)學(xué)復(fù)習(xí)課件 篇1
教學(xué)目標(biāo)
知識(shí)目標(biāo)等差數(shù)列定義等差數(shù)列通項(xiàng)公式
能力目標(biāo)掌握等差數(shù)列定義等差數(shù)列通項(xiàng)公式
情感目標(biāo)培養(yǎng)學(xué)生的觀察、推理、歸納能力
教學(xué)重難點(diǎn)
教學(xué)重點(diǎn)等差數(shù)列的概念的理解與掌握
等差數(shù)列通項(xiàng)公式推導(dǎo)及應(yīng)用教學(xué)難點(diǎn)等差數(shù)列“等差”的理解、把握和應(yīng)用
教學(xué)過程
由XX《紅高粱》主題曲“酒神曲”引入等差數(shù)列定義
問題:多媒體演示,觀察————發(fā)現(xiàn)?
一、等差數(shù)列定義:
一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),那么這個(gè)數(shù)列就叫做等差數(shù)列。這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。
例1:觀察下面數(shù)列是否是等差數(shù)列:…。
二、等差數(shù)列通項(xiàng)公式:
已知等差數(shù)列{an}的首項(xiàng)是a1,公差是d。
則由定義可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差數(shù)列的首項(xiàng)a1是3,公差d是2,求它的通項(xiàng)公式。
分析:知道a1,d,求an。代入通項(xiàng)公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差數(shù)列10,8,6,4…的第20項(xiàng)。
分析:根據(jù)a1=10,d=—2,先求出通項(xiàng)公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差數(shù)列{an}中,已知a6=12,a18=36,求通項(xiàng)an。
分析:此題已知a6=12,n=6;a18=36,n=18分別代入通項(xiàng)公式an=a1+(n—1)d中,可得兩個(gè)方程,都含a1與d兩個(gè)未知數(shù)組成方程組,可解出a1與d。
解:由題意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
練習(xí)
1、判斷下列數(shù)列是否為等差數(shù)列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差數(shù)列{an}的前三項(xiàng)依次為a—6,—3a—5,—10a—1,則a等于()
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在數(shù)列{an}中a1=1,an=an+1+4,則a10=。
提示:d=an+1—an=—4
教師繼續(xù)提出問題
已知數(shù)列{an}前n項(xiàng)和為……
作業(yè)
P116習(xí)題3。21,2
高三數(shù)學(xué)復(fù)習(xí)課件 篇2
一.課標(biāo)要求:
(1)空間向量及其運(yùn)算
① 經(jīng)歷向量及其運(yùn)算由平面向空間推廣的過程;
② 了解空間向量的概念,了解空間向量的基本定理及其意義,掌握空間向量的正交分解及其坐標(biāo)表示;
③ 掌握空間向量的線性運(yùn)算及其坐標(biāo)表示;
④ 掌握空間向量的數(shù)量積及其坐標(biāo)表示,能運(yùn)用向量的數(shù)量積判斷向量的共線與垂直。
(2)空間向量的應(yīng)用
① 理解直線的方向向量與平面的法向量;
② 能用向量語言表述線線、線面、面面的垂直、平行關(guān)系;
③ 能用向量方法證明有關(guān)線、面位置關(guān)系的一些定理(包括三垂線定理);
④ 能用向量方法解決線線、線面、面面的夾角的計(jì)算問題,體會(huì)向量方法在研究幾何問題中的作用。
二.命題走向
本講內(nèi)容主要涉及空間向量的坐標(biāo)及運(yùn)算、空間向量的應(yīng)用。本講是立體幾何的核心內(nèi)容,高考對(duì)本講的考察形式為:以客觀題形式考察空間向量的概念和運(yùn)算,結(jié)合主觀題借助空間向量求夾角和距離。
預(yù)測20xx年高考對(duì)本講內(nèi)容的考查將側(cè)重于向量的應(yīng)用,尤其是求夾角、求距離,教材上淡化了利用空間關(guān)系找角、找距離這方面的講解,加大了向量的應(yīng)用,因此作為立體幾何解答題,用向量法處理角和距離將是主要方法,在復(fù)習(xí)時(shí)應(yīng)加大這方面的訓(xùn)練力度。
三.要點(diǎn)精講
1.空間向量的概念
向量:在空間,我們把具有大小和方向的量叫做向量。如位移、速度、力等。
相等向量:長度相等且方向相同的向量叫做相等向量。
表示方法:用有向線段表示,并且同向且等長的有向線段表示同一向量或相等的向量。
說明:①由相等向量的概念可知,一個(gè)向量在空間平移到任何位置,仍與原來的向量相等,用同向且等長的有向線段表示;②平面向量僅限于研究同一平面內(nèi)的平移,而空間向量研究的是空間的平移。
2.向量運(yùn)算和運(yùn)算率
加法交換率:
加法結(jié)合率:
數(shù)乘分配率:
說明:①引導(dǎo)學(xué)生利用右圖驗(yàn)證加法交換率,然后推廣到首尾相接的若干向量之和;②向量加法的平行四邊形法則在空間仍成立。
3.平行向量(共線向量):
如果表示空間向量的有向線段所在的直線互相平行或重合,則這些向量叫做共線向量或平行向量。 平行于 記作 ∥ 。
注意:當(dāng)我們說 、 共線時(shí),對(duì)應(yīng)的有向線段所在直線可能是同一直線,也可能是平行直線;當(dāng)我們說 、 平行時(shí),也具有同樣的意義。
共線向量定理:對(duì)空間任意兩個(gè)向量 ( )、 , ∥ 的充要條件是存在實(shí)數(shù) 使 =
注:⑴上述定理包含兩個(gè)方面:①性質(zhì)定理:若 ∥ ( 0),則有 = ,其中 是唯一確定的實(shí)數(shù)。②判斷定理:若存在唯一實(shí)數(shù) ,使 = ( 0),則有 ∥ (若用此結(jié)論判斷 、 所在直線平行,還需 (或 )上有一點(diǎn)不在 (或 )上)。
⑵對(duì)于確定的 和 , = 表示空間與 平行或共線,長度為 | |,當(dāng) 0時(shí)與 同向,當(dāng) 0時(shí)與 反向的所有向量。
⑶若直線l∥ , ,P為l上任一點(diǎn),O為空間任一點(diǎn),下面根據(jù)上述定理來推導(dǎo) 的表達(dá)式。
推論:如果 l為經(jīng)過已知點(diǎn)A且平行于已知非零向量 的直線,那么對(duì)任一點(diǎn)O,點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,滿足等式
①其中向量 叫做直線l的方向向量。
在l上取 ,則①式可化為 ②
當(dāng) 時(shí),點(diǎn)P是線段AB的中點(diǎn),則 ③
①或②叫做空間直線的向量參數(shù)表示式,③是線段AB的中點(diǎn)公式。
注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基礎(chǔ),也是常用的直線參數(shù)方程的表示形式;⑵推論的用途:解決三點(diǎn)共線問題。⑶結(jié)合三角形法則記憶方程。
4.向量與平面平行:
如果表示向量 的有向線段所在直線與平面 平行或 在 平面內(nèi),我們就說向量 平行于平面 ,記作 ∥ 。注意:向量 ∥ 與直線a∥ 的聯(lián)系與區(qū)別。
共面向量:我們把平行于同一平面的向量叫做共面向量。
共面向量定理 如果兩個(gè)向量 、 不共線,則向量 與向量 、 共面的充要條件是存在實(shí)數(shù)對(duì)x、y,使 ①
注:與共線向量定理一樣,此定理包含性質(zhì)和判定兩個(gè)方面。
推論:空間一點(diǎn)P位于平面MAB內(nèi)的充要條件是存在有序?qū)崝?shù)對(duì)x、y,使
④或?qū)臻g任一定點(diǎn)O,有 ⑤
在平面MAB內(nèi),點(diǎn)P對(duì)應(yīng)的實(shí)數(shù)對(duì)(x, y)是唯一的。①式叫做平面MAB的向量表示式。
又∵ 代入⑤,整理得
⑥由于對(duì)于空間任意一點(diǎn)P,只要滿足等式④、⑤、⑥之一(它們只是形式不同的同一等式),點(diǎn)P就在平面MAB內(nèi);對(duì)于平面MAB內(nèi)的任意一點(diǎn)P,都滿足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共線的兩個(gè)向量 、 (或不共線三點(diǎn)M、A、B)確定的空間平面的向量參數(shù)方程,也是M、A、B、P四點(diǎn)共面的充要條件。
5.空間向量基本定理:如果三個(gè)向量 、 、 不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x, y, z, 使
說明:⑴由上述定理知,如果三個(gè)向量 、 、 不共面,那么所有空間向量所組成的集合就是 ,這個(gè)集合可看作由向量 、 、 生成的,所以我們把{ , , }叫做空間的一個(gè)基底, , , 都叫做基向量;⑵空間任意三個(gè)不共面向量都可以作為空間向量的一個(gè)基底;⑶一個(gè)基底是指一個(gè)向量組,一個(gè)基向量是指基底中的某一個(gè)向量,二者是相關(guān)聯(lián)的不同的概念;⑷由于 可視為與任意非零向量共線。與任意兩個(gè)非零向量共面,所以,三個(gè)向量不共面就隱含著它們都不是 。
推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對(duì)空間任一點(diǎn)P,都存在唯一的有序?qū)崝?shù)組 ,使
6.數(shù)量積
(1)夾角:已知兩個(gè)非零向量 、 ,在空間任取一點(diǎn)O,作 , ,則角AOB叫做向量 與 的夾角,記作
說明:⑴規(guī)定0 ,因而 = ;
⑵如果 = ,則稱 與 互相垂直,記作
⑶在表示兩個(gè)向量的夾角時(shí),要使有向線段的起點(diǎn)重合,注意圖(3)、(4)中的兩個(gè)向量的夾角不同,
圖(3)中AOB= ,
圖(4)中AOB= ,
從而有 = = .
(2)向量的模:表示向量的有向線段的長度叫做向量的長度或模。
(3)向量的數(shù)量積: 叫做向量 、 的數(shù)量積,記作 。
即 = ,
向量 :
(4)性質(zhì)與運(yùn)算率
⑴ 。 ⑴
⑵ =0 ⑵ =
⑶ ⑶
四.典例解析
題型1:空間向量的.概念及性質(zhì)
例1.有以下命題:①如果向量 與任何向量不能構(gòu)成空間向量的一組基底,那么 的關(guān)系是不共線;② 為空間四點(diǎn),且向量 不構(gòu)成空間的一個(gè)基底,那么點(diǎn) 一定共面;③已知向量 是空間的一個(gè)基底,則向量 ,也是空間的一個(gè)基底。其中正確的命題是( )
①② ①③ ②③ ①②③
解析:對(duì)于①如果向量 與任何向量不能構(gòu)成空間向量的一組基底,那么 的關(guān)系一定共線所以①錯(cuò)誤。②③正確。
例2.下列命題正確的是( )
若 與 共線, 與 共線,則 與 共線;
向量 共面就是它們所在的直線共面;
零向量沒有確定的方向;
若 ,則存在唯一的實(shí)數(shù) 使得 ;
解析:A中向量 為零向量時(shí)要注意,B中向量的共線、共面與直線的共線、共面不一樣,D中需保證 不為零向量。
題型2:空間向量的基本運(yùn)算
例3.如圖:在平行六面體 中, 為 與 的交點(diǎn)。若 , , ,則下列向量中與 相等的向量是( )
例4.已知: 且 不共面.若 ∥ ,求 的值.
題型3:空間向量的坐標(biāo)
例5.(1)已知兩個(gè)非零向量 =(a1,a2,a3), =(b1,b2,b3),它們平行的充要條件是()
A. :| |= :| |B.a1b1=a2b2=a3b3
C.a1b1+a2b2+a3b3=0D.存在非零實(shí)數(shù)k,使 =k
(2)已知向量 =(2,4,x), =(2,y,2),若| |=6, ,則x+y的值是()
A. -3或1 B.3或-1 C. -3 D.1
(3)下列各組向量共面的是()
A. =(1,2,3), =(3,0,2), =(4,2,5)
B. =(1,0,0), =(0,1,0), =(0,0,1)
C. =(1,1,0), =(1,0,1), =(0,1,1)
D. =(1,1,1), =(1,1,0), =(1,0,1)
解析:(1)D;點(diǎn)撥:由共線向量定線易知;
(2)A 點(diǎn)撥:由題知 或 ;
例6.已知空間三點(diǎn)A(-2,0,2),B(-1,1,2),C(-3,0,4)。設(shè) = , = ,(1)求 和 的夾角 ;(2)若向量k + 與k -2 互相垂直,求k的值.
思維入門指導(dǎo):本題考查向量夾角公式以及垂直條件的應(yīng)用,套用公式即可得到所要求的結(jié)果.
解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4), = , = ,
=(1,1,0), =(-1,0,2).
(1)cos = = - ,
和 的夾角為- 。
(2)∵k + =k(1,1,0)+(-1,0,2)=(k-1,k,2),
k -2 =(k+2,k,-4),且(k + )(k -2 ),
(k-1,k,2)(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0。
則k=- 或k=2。
點(diǎn)撥:第(2)問在解答時(shí)也可以按運(yùn)算律做。( + )(k -2 )=k2 2-k -2 2=2k2+k-10=0,解得k=- ,或k=2。
題型4:數(shù)量積
例7.設(shè) 、 、c是任意的非零平面向量,且相互不共線,則
①( ) -( ) = ②| |-| || - | ③( ) -( ) 不與 垂直
④(3 +2 )(3 -2 )=9| |2-4| |2中,是真命題的有( )
A.①② B.②③ C.③④ D.②④
答案:D
解析:①平面向量的數(shù)量積不滿足結(jié)合律.故①假;
②由向量的減法運(yùn)算可知| |、| |、| - |恰為一個(gè)三角形的三條邊長,由兩邊之差小于第三邊,故②真;
③因?yàn)閇( ) -( ) ] =( ) -( ) =0,所以垂直.故③假;
例8.(1)已知向量 和 的夾角為120,且| |=2,| |=5,則(2 - ) =_____.
(2)設(shè)空間兩個(gè)不同的單位向量 =(x1,y1,0), =(x2,y2,0)與向量 =(1,1,1)的夾角都等于 。(1)求x1+y1和x1y1的值;(2)求 , 的大小(其中0 , 。
解析:(1)答案:13;解析:∵(2 - ) =2 2- =2| |2-| || |cos120=24-25(- )=13。
(2)解:(1)∵| |=| |=1,x +y =1,x =y =1.
又∵ 與 的夾角為 , =| || |cos = = .
又∵ =x1+y1,x1+y1= 。
另外x +y =(x1+y1)2-2x1y1=1,2x1y1=( )2-1= .x1y1= 。
(2)cos , = =x1x2+y1y2,由(1)知,x1+y1= ,x1y1= .x1,y1是方程x2- x+ =0的解.
或 同理可得 或
∵ , 或
cos , + = + = .
∵0 , , , = 。
評(píng)述:本題考查向量數(shù)量積的運(yùn)算法則。
題型5:空間向量的應(yīng)用
例9.(1)已知a、b、c為正數(shù),且a+b+c=1,求證: + + 4 。
(2)已知F1=i+2j+3k,F(xiàn)2=-2i+3j-k,F(xiàn)3=3i-4j+5k,若F1,F(xiàn)2,F(xiàn)3共同作用于同一物體上,使物體從點(diǎn)M1(1,-2,1)移到點(diǎn)M2(3,1,2),求物體合力做的功。
解析:(1)設(shè) =( , , ), =(1,1,1),
則| |=4,| |= .
∵ | || |,
= + + | || |=4 .
當(dāng) = = 時(shí),即a=b=c= 時(shí),取=號(hào)。
例10.如圖,直三棱柱 中, 求證:
證明:
五.思維總結(jié)
本講內(nèi)容主要有空間直角坐標(biāo)系,空間向量的坐標(biāo)表示,空間向量的坐標(biāo)運(yùn)算,平行向量,垂直向量坐標(biāo)之間的關(guān)系以及中點(diǎn)公式.空間直角坐標(biāo)系是選取空間任意一點(diǎn)O和一個(gè)單位正交基底{i,j,k}建立坐標(biāo)系,對(duì)于O點(diǎn)的選取要既有作圖的直觀性,而且使各點(diǎn)的坐標(biāo),直線的坐標(biāo)表示簡化,要充分利用空間圖形中已有的直線的關(guān)系和性質(zhì);空間向量的坐標(biāo)運(yùn)算同平面向量類似,具有類似的運(yùn)算法則.一個(gè)向量在不同空間的表達(dá)方式不一樣,實(shí)質(zhì)沒有改變.因而運(yùn)算的方法和運(yùn)算規(guī)律結(jié)論沒變。如向量的數(shù)量積ab=|a||b|cos在二維、三維都是這樣定義的,不同點(diǎn)僅是向量在不同空間具有不同表達(dá)形式.空間兩向量平行時(shí)同平面兩向量平行時(shí)表達(dá)式不一樣,但實(shí)質(zhì)是一致的,即對(duì)應(yīng)坐標(biāo)成比例,且比值為 ,對(duì)于中點(diǎn)公式要熟記。
對(duì)本講內(nèi)容的考查主要分以下三類:
1.以選擇、填空題型考查本章的基本概念和性質(zhì)
此類題一般難度不大,用以解決有關(guān)長度、夾角、垂直、判斷多邊形形狀等問題。
2.向量在空間中的應(yīng)用
在空間坐標(biāo)系下,通過向量的坐標(biāo)的表示,運(yùn)用計(jì)算的方法研究三維空間幾何圖形的性質(zhì)。
在復(fù)習(xí)過程中,抓住源于課本,高于課本的指導(dǎo)方針。本講考題大多數(shù)是課本的變式題,即源于課本。因此,掌握雙基、精通課本是本章關(guān)鍵。
高三數(shù)學(xué)復(fù)習(xí)課件 篇3
【高考要求】:三角函數(shù)的有關(guān)概念(B).
【教學(xué)目標(biāo)】:理解任意角的概念;理解終邊相同的角的意義;了解弧度的意義,并能進(jìn)行弧度與角度的互化.
理解任意角三角函數(shù)(正弦、余弦、正切)的定義;初步了解有向線段的概念,會(huì)利用單位圓中的三角函數(shù)線表示任意角的正弦、余弦、正切.
【教學(xué)重難點(diǎn)】: 終邊相同的角的意義和任意角三角函數(shù)(正弦、余弦、正切)的定義.
【知識(shí)復(fù)習(xí)與自學(xué)質(zhì)疑】
一、問題.
1、角的概念是什么?角按旋轉(zhuǎn)方向分為哪幾類?
2、在平面直角坐標(biāo)系內(nèi)角分為哪幾類?與 終邊相同的角怎么表示?
3、什么是弧度和弧度制?弧度和角度怎么換算?弧度和實(shí)數(shù)有什么樣的關(guān)系?
4、弧度制下圓的弧長公式和扇形的面積公式是什么?
5、任意角的三角函數(shù)的定義是什么?在各象限的符號(hào)怎么確定?
6、你能在單位圓中畫出正弦、余弦和正切線嗎?
7、同角三角函數(shù)有哪些基本關(guān)系式?
二、練習(xí).
1.給出下列命題:
(1)小于 的角是銳角;(2)若 是第一象限的角,則 必為第一象限的角;
(3)第三象限的角必大于第二象限的角;(4)第二象限的角是鈍角;
(5)相等的角必是終邊相同的角;終邊相同的角不一定相等;
(6)角2 與角 的終邊不可能相同;
(7)若角 與角 有相同的終邊,則角( 的終邊必在 軸的非負(fù)半軸上。其中正確的命題的序號(hào)是
2.設(shè)P 點(diǎn)是角終邊上一點(diǎn),且滿足 則 的值是
3.一個(gè)扇形弧AOB 的面積是1 ,它的周長為4 ,則該扇形的中心角= 弦AB長=
4.若 則角 的終邊在 象限。
5.在直角坐標(biāo)系中,若角 與角 的終邊互為反向延長線,則角 與角 之間的關(guān)系是
6.若 是第三象限的角,則- , 的終邊落在何處?
【交流展示、互動(dòng)探究與精講點(diǎn)撥】
例1.如圖, 分別是角 的終邊.
(1)求終邊落在陰影部分(含邊界)的所有角的集合;
(2)求終邊落在陰影部分、且在 上所有角的集合;
(3)求始邊在OM位置,終邊在ON位置的所有角的集合.
例2.(1)已知角的終邊在直線 上,求 的值;
(2)已知角的終邊上有一點(diǎn)A ,求 的值。
例3.若 ,則 在第 象限.
例4.若一扇形的周長為20 ,則當(dāng)扇形的圓心角 等于多少弧度時(shí),這個(gè)扇形的面積最大?最大面積是多少?
【矯正反饋】
1、若銳角 的終邊上一點(diǎn)的坐標(biāo)為 ,則角 的弧度數(shù)為 .
2、若 ,又 是第二,第三象限角,則 的取值范圍是 .
3、一個(gè)半徑為 的扇形,如果它的周長等于弧所在半圓的弧長,那么該扇形的圓心角度數(shù)是 弧度或角度,該扇形的面積是 .
4、已知點(diǎn)P 在第三象限,則 角終邊在第 象限.
5、設(shè)角 的終邊過點(diǎn)P ,則 的值為 .
6、已知角 的終邊上一點(diǎn)P 且 ,求 和 的值.
【遷移應(yīng)用】
1、經(jīng)過3小時(shí)35分鐘,分針轉(zhuǎn)過的角的弧度是 .時(shí)針轉(zhuǎn)過的角的弧度數(shù)是 .
2、若點(diǎn)P 在第一象限,則在 內(nèi) 的取值范圍是 .
3、若點(diǎn)P從(1,0)出發(fā),沿單位圓 逆時(shí)針方向運(yùn)動(dòng) 弧長到達(dá)Q點(diǎn),則Q點(diǎn)坐標(biāo)為 .
4、如果 為小于360 的正角,且角 的7倍數(shù)的角的終邊與這個(gè)角的終邊重合,求角 的值.
高三數(shù)學(xué)復(fù)習(xí)課件 篇4
教學(xué)目標(biāo)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題。
教學(xué)重難點(diǎn)
掌握等差數(shù)列與等比數(shù)列的概念,通項(xiàng)公式與前n項(xiàng)和公式,等差中項(xiàng)與等比中項(xiàng)的概念,并能運(yùn)用這些知識(shí)解決一些基本問題。XX
教學(xué)過程
等比數(shù)列性質(zhì)請(qǐng)同學(xué)們類比得出。
【方法規(guī)律】
1、通項(xiàng)公式與前n項(xiàng)和公式聯(lián)系著五個(gè)基本量,“知三求二”是一類最基本的運(yùn)算題。方程觀點(diǎn)是解決這類問題的基本數(shù)學(xué)思想和方法。
2、判斷一個(gè)數(shù)列是等差數(shù)列或等比數(shù)列,常用的方法使用定義。特別地,在判斷三個(gè)實(shí)數(shù)
a,b,c成等差(比)數(shù)列時(shí),常用(注:若為等比數(shù)列,則a,b,c均不為0)
3、在求等差數(shù)列前n項(xiàng)和的(?。┲禃r(shí),常用函數(shù)的思想和方法加以解決。
【示范舉例】
例1:(1)設(shè)等差數(shù)列的前n項(xiàng)和為30,前2n項(xiàng)和為100,則前3n項(xiàng)和為。
(2)一個(gè)等比數(shù)列的前三項(xiàng)之和為26,前六項(xiàng)之和為728,則a1=,q=。
例2:四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)。
例3:項(xiàng)數(shù)為奇數(shù)的等差數(shù)列,奇數(shù)項(xiàng)之和為44,偶數(shù)項(xiàng)之和為33,求該數(shù)列的中間項(xiàng)。
高三數(shù)學(xué)復(fù)習(xí)課件 篇5
導(dǎo)數(shù)及其四則運(yùn)算
一、考試要求:(1)導(dǎo)數(shù)概念及其幾何意義①了解導(dǎo)數(shù)概念的實(shí)際背景②理解導(dǎo)數(shù)的幾何意義.(2)導(dǎo)數(shù)的運(yùn)算①能根據(jù)導(dǎo)數(shù)定義,求函數(shù)的導(dǎo)數(shù).②能利用下面給出的基本初等函數(shù)的導(dǎo)數(shù)公式和導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù),能求簡單的復(fù)合函數(shù)(僅限于形如的復(fù)合函數(shù))的導(dǎo)數(shù).
二、知識(shí)梳理:
1、如果當(dāng)時(shí),有極限,就說函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做在點(diǎn)處的導(dǎo)數(shù)(或變化率)。記作或,即。的幾何意義是曲線在點(diǎn)處的切線;瞬時(shí)速度就是位移函數(shù)對(duì)時(shí)間的導(dǎo)數(shù)。
6、點(diǎn)是曲線上任意一點(diǎn),則到直線的距離的最小值是;
7、若函數(shù)的圖像與直線只有一個(gè)公共點(diǎn),則實(shí)數(shù)的取值范圍是
8、若點(diǎn)在曲線上移動(dòng),則過點(diǎn)的切線的傾斜角取值范圍是
9、設(shè)函數(shù)(1)證明:的導(dǎo)數(shù);
(2)若對(duì)所有都有,求的取值范圍。
10、已知在區(qū)間
高三數(shù)學(xué)復(fù)習(xí)課件 篇6
●知識(shí)梳理
函數(shù)的綜合應(yīng)用主要體現(xiàn)在以下幾方面:
1.函數(shù)內(nèi)容本身的相互綜合,如函數(shù)概念、性質(zhì)、圖象等方面知識(shí)的綜合.
2.函數(shù)與其他數(shù)學(xué)知識(shí)點(diǎn)的綜合,如方程、不等式、數(shù)列、解析幾何等方面的內(nèi)容與函數(shù)的綜合.這是高考主要考查的內(nèi)容.
3.函數(shù)與實(shí)際應(yīng)用問題的綜合.
●點(diǎn)擊雙基
1.已知函數(shù)f(x)=lg(2x-b)(b為常數(shù)),若x[1,+)時(shí),f(x)0恒成立,則
A.b1 B.b1 C.b1 D.b=1
解析:當(dāng)x[1,+)時(shí),f(x)0,從而2x-b1,即b2x-1.而x[1,+)時(shí),2x-1單調(diào)增加,
b2-1=1.
答案:A
2.若f(x)是R上的減函數(shù),且f(x)的圖象經(jīng)過點(diǎn)A(0,3)和B(3,-1),則不等式|f(x+1)-1|2的解集是___________________.
解析:由|f(x+1)-1|2得-2
又f(x)是R上的減函數(shù),且f(x)的圖象過點(diǎn)A(0,3),B(3,-1),
f(3)
答案:(-1,2)
●典例剖析
【例1】 取第一象限內(nèi)的點(diǎn)P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差數(shù)列,1,y1,y2,2依次成等比數(shù)列,則點(diǎn)P1、P2與射線l:y=x(x0)的關(guān)系為
A.點(diǎn)P1、P2都在l的上方 B.點(diǎn)P1、P2都在l上
C.點(diǎn)P1在l的下方,P2在l的上方 D.點(diǎn)P1、P2都在l的下方
剖析:x1= +1= ,x2=1+ = ,y1=1 = ,y2= ,∵y1
P1、P2都在l的下方.
答案:D
【例2】 已知f(x)是R上的偶函數(shù),且f(2)=0,g(x)是R上的奇函數(shù),且對(duì)于xR,都有g(shù)(x)=f(x-1),求f(20xx)的值.
解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),
故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=
g(x-3)=f(x-4),也即f(x+4)=f(x),xR.
f(x)為周期函數(shù),其周期T=4.
f(20xx)=f(4500+2)=f(2)=0.
評(píng)述:應(yīng)靈活掌握和運(yùn)用函數(shù)的奇偶性、周期性等性質(zhì).
【例3】 函數(shù)f(x)= (m0),x1、x2R,當(dāng)x1+x2=1時(shí),f(x1)+f(x2)= .
(1)求m的值;
(2)數(shù)列{an},已知an=f(0)+f( )+f( )++f( )+f(1),求an.
解:(1)由f(x1)+f(x2)= ,得 + = ,
4 +4 +2m= [4 +m(4 +4 )+m2].
∵x1+x2=1,(2-m)(4 +4 )=(m-2)2.
4 +4 =2-m或2-m=0.
∵4 +4 2 =2 =4,
而m0時(shí)2-m2,4 +4 2-m.
m=2.
(2)∵an=f(0)+f( )+f( )++f( )+f(1),an=f(1)+f( )+ f( )++f( )+f(0).
2an=[f(0)+f(1)]+[f( )+f( )]++[f(1)+f(0)]= + ++ = .
an= .
深化拓展
用函數(shù)的思想處理方程、不等式、數(shù)列等問題是一重要的思想方法.
【例4】 函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意x、yR,有f(x+y)=f(x)+f(y),且當(dāng)x0時(shí),f(x)0,f(1)=-2.
(1)證明f(x)是奇函數(shù);
(2)證明f(x)在R上是減函數(shù);
(3)求f(x)在區(qū)間[-3,3]上的最大值和最小值.
(1)證明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+ f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.從而有f(x)+f(-x)=0.
f(-x)=-f(x).f(x)是奇函數(shù).
(2)證明:任取x1、x2R,且x10.f(x2-x1)0.
-f(x2-x1)0,即f(x1)f(x2),從而f(x)在R上是減函數(shù).
(3)解:由于f(x)在R上是減函數(shù),故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.從而最大值是6,最小值是-6.
深化拓展
對(duì)于任意實(shí)數(shù)x、y,定義運(yùn)算x*y=ax+by+cxy,其中a、b、c是常數(shù),等式右邊的運(yùn)算是通常的加法和乘法運(yùn)算.現(xiàn)已知1*2=3,2*3=4,并且有一個(gè)非零實(shí)數(shù)m,使得對(duì)于任意實(shí)數(shù)x,都有x*m=x,試求m的值.
提示:由1*2=3,2*3=4,得
b=2+2c,a=-1-6c.
又由x*m=ax+bm+cmx=x對(duì)于任意實(shí)數(shù)x恒成立,
b=0=2+2c.
c=-1.(-1-6c)+cm=1.
-1+6-m=1.m=4.
答案:4.
●闖關(guān)訓(xùn)練
夯實(shí)基礎(chǔ)
1.已知y=f(x)在定義域[1,3]上為單調(diào)減函數(shù),值域?yàn)閇4,7],若它存在反函數(shù),則反函數(shù)在其定義域上
A.單調(diào)遞減且最大值為7 B.單調(diào)遞增且最大值為7
C.單調(diào)遞減且最大值為3 D.單調(diào)遞增且最大值為3
解析:互為反函數(shù)的兩個(gè)函數(shù)在各自定義區(qū)間上有相同的增減性,f-1(x)的值域是[1,3].
答案:C
2.關(guān)于x的方程|x2-4x+3|-a=0有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)a的值是___________________.
解析:作函數(shù)y=|x2-4x+3|的圖象,如下圖.
由圖象知直線y=1與y=|x2-4x+3|的圖象有三個(gè)交點(diǎn),即方程|x2-4x+3|=1也就是方程|x2-4x+3|-1=0有三個(gè)不相等的實(shí)數(shù)根,因此a=1.
答案:1
3.若存在常數(shù)p0,使得函數(shù)f(x)滿足f(px)=f(px- )(xR),則f(x)的一個(gè)正周期為__________.
解析:由f(px)=f(px- ),
令px=u,f(u)=f(u- )=f[(u+ )- ],T= 或 的整數(shù)倍.
答案: (或 的整數(shù)倍)
4.已知關(guān)于x的方程sin2x-2sinx-a=0有實(shí)數(shù)解,求a的取值范圍.
解:a=sin2x-2sinx=(sinx-1)2-1.
∵-11,0(sinx-1)24.
a的范圍是[-1,3].
5.記函數(shù)f(x)= 的定義域?yàn)锳,g(x)=lg[(x-a-1)(2a-x)](a1)的定義域?yàn)锽.
(1)求A;
(2)若B A,求實(shí)數(shù)a的取值范圍.
解:(1)由2- 0,得 0,
x-1或x1,即A=(-,-1)[1,+).
(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.
∵a1,a+12a.B=(2a,a+1).
∵B A,2a1或a+1-1,即a 或a-2.
而a1, 1或a-2.
故當(dāng)B A時(shí),實(shí)數(shù)a的取值范圍是(-,-2][ ,1).
培養(yǎng)能力
6.(理)已知二次函數(shù)f(x)=x2+bx+c(b0,cR).
若f(x)的定義域?yàn)閇-1,0]時(shí),值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請(qǐng)說明理由.
解:設(shè)符合條件的f(x)存在,
∵函數(shù)圖象的對(duì)稱軸是x=- ,
又b0,- 0.
①當(dāng)- 0,即01時(shí),
函數(shù)x=- 有最小值-1,則
或 (舍去).
②當(dāng)-1- ,即12時(shí),則
(舍去)或 (舍去).
③當(dāng)- -1,即b2時(shí),函數(shù)在[-1,0]上單調(diào)遞增,則 解得
綜上所述,符合條件的函數(shù)有兩個(gè),
f(x)=x2-1或f(x)=x2+2x.
(文)已知二次函數(shù)f(x)=x2+(b+1)x+c(b0,cR).
若f(x)的定義域?yàn)閇-1,0]時(shí),值域也是[-1,0],符合上述條件的函數(shù)f(x)是否存在?若存在,求出f(x)的表達(dá)式;若不存在,請(qǐng)說明理由.
解:∵函數(shù)圖象的對(duì)稱軸是
x=- ,又b0,- - .
設(shè)符合條件的f(x)存在,
①當(dāng)- -1時(shí),即b1時(shí),函數(shù)f(x)在[-1,0]上單調(diào)遞增,則
②當(dāng)-1- ,即01時(shí),則
(舍去).
綜上所述,符合條件的函數(shù)為f(x)=x2+2x.
7.已知函數(shù)f(x)=x+ 的定義域?yàn)?0,+),且f(2)=2+ .設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM||PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.
解:(1)∵f(2)=2+ =2+ ,a= .
(2)設(shè)點(diǎn)P的坐標(biāo)為(x0,y0),則有y0=x0+ ,x00,由點(diǎn)到直線的距離公式可知,|PM|= = ,|PN|=x0,有|PM||PN|=1,即|PM||PN|為定值,這個(gè)值為1.
(3)由題意可設(shè)M(t,t),可知N(0,y0).
∵PM與直線y=x垂直,kPM1=-1,即 =-1.解得t= (x0+y0).
又y0=x0+ ,t=x0+ .
S△OPM= + ,S△OPN= x02+ .
S四邊形OMPN=S△OPM+S△OPN= (x02+ )+ 1+ .
當(dāng)且僅當(dāng)x0=1時(shí),等號(hào)成立.
此時(shí)四邊形OMPN的面積有最小值1+ .
探究創(chuàng)新
8.有一塊邊長為4的正方形鋼板,現(xiàn)對(duì)其進(jìn)行切割、焊接成一個(gè)長方體形無蓋容器(切、焊損耗忽略不計(jì)).有人應(yīng)用數(shù)學(xué)知識(shí)作了如下設(shè)計(jì):如圖(a),在鋼板的四個(gè)角處各切去一個(gè)小正方形,剩余部分圍成一個(gè)長方體,該長方體的高為小正方形邊長,如圖(b).
(1)請(qǐng)你求出這種切割、焊接而成的長方體的最大容積V1;
(2)由于上述設(shè)計(jì)存在缺陷(材料有所浪費(fèi)),請(qǐng)你重新設(shè)計(jì)切、焊方法,使材料浪費(fèi)減少,而且所得長方體容器的容積V2V1.
解:(1)設(shè)切去正方形邊長為x,則焊接成的長方體的底面邊長為4-2x,高為x,
V1=(4-2x)2x=4(x3-4x2+4x)(0
V1=4(3x2-8x+4).
令V1=0,得x1= ,x2=2(舍去).
而V1=12(x- )(x-2),
又當(dāng)x 時(shí),V10;當(dāng)
當(dāng)x= 時(shí),V1取最大值 .
(2)重新設(shè)計(jì)方案如下:
如圖①,在正方形的兩個(gè)角處各切下一個(gè)邊長為1的小正方形;如圖②,將切下的小正方形焊在未切口的正方形一邊的中間;如圖③,將圖②焊成長方體容器.
新焊長方體容器底面是一長方形,長為3,寬為2,此長方體容積V2=321=6,顯然V2V1.
故第二種方案符合要求.
●思悟小結(jié)
1.函數(shù)知識(shí)可深可淺,復(fù)習(xí)時(shí)應(yīng)掌握好分寸,如二次函數(shù)問題應(yīng)高度重視,其他如分類討論、探索性問題屬熱點(diǎn)內(nèi)容,應(yīng)適當(dāng)加強(qiáng).
2.數(shù)形結(jié)合思想貫穿于函數(shù)研究的各個(gè)領(lǐng)域的全部過程中,掌握了這一點(diǎn),將會(huì)體會(huì)到函數(shù)問題既千姿百態(tài),又有章可循.
●教師下載中心
教學(xué)點(diǎn)睛
數(shù)形結(jié)合和數(shù)形轉(zhuǎn)化是解決本章問題的重要思想方法,應(yīng)要求學(xué)生熟練掌握用函數(shù)的圖象及方程的曲線去處理函數(shù)、方程、不等式等問題.
拓展題例
【例1】 設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且對(duì)任意a、b[-1,1],當(dāng)a+b0時(shí),都有 0.
(1)若ab,比較f(a)與f(b)的大小;
(2)解不等式f(x- )
(3)記P={x|y=f(x-c)},Q={x|y=f(x-c2)},且PQ= ,求c的取值范圍.
解:設(shè)-1x1
0.
∵x1-x20,f(x1)+f(-x2)0.
f(x1)-f(-x2).
又f(x)是奇函數(shù),f(-x2)=-f(x2).
f(x1)
f(x)是增函數(shù).
(1)∵ab,f(a)f(b).
(2)由f(x- )
- .
不等式的解集為{x|- }.
(3)由-11,得-1+c1+c,
P={x|-1+c1+c}.
由-11,得-1+c21+c2,
Q={x|-1+c21+c2}.
∵PQ= ,
1+c-1+c2或-1+c1+c2,
解得c2或c-1.
【例2】已知函數(shù)f(x)的圖象與函數(shù)h(x)=x+ +2的圖象關(guān)于點(diǎn)A(0,1)對(duì)稱.
(1)求f(x)的解析式;
(2)(文)若g(x)=f(x)x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
(理)若g(x)=f(x)+ ,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.
解:(1)設(shè)f(x)圖象上任一點(diǎn)坐標(biāo)為(x,y),點(diǎn)(x,y)關(guān)于點(diǎn)A(0,1)的對(duì)稱點(diǎn)(-x,2-y)在h(x)的圖象上.
2-y=-x+ +2.
y=x+ ,即f(x)=x+ .
(2)(文)g(x)=(x+ )x+ax,
即g(x)=x2+ax+1.
g(x)在(0,2]上遞減 - 2,
a-4.
(理)g(x)=x+ .
∵g(x)=1- ,g(x)在(0,2]上遞減,
1- 0在x(0,2]時(shí)恒成立,
即ax2-1在x(0,2]時(shí)恒成立.
∵x(0,2]時(shí),(x2-1)max=3,
a3.
【例3】在4月份(共30天),有一新款服裝投放某專賣店銷售,日銷售量(單位:件)f(n)關(guān)于時(shí)間n(130,nN*)的函數(shù)關(guān)系如下圖所示,其中函數(shù)f(n)圖象中的點(diǎn)位于斜率為5和-3的兩條直線上,兩直線的交點(diǎn)的橫坐標(biāo)為m,且第m天日銷售量最大.
(1)求f(n)的表達(dá)式,及前m天的銷售總數(shù);
(2)按規(guī)律,當(dāng)該專賣店銷售總數(shù)超過400件時(shí),社會(huì)上流行該服裝,而日銷售量連續(xù)下降并低于30件時(shí),該服裝的流行會(huì)消失.試問該服裝在社會(huì)上流行的天數(shù)是否會(huì)超過10天?并說明理由.
解:(1)由圖形知,當(dāng)1m且nN*時(shí),f(n)=5n-3.
由f(m)=57,得m=12.
f(n)=
前12天的銷售總量為
5(1+2+3++12)-312=354件.
(2)第13天的銷售量為f(13)=-313+93=54件,而354+54400,
從第14天開始銷售總量超過400件,即開始流行.
設(shè)第n天的日銷售量開始低于30件(1221.
從第22天開始日銷售量低于30件,
即流行時(shí)間為14號(hào)至21號(hào).
該服裝流行時(shí)間不超過10天.
高三數(shù)學(xué)復(fù)習(xí)課件 篇7
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
解三角形及應(yīng)用舉例
教學(xué)重難點(diǎn)
解三角形及應(yīng)用舉例
教學(xué)過程
一.基礎(chǔ)知識(shí)精講
掌握三角形有關(guān)的定理
利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);
利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
掌握正弦定理、余弦定理及其變形形式,利用三角公式解一些有關(guān)三角形中的三角函數(shù)問題.
二.問題討論
思維點(diǎn)撥:已知兩邊和其中一邊的對(duì)角解三角形問題,用正弦定理解,但需注意解的情況的討論.
思維點(diǎn)撥::三角形中的三角變換,應(yīng)靈活運(yùn)用正、余弦定理.在求值時(shí),要利用三角函數(shù)的有關(guān)性質(zhì).
例6:在某海濱城市附近海面有一臺(tái)風(fēng),據(jù)檢測,當(dāng)前臺(tái)
風(fēng)中心位于城市O(如圖)的東偏南方向
300km的海面P處,并以20km/h的速度向西偏北的
方向移動(dòng),臺(tái)風(fēng)侵襲的范圍為圓形區(qū)域,當(dāng)前半徑為60km,
并以10km/h的速度不斷增加,問幾小時(shí)后該城市開始受到
臺(tái)風(fēng)的侵襲。
一.小結(jié):
1.利用正弦定理,可以解決以下兩類問題:
(1)已知兩角和任一邊,求其他兩邊和一角;
(2)已知兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其他的邊和角);2。利用余弦定理,可以解決以下兩類問題:
(1)已知三邊,求三角;(2)已知兩邊和它們的夾角,求第三邊和其他兩角。
3.邊角互化是解三角形問題常用的手段.
三.作業(yè):P80闖關(guān)訓(xùn)練
高三數(shù)學(xué)復(fù)習(xí)課件 篇8
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
數(shù)列求和的綜合應(yīng)用
教學(xué)重難點(diǎn)
數(shù)列求和的綜合應(yīng)用
教學(xué)過程
典例分析
3.數(shù)列{an}的前n項(xiàng)和Sn=n2-7n-8,
(1)求{an}的通項(xiàng)公式
(2)求{|an|}的前n項(xiàng)和Tn
4.等差數(shù)列{an}的公差為,S100=145,則a1+a3+a5+…+a99=
5.已知方程(x2-2x+m)(x2-2x+n)=0的四個(gè)根組成一個(gè)首項(xiàng)為的等差數(shù)列,則|m-n|=
6.數(shù)列{an}是等差數(shù)列,且a1=2,a1+a2+a3=12
(1)求{an}的通項(xiàng)公式
(2)令bn=anxn,求數(shù)列{bn}前n項(xiàng)和公式
7.四數(shù)中前三個(gè)數(shù)成等比數(shù)列,后三個(gè)數(shù)成等差數(shù)列,首末兩項(xiàng)之和為21,中間兩項(xiàng)之和為18,求此四個(gè)數(shù)
8.在等差數(shù)列{an}中,a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n為何值時(shí),Sn有值,并求出它的值
.已知數(shù)列{an},an∈NXX,Sn=(an+2)2
(1)求證{an}是等差數(shù)列
(2)若bn=an-30,求數(shù)列{bn}前n項(xiàng)的最小值
0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈NXX)
(1)設(shè)f(x)的圖象的頂點(diǎn)的橫坐標(biāo)構(gòu)成數(shù)列{an},求證數(shù)列{an}是等差數(shù)列
(2設(shè)f(x)的圖象的頂點(diǎn)到x軸的距離構(gòu)成數(shù)列{dn},求數(shù)列{dn}的前n項(xiàng)和sn.
11.購買一件售價(jià)為5000元的商品,采用分期付款的辦法,每期付款數(shù)相同,購買后1個(gè)月第1次付款,再過1個(gè)月第2次付款,如此下去,共付款5次后還清,如果按月利率0.8%,每月利息按復(fù)利計(jì)算(上月利息要計(jì)入下月本金),那么每期應(yīng)付款多少?(精確到1元)
12.某商品在最近100天內(nèi)的價(jià)格f(t)與時(shí)間t的
函數(shù)關(guān)系式是f(t)=
銷售量g(t)與時(shí)間t的函數(shù)關(guān)系是
g(t)=-t/3+109/3(0≤t≤100)
求這種商品的日銷售額的值
注:對(duì)于分段函數(shù)型的應(yīng)用題,應(yīng)注意對(duì)變量x的取值區(qū)間的討論;求函數(shù)的值,應(yīng)分別求出函數(shù)在各段中的值,通過比較,確定值
高三數(shù)學(xué)復(fù)習(xí)課件 篇9
一、教學(xué)內(nèi)容分析
二面角是我們?nèi)粘I钪薪?jīng)常見到的一個(gè)圖形,它是在學(xué)生學(xué)過空間異面直線所成的角、直線和平面所成角之后,研究的一種空間的角,二面角進(jìn)一步完善了空間角的概念。掌握好本節(jié)課的知識(shí),對(duì)學(xué)生系統(tǒng)地理解直線和平面的知識(shí)、空間想象能力的培養(yǎng),乃至創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
二、教學(xué)目標(biāo)設(shè)計(jì)
理解二面角及其平面角的概念;能確認(rèn)圖形中的已知角是否為二面角的平面角;能作出二面角的平面角,并能初步運(yùn)用它們解決相關(guān)問題。
三、教學(xué)重點(diǎn)及難點(diǎn)
二面角的平面角的概念的形成以及二面角的平面角的作法。
四、教學(xué)流程設(shè)計(jì)
五、教學(xué)過程設(shè)計(jì)
一、 新課引入
1。復(fù)習(xí)和回顧平面角的有關(guān)知識(shí)。
平面中的角
定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角
圖形
結(jié)構(gòu) 射線點(diǎn)射線
表示法 AOB,O等
2。復(fù)習(xí)和回顧異面直線所成的角、直線和平面所成的角的定義,及其共同特征。(空間角轉(zhuǎn)化為平面角)
3。觀察:陡峭與否,跟山坡面與水平面所成的角大小有關(guān),而山坡面與水平面所成的角就是兩個(gè)平面所成的角。在實(shí)際生活當(dāng)中,能夠轉(zhuǎn)化為兩個(gè)平面所成角例子非常多,比如在這間教室里,誰能舉出能夠體現(xiàn)兩個(gè)平面所成角的實(shí)例?(如圖1,課本的開合、門或窗的開關(guān)。)從而,引出二面角的定義及相關(guān)內(nèi)容。
二、學(xué)習(xí)新課
(一)二面角的定義
平面中的角 二面角
定義 從一個(gè)頂點(diǎn)出發(fā)的兩條射線所組成的圖形,叫做角 課本P17
圖形
結(jié)構(gòu) 射線點(diǎn)射線 半平面直線半平面
表示法 AOB,O等 二面角a或—AB—
(二)二面角的圖示
1。畫出直立式、平臥式二面角各一個(gè),并分別給予表示。
2。在正方體中認(rèn)識(shí)二面角。
(三)二面角的平面角
平面幾何中的角可以看作是一條射線繞其端點(diǎn)旋轉(zhuǎn)而成,它有一個(gè)旋轉(zhuǎn)量,它的大小可以度量,類似地,二面角也可以看作是一個(gè)半平面以其棱為軸旋轉(zhuǎn)而成,它也有一個(gè)旋轉(zhuǎn)量,那么,二面角的大小應(yīng)該怎樣度量?
1。二面角的平面角的定義(課本P17)。
2。AOB的大小與點(diǎn)O在棱上的位置無關(guān)。
[說明]①平面與平面的位置關(guān)系,只有相交或平行兩種情況,為了對(duì)相交平面的相互位置作進(jìn)一步的探討,有必要來研究二面角的度量問題。
②與兩條異面直線所成的角、直線和平面所成的角做類比,用平面角去度量。
③二面角的平面角的三個(gè)主要特征:角的頂點(diǎn)在棱上;角的兩邊分別在兩個(gè)半平面內(nèi);角的兩邊分別與棱垂直。
3。二面角的平面角的范圍:
(四)例題分析
例1 一張邊長為a的正三角形紙片ABC,以它的高AD為折痕,將其折成一個(gè) 的二面角,求此時(shí)B、C兩點(diǎn)間的距離。
[說明] ①檢查學(xué)生對(duì)二面角的平面角的定義的掌握情況。
②翻折前后應(yīng)注意哪些量的位置和數(shù)量發(fā)生了變化, 哪些沒變?
例2 如圖,已知邊長為a的等邊三角形 所在平面外有一點(diǎn)P,使PA=PB=PC=a,求二面角 的大小。
[說明] ①求二面角的步驟:作證算答。
②引導(dǎo)學(xué)生掌握解題可操作性的通法(定義法和線面垂直法)。
例3 已知正方體 ,求二面角 的大小。(課本P18例1)
[說明] 使學(xué)生進(jìn)一步熟悉作二面角的平面角的方法。
(五)問題拓展
例4 如圖,山坡的傾斜度(坡面與水平面所成二面角的度數(shù))是 ,山坡上有一條直道CD,它和坡腳的水平線AB的夾角是 ,沿這條路上山,行走100米后升高多少米?
[說明]使學(xué)生明白數(shù)學(xué)既來源于實(shí)際又服務(wù)于實(shí)際。
三、鞏固練習(xí)
1。在棱長為1的正方體 中,求二面角 的大小。
2。 若二面角 的大小為 ,P在平面 上,點(diǎn)P到 的距離為h,求點(diǎn)P到棱l的距離。
四、課堂小結(jié)
1。二面角的定義
2。二面角的平面角的定義及其范圍
3。二面角的平面角的常用作圖方法
4。求二面角的大?。ㄗ髯C算答)
五、作業(yè)布置
1。課本P18練習(xí)14。4(1)
2。在 二面角的一個(gè)面內(nèi)有一個(gè)點(diǎn),它到另一個(gè)面的距離是10,求它到棱的距離。
3。把邊長為a的正方形ABCD以BD為軸折疊,使二面角A—BD—C成 的二面角,求A、C兩點(diǎn)的距離。
六、教學(xué)設(shè)計(jì)說明
本節(jié)課的設(shè)計(jì)不是簡單地將概念直接傳受給學(xué)生,而是考慮到知識(shí)的形成過程,設(shè)法從學(xué)生的數(shù)學(xué)現(xiàn)實(shí)出發(fā),調(diào)動(dòng)學(xué)生積極參與探索、發(fā)現(xiàn)、問題解決全過程。二面角及二面角的平面角這兩大概念的引出均運(yùn)用了類比的手段和方法。教學(xué)過程中通過教師的層層鋪墊,學(xué)生的主動(dòng)探究,使學(xué)生經(jīng)歷概念的形成、發(fā)展和應(yīng)用過程,有意識(shí)地加強(qiáng)了知識(shí)形成過程的教學(xué)。
高三數(shù)學(xué)復(fù)習(xí)課件 篇10
排列問題的應(yīng)用題是學(xué)生學(xué)習(xí)的難點(diǎn),也是高考的必考內(nèi)容,筆者在教學(xué)中嘗試將排列問題歸納為三種類型來解決:
下面就每一種題型結(jié)合例題總結(jié)其特點(diǎn)和解法,并附以近年的高考原題供讀者參研.
一. 能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題)
解決此類問題的關(guān)鍵是特殊元素或特殊位置優(yōu)先.或使用間接法.
例1.(1)7位同學(xué)站成一排,其中甲站在中間的位置,共有多少種不同的排法?
(2)7位同學(xué)站成一排,甲、乙只能站在兩端的排法共有多少種?
(3)7位同學(xué)站成一排,甲、乙不能站在排頭和排尾的排法共有多少種?
(4)7位同學(xué)站成一排,其中甲不能在排頭、乙不能站排尾的排法共有多少種?
解析:(1)先考慮甲站在中間有1種方法,再在余下的6個(gè)位置排另外6位同學(xué),共 種方法;
(2)先考慮甲、乙站在兩端的排法有 種,再在余下的5個(gè)位置排另外5位同學(xué)的排法有 種,共 種方法;
(3) 先考慮在除兩端外的5個(gè)位置選2個(gè)安排甲、乙有 種,再在余下的5個(gè)位置排另外5位同學(xué)排法有 種,共 種方法;本題也可考慮特殊位置優(yōu)先,即兩端的排法有 ,中間5個(gè)位置有 種,共 種方法;
(4)分兩類乙站在排頭和乙不站在排頭,乙站在排頭的排法共有 種,乙不站在排頭的排法總數(shù)為:先在除甲、乙外的5人中選1人安排在排頭的方法有 種,中間5個(gè)位置選1個(gè)安排乙的方法有 ,再在余下的5個(gè)位置排另外5位同學(xué)的排法有 ,故共有 種方法;本題也可考慮間接法,總排法為 ,不符合條件的甲在排頭和乙站排尾的排法均為 ,但這兩種情況均包含了甲在排頭和乙站排尾的情況,故共有 種.
例2.某天課表共六節(jié)課,要排政治、語文、數(shù)學(xué)、物理、化學(xué)、體育共六門課程,如果第一節(jié)不排體育,最后一節(jié)不排數(shù)學(xué),共有多少種不同的排課方法?
解法1:對(duì)特殊元素?cái)?shù)學(xué)和體育進(jìn)行分類解決
(1)數(shù)學(xué)、體育均不排在第一節(jié)和第六節(jié),有 種,其他有 種,共有 種;
(2)數(shù)學(xué)排在第一節(jié)、體育排在第六節(jié)有一種,其他有 種,共有 種;
(3)數(shù)學(xué)排在第一節(jié)、體育不在第六節(jié)有 種,其他有 種,共有 種;
(4)數(shù)學(xué)不排在第一節(jié)、體育排在第六節(jié)有 種,其他有 種,共有 種;
所以符合條件的排法共有 種
解法2:對(duì)特殊位置第一節(jié)和第六節(jié)進(jìn)行分類解決
(1)第一節(jié)和第六節(jié)均不排數(shù)學(xué)、體育有 種,其他有 種,共有 種;
(2)第一節(jié)排數(shù)學(xué)、第六節(jié)排體育有一種,其他有 種,共有 種;
(3)第一節(jié)排數(shù)學(xué)、第六節(jié)不排體育有 種,其他有 種,共有 種;
(4)第一節(jié)不排數(shù)學(xué)、第六節(jié)排體育有 種,其他有 種,共有 種;
所以符合條件的排法共有 種.
解法3:本題也可采用間接排除法解決
不考慮任何限制條件共有 種排法,不符合題目要求的排法有:(1)數(shù)學(xué)排在第六節(jié)有 種;(2)體育排在第一節(jié)有 種;考慮到這兩種情況均包含了數(shù)學(xué)排在第六節(jié)和體育排在第一節(jié)的情況 種所以符合條件的排法共有 種
附:1、(20xx北京卷)五個(gè)工程隊(duì)承建某項(xiàng)工程的五個(gè)不同的子項(xiàng)目,每個(gè)工程隊(duì)承建1項(xiàng),其中甲工程隊(duì)不能承建1號(hào)子項(xiàng)目,則不同的承建方案共有( )
(A) 種 (B) 種 (C) 種 (D) 種
解析:本題在解答時(shí)將五個(gè)不同的子項(xiàng)目理解為5個(gè)位置,五個(gè)工程隊(duì)相當(dāng)于5個(gè)不同的元素,這時(shí)問題可歸結(jié)為能排不能排排列問題(即特殊元素在特殊位置上有特別要求的排列問題),先排甲工程隊(duì)有 ,其它4個(gè)元素在4個(gè)位置上的排法為 種,總方案為 種.故選(B).
2、(20xx全國卷Ⅱ)在由數(shù)字0,1,2,3,4,5所組成的沒有重復(fù)數(shù)字的四位數(shù)中,不能被5整除的數(shù)共有 個(gè).
解析:本題在解答時(shí)只須考慮個(gè)位和千位這兩個(gè)特殊位置的限制,個(gè)位為1、2、3、4中的某一個(gè)有4種方法,千位在余下的4個(gè)非0數(shù)中選擇也有4種方法,十位和百位方法數(shù)為 種,故方法總數(shù)為 種.
3、(20xx福建卷)從6人中選出4人分別到巴黎、倫敦、悉尼、莫斯科四個(gè)城市游覽,要求每個(gè)城市有一人游覽,每人只游覽一個(gè)城市,且這6人中甲、乙兩人不去巴黎游覽,則不同的選擇方案共有 ( )
A.300種 B.240種 C.144種 D.96種
解析:本題在解答時(shí)只須考慮巴黎這個(gè)特殊位置的要求有4種方法,其他3個(gè)城市的排法看作標(biāo)有這3個(gè)城市的3個(gè)簽在5個(gè)位置(5個(gè)人)中的排列有 種,故方法總數(shù)為 種.故選(B).
上述問題歸結(jié)為能排不能排排列問題,從特殊元素和特殊位置入手解決,抓住了問題的本質(zhì),使問題清晰明了,解決起來順暢自然.
二.相鄰不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)
相鄰排列問題一般采用大元素法,即將相鄰的元素捆綁作為一個(gè)元素,再與其他元素進(jìn)行排列,解答時(shí)注意釋放大元素,也叫捆綁法.不相鄰排列問題(即某兩或某些元素不能相鄰的排列問題)一般采用插空法.
例3. 7位同學(xué)站成一排,
(1)甲、乙和丙三同學(xué)必須相鄰的排法共有多少種?
(2)甲、乙和丙三名同學(xué)都不能相鄰的排法共有多少種?
(3)甲、乙兩同學(xué)間恰好間隔2人的排法共有多少種?
解析:(1)第一步、將甲、乙和丙三人捆綁成一個(gè)大元素與另外4人的排列為 種,
第二步、釋放大元素,即甲、乙和丙在捆綁成的大元素內(nèi)的排法有 種,所以共 種;
(2)第一步、先排除甲、乙和丙之外4人共 種方法,第二步、甲、乙和丙三人排在4人排好后產(chǎn)生的5個(gè)空擋中的任何3個(gè)都符合要求,排法有 種,所以共有 種;(3)先排甲、乙,有 種排法,甲、乙兩人中間插入的2人是從其余5人中選,有 種排法,將已經(jīng)排好的4人當(dāng)作一個(gè)大元素作為新人參加下一輪4人組的排列,有 種排法,所以總的排法共有 種.
附:1、(20xx遼寧卷)用1、2、3、4、5、6、7、8組成沒有重復(fù)數(shù)字的八位數(shù),要求1和2相鄰,3與4相鄰,5與6相鄰,而7與8不相鄰,這樣的八位數(shù)共有 個(gè).(用數(shù)字作答)
解析:第一步、將1和2捆綁成一個(gè)大元素,3和4捆綁成一個(gè)大元素,5和6捆綁成一個(gè)大元素,第二步、排列這三個(gè)大元素,第三步、在這三個(gè)大元素排好后產(chǎn)生的4個(gè)空擋中的任何2個(gè)排列7和8,第四步、釋放每個(gè)大元素(即大元素內(nèi)的每個(gè)小元素在捆綁成的大元素內(nèi)部排列),所以共有 個(gè)數(shù).
2、 (20xx. 重慶理)某校高三年級(jí)舉行一次演講賽共有10位同學(xué)參賽,其中一班有3位,
二班有2位,其它班有5位,若采用抽簽的方式確定他們的演講順序,則一班有3位同學(xué)恰
好被排在一起(指演講序號(hào)相連),而二班的2位同學(xué)沒有被排在一起的概率為 ( )
A. B. C. D.
解析:符合要求的基本事件(排法)共有:第一步、將一班的3位同學(xué)捆綁成一個(gè)大元素,第二步、這個(gè)大元素與其它班的5位同學(xué)共6個(gè)元素的全排列,第三步、在這個(gè)大元素與其它班的5位同學(xué)共6個(gè)元素的全排列排好后產(chǎn)生的7個(gè)空擋中排列二班的2位同學(xué),第四步、釋放一班的3位同學(xué)捆綁成的大元素,所以共有 個(gè);而基本事件總數(shù)為 個(gè),所以符合條件的概率為 .故選( B ).
3、(20xx京春理)某班新年聯(lián)歡會(huì)原定的5個(gè)節(jié)目已排成節(jié)目單,開演前又增加了兩個(gè)新節(jié)目.如果將這兩個(gè)節(jié)目插入原節(jié)目單中,那么不同插法的種數(shù)為( )
A.42 B.30 C.20 D.12
解析:分兩類:增加的兩個(gè)新節(jié)目不相鄰和相鄰,兩個(gè)新節(jié)目不相鄰采用插空法,在5個(gè)節(jié)目產(chǎn)生的6個(gè)空擋排列共有 種,將兩個(gè)新節(jié)目捆綁作為一個(gè)元素叉入5個(gè)節(jié)目產(chǎn)生的6個(gè)空擋中的一個(gè)位置,再釋放兩個(gè)新節(jié)目 捆綁成的大元素,共有 種,再將兩類方法數(shù)相加得42種方法.故選( A ).
三.機(jī)會(huì)均等排列問題(即某兩或某些元素按特定的方式或順序排列的排列問題)
解決機(jī)會(huì)均等排列問題通常是先對(duì)所有元素進(jìn)行全排列,再借助等可能轉(zhuǎn)化,即乘以符合要求的某兩(或某些)元素按特定的方式或順序排列的排法占它們(某兩(或某些)元素)全排列的比例,稱為等機(jī)率法或?qū)⑻囟樞虻呐帕袉栴}理解為組合問題加以解決.
例4、 7位同學(xué)站成一排.
(1)甲必須站在乙的左邊?
(2)甲、乙和丙三個(gè)同學(xué)由左到右排列?
解析:(1)7位同學(xué)站成一排總的排法共 種,包括甲、乙在內(nèi)的7位同學(xué)排隊(duì)只有甲站在乙的左邊和甲站在乙的右邊兩類,它們的機(jī)會(huì)是均等的,故滿足要求的排法為 ,本題也可將特定順序的排列問題理解為組合問題加以解決,即先在7個(gè)位置中選出2個(gè)位置安排甲、乙, 由于甲在乙的左邊共有 種,再將其余5人在余下的5個(gè)位置排列有 種,得排法數(shù)為 種;
(2)參見(1)的分析得 (或 ).
高三數(shù)學(xué)復(fù)習(xí)課件 篇11
等差數(shù)列
考試要求:1.理解等差數(shù)列的概念;
2.掌握等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和的公式。
基礎(chǔ)檢測:
1.已知等差數(shù)列滿足,,則它的前10項(xiàng)的和()
A.138B.135C.95D.23
2.若等差數(shù)列的前5項(xiàng)和,且,則()
(A)12(B)13(C)14(D)15
3.在等差數(shù)列{an}中,若a2+a4+a6+a8+a10=80,則的值為()
A、4B、6C、8D、10
4.已知等差數(shù)列的公差為,且,若,則為()
A.B.C.D.
5.兩等差數(shù)列{an}、{bn}的前n項(xiàng)和的比,則的值是()
A.B.C.D.
6.設(shè)等差數(shù)列的前n項(xiàng)和為,若,,則當(dāng)取最小值時(shí),n等于()
A.6B.7C.8D.9
7.設(shè)是等差數(shù)列的前項(xiàng)和,若,則()
ABCD
8.設(shè)是等差數(shù)列的前項(xiàng)和,若=,則等于()
A1B.-1C.2D.
數(shù)松果課件11篇
每位教師都應(yīng)該在課前準(zhǔn)備一份完整的教案和課件,只要事先準(zhǔn)備好教案和課件就可以了。根據(jù)學(xué)生在課堂上的不同反應(yīng),教師可以制定不同的教學(xué)策略。如果你想了解有關(guān)“數(shù)松果課件”的信息,編輯整理的資訊一定會(huì)讓你滿意,僅供參考,讓我們一起來看看吧!
數(shù)松果課件 篇1
研究目標(biāo):
在教學(xué)中,通過教師的精心安排,有目的地組織學(xué)生進(jìn)行小組合作學(xué)習(xí),使學(xué)生在小組內(nèi)發(fā)揮主體作用,增強(qiáng)他們的探究意識(shí)和合作精神,讓學(xué)生學(xué)會(huì)學(xué)習(xí)、學(xué)會(huì)合作,以進(jìn)一步提高教學(xué)效率。
教學(xué)目標(biāo):
1. 能正確、流利、有感情地朗讀課文。
2. 學(xué)會(huì)本課的9個(gè)生字,綠線內(nèi)的9個(gè)只識(shí)不寫。認(rèn)識(shí)一個(gè)偏旁。理解由生字組成的詞語。
3. 使學(xué)生了解花生果結(jié)在地下的特征,激發(fā)他們認(rèn)識(shí)自然的興趣。
教學(xué)重點(diǎn)難點(diǎn):
識(shí)字、寫字;朗讀課文、背誦課文。
教學(xué)具準(zhǔn)備和輔助活動(dòng):
多媒體課件。
教學(xué)過程:
一、 復(fù)習(xí)揭題
1、 剛才森林里的一位小動(dòng)物悄悄地告訴老師,它要請(qǐng)我們一(2)班的小朋友去樹林里,和它一起去做一件有趣的事。你們?cè)敢鈫幔?/p>
2、 猜猜這位小動(dòng)物是誰?
3、 對(duì)了,小松鼠要帶我們?nèi)ァǔ鍪菊n題)。誰來讀好它?(指名讀)
4、 不過小松鼠說它最喜歡愛動(dòng)腦筋、愛發(fā)言而且發(fā)言聲音響亮的小朋友。所以在去之前它得先考考你們,不知你們有沒有信心通過這一關(guān)?
5、 準(zhǔn)備好了,聽句練習(xí):花生長著綠油油的葉子,黃燦燦的小花,真好看!
出示詞語:
(1)花生果 高興 睜大眼睛
(2)真好 蚯蚓 金色
(3)長著 留著 看見 笑著 摘下來 鉆出來
(4)綠油油 黃燦燦 自言自語
(在心里默讀這些詞,讀好加點(diǎn)的詞。再開火車讀、齊讀。問:你還能說說其他表示顏色的詞嗎?)
二、 看圖說話,歸納課文。
1、 第一關(guān)我們順利通過,小松鼠要獎(jiǎng)勵(lì)我們看動(dòng)畫片,看仔細(xì)了。(課件演示動(dòng)畫)
[注:通過課件播放,一下子把學(xué)生帶入課文情境,感受花生地的美、找花生果的有趣,為理解全文奠定了基礎(chǔ)。]
2、 這個(gè)故事有趣嗎?看起來有趣,學(xué)起來就更有趣了,就讓我們一起走進(jìn)樹林。出示文中花生果開花的插圖,問:“你能用幾句話說說你看到了什么嗎?”
三、 美讀課文,讀中感悟。
1、出示第一小節(jié),誰能美美地來讀一讀。
2、樹林旁邊長著許多花生,綠油油的葉子,黃燦燦的小花,真好看。可是,我們的小松鼠卻不明白這是什么,瞧,它是怎么說的呢?(出示第二小節(jié))同桌分角色讀讀這段話,看看哪只松鼠更可愛。
3、 指名交流,點(diǎn)評(píng),你感覺小松鼠這時(shí)怎樣?(高興)小松鼠是心里偷偷地高興,那么這種偷偷高興該怎么讀呢?指名讀,齊讀。
4、 松鼠有了美好的打算,它多么想嘗嘗花生的味道??!看,它又是怎么做的呢?(出示第三小節(jié))自己讀一讀,你讀懂了什么,把你的感受輕輕地告訴你的小伙伴。
5、 交流,指名說,齊讀。學(xué)習(xí)生字“色”
[評(píng):教師引導(dǎo)學(xué)生品詞析句,探究文本。做一做蚯蚓和小松鼠,把自己的讀書感受輕輕地告訴自己的小伙伴。這個(gè)情境符合低年級(jí)兒童注意的特點(diǎn),有利于學(xué)生在感興趣的自主活動(dòng)中展開學(xué)習(xí),培養(yǎng)團(tuán)結(jié)合作的精神。這種有效的小組學(xué)習(xí)對(duì)學(xué)生的朗讀水平的提高是大有促進(jìn)作用的。]
6、 小朋友們?cè)傧胂?,小松鼠自從花生開花以來,每天都到花生地里去,天天等天天盼,這時(shí)都沒發(fā)現(xiàn)一個(gè)花生果,他心里會(huì)感到怎么樣?(奇怪、不理解、失望)
7、 小松鼠睜大眼睛自言自語地說:“奇怪,花生果被誰摘走啦?”小松鼠是在跟誰說話呢?自己跟自己說話聲音會(huì)怎么樣?(小聲點(diǎn)讀)試著讀一讀,把小松鼠奇怪的樣子讀出來?
8、 指名交流,朗讀,理解“自言自語?!睂W(xué)習(xí)生字“言、語”
9、 你們知道花生果被誰摘走啦?你怎么知道的?(相機(jī)出示第五小節(jié))
10、 讀讀這段話,一起去告訴小松鼠這個(gè)好消息吧。
四、 故事續(xù)編。
1、 小松鼠聽到這個(gè)好消息,它心里怎樣?它又會(huì)怎么做呢?今天我們就來當(dāng)一回小導(dǎo)演和小演員,請(qǐng)小朋友們和自己的合作伙伴一起續(xù)編故事:
(1)小松鼠和媽媽對(duì)話
(2)小松鼠找花生果后再與蚯蚓對(duì)話。
選擇一個(gè)主題編一編、演一演。教師指導(dǎo):六人小組,由2號(hào)當(dāng)組長,分配小組成員任務(wù)。小組中可以有導(dǎo)演、講故事者、評(píng)委、策劃者、表演者等,根據(jù)自己組內(nèi)的實(shí)際情況分配好任務(wù),練習(xí)續(xù)編故事。教師巡視,逐個(gè)指導(dǎo)。
2、小組上臺(tái)表演交流,集體點(diǎn)評(píng)。
[評(píng):在這個(gè)學(xué)習(xí)活動(dòng)中,教師把學(xué)習(xí)的主動(dòng)權(quán)真正地交給學(xué)生,讓學(xué)生扮演文中的人物,披文入境。通過小組合作續(xù)編故事挖掘教材的內(nèi)涵,填補(bǔ)了教材的空白,豐富了教材內(nèi)容,深化了學(xué)生對(duì)文本的理解。同時(shí),學(xué)生在合作時(shí)都明確自己的角色、任務(wù),在合作時(shí)互相建議,發(fā)揮自己應(yīng)有的作用,對(duì)個(gè)人完成的任務(wù)進(jìn)行小組加工,從而也提高了小組的凝聚力。]
五、 拓展
1、 你還知道哪些東西長在泥土里?
2、 推薦讀《一粒種子》這本書。
六、教學(xué)寫生字:語 言 色
七、總結(jié):小朋友,大自然是美麗的,是奇妙的,只要大家用自己的眼睛去觀察,用自己的心去感受,用自己的大腦去思考,是可以創(chuàng)造出許多優(yōu)美的文章來的。讓我們用掌聲為我們今天的學(xué)習(xí)喝彩。
[評(píng):通過以上課例的教學(xué),我們課題組認(rèn)為小組合作學(xué)習(xí)需要教師在課堂教學(xué)時(shí)精心安排,要把學(xué)習(xí)重點(diǎn)和難點(diǎn)作為合作學(xué)習(xí)的內(nèi)容。教師在備課時(shí)應(yīng)備合作的內(nèi)容,合作的形式,合作的時(shí)機(jī)等,且小組合作學(xué)習(xí)也不是學(xué)生的參于,教師的旁觀,而是學(xué)生與教師的共同參于,教師可以把自己也當(dāng)成小組中的一員參加到某個(gè)小組的學(xué)習(xí)中。同時(shí),小組合作交流,提倡學(xué)生與學(xué)生之間以“我會(huì)讀”、“我教你”、“你教我”、“我?guī)湍恪钡男膽B(tài)共同學(xué)習(xí),為學(xué)生營造無拘無束的學(xué)習(xí)環(huán)境,形成每個(gè)學(xué)生既是“老師”,也是學(xué)生,還是表演者、設(shè)計(jì)者等,多種角色不斷變換,互教互學(xué)的局面。合作學(xué)習(xí),由于教與學(xué)的角色不斷變換,在生理上也減輕了兒童的疲勞感,增強(qiáng)了他們的學(xué)習(xí)興趣。]
數(shù)松果課件 篇2
一、復(fù)習(xí)導(dǎo)入
認(rèn)讀生字卡。
二、學(xué)習(xí)課文第5自然段
1.出示插圖,理解“挺拔”。
在蒙蒙細(xì)雨的滋潤下,在松鼠埋松果的地方,長出了一棵棵小松樹,你們覺得這些小松樹長得怎么樣?
結(jié)合學(xué)生回答理解“挺拔”。
師:誰也能像小松樹一樣站得很挺拔?指名表演。
采訪表演的同學(xué):小松樹,你站得那么挺拔,最想感謝的是誰?請(qǐng)你用朗讀來感謝埋松果的小松鼠吧!讀第5自然,讀出感謝和欣喜。
2.齊讀第5自然段。
三、想象升華、復(fù)述故事
1.日子一天天過去,將來這片小松樹林會(huì)怎么樣?朗讀最后一個(gè)自然段。
“更茂密”那是怎么樣的?哪只松鼠見過茂密的樹林,給大家說說。圖片欣賞茂密的松樹林。
2.這片松樹林是那么茂密美麗。小松鼠們歡歡喜喜地住在那里。嗨,小松鼠們,你們?cè)谶@里生活得怎么樣?
3.想象說話:將來的松樹林又會(huì)是一番什么景象?松鼠生活得怎么樣?
4.練習(xí)復(fù)述:引導(dǎo)學(xué)生按照“吃松果——想松樹——種松果——長松樹”的順序進(jìn)行復(fù)述。
課件出示課文插圖,幫助學(xué)生復(fù)述。
四、指導(dǎo)寫字
數(shù)松果課件 篇3
一、教材分析
這是一篇童話故事,講的是一只具有環(huán)保意識(shí)的小松鼠植樹造林、維護(hù)生態(tài)平衡的故事。通過這個(gè)故事,我們應(yīng)該知道,人類在向自然索取時(shí),一定不要忘記回報(bào)自然。只有這樣,我們才能擁有一個(gè)讓我們長久生存的美好家園。
二、教學(xué)目標(biāo)
1.認(rèn)識(shí)“聰、活”等11個(gè)生字。會(huì)寫“以、后”等6個(gè)生字。
2.正確、流利、有感情地朗讀課文,并能復(fù)述這個(gè)童話。
3.樹立植樹環(huán)保意識(shí),愿意參加植樹活動(dòng)或樹木認(rèn)養(yǎng)活動(dòng)。
三、教學(xué)重難點(diǎn)
教學(xué)重點(diǎn):第一課時(shí)識(shí)字、寫字,第二課時(shí)朗讀感悟這則童話的活潑有趣。
教學(xué)難點(diǎn):體會(huì)松鼠的情感變化。
四、教學(xué)過程
第一課時(shí)
(一)謎語導(dǎo)入(3分鐘)
同學(xué)們,我們先來猜一猜這個(gè)謎語:尾巴像是降落傘,整天愛往樹林竄。樹上走來樹上跑,還在樹上睡大覺。(打一動(dòng)物)誰知道舉手回答。
揭曉答案:松鼠。板書:松鼠
同學(xué)們,你知道松鼠最喜歡吃什么嗎?松果。板書:松果。
今天我們一起來學(xué)習(xí)第10課:松鼠和松果。齊讀課題。
(二)學(xué)認(rèn)生字
1.先請(qǐng)同學(xué)們自由讀課文,標(biāo)好自然段,把生字圈出來。(3分鐘)
2.現(xiàn)在認(rèn)真聽老師讀課文,老師讀到哪兒你的眼睛就看到哪兒,手就指到哪兒,尤其是遇到生字一定要認(rèn)真聽好老師的讀音。(2分鐘)
3.我們一起來看大屏幕,借助拼音讀一讀帶有生字的詞語:聰明、活潑、忽然、眨眼、如果、總有一天、以后、主意。(1分鐘)
開火車領(lǐng)讀詞語。(3分鐘)
4.讓我們把生字從詞語中提取出來,你還認(rèn)識(shí)嗎?出示生字。可以怎樣記住這些生字?交流識(shí)字方法。
兒歌識(shí)字
老師給大家?guī)韮墒變焊?,我們一起讀一讀吧。
聰:小聰明,耳朵靈,會(huì)聽課,總專心;(1分鐘)
意、忽、總:意有心,忽有心,在心底,總有心;(1分鐘)
組詞識(shí)字
還有一些字在詞語里面比較容易記住。
活潑、忽然、如果、以后、主意;(2分鐘)
動(dòng)作識(shí)字
眨字可以怎樣用動(dòng)作來記住它?(1分鐘)
5.開火車領(lǐng)讀生字。(3分鐘)
6.讓我們把這些生字放回到課文中,你還認(rèn)識(shí)嗎?誰來讀一讀這些句子?(3分鐘)
接力讀句子。(5分鐘)
(三)學(xué)寫生字(10分鐘)
1.下面我們一起來學(xué)寫生字,老師板書生字,學(xué)生書空。邊寫邊強(qiáng)調(diào)注意問題:
(1)心字底的“臥鉤”不要寫成“斜鉤”。
(2)“意”中的心字要比“總”中的心字更扁一些。
(3)“更”中的“豎撇”要先“豎”后“撇”。
(4)“以”字的最后一筆是點(diǎn),不是捺。
(5)“后”字有兩個(gè)撇:“平撇”和“豎撇”,平撇要寫平。
2.學(xué)生臨摹生字。
第二課時(shí)
(一)復(fù)習(xí)導(dǎo)入(3分鐘)
我們先來讀一讀這些詞語:松鼠聰明活潑忽然眨眼栽松樹總有一天光禿禿主意蒙蒙細(xì)雨挺拔茂密
(二)朗讀感悟
1.老師范讀課文,學(xué)生把書拿好認(rèn)真聽,老師讀到哪兒眼睛看到哪兒,手可以不指讀。(2分鐘)
2.出示插圖1,仔細(xì)觀察松鼠在干什么?你能在書中找出描寫這幅圖的話嗎?找出對(duì)應(yīng)的第4自然段讀一讀。板書:埋松果。(2分鐘)
3.松鼠為什么要種松果呢?這是一只什么樣的松鼠呢?我們從頭來看。
誰來讀一讀第1自然段。(1分鐘)
出示松鼠吃松果的圖片。板書:吃松果。
吃松果時(shí)松鼠的心情是怎樣的?你從課文中的哪兒知道的?
高高興興
那么……那么……板書:高興。
怎么讀出高興的語氣來?讀出兩個(gè)詞語的重音。(3分鐘)
誰能用“那么……那么……”說一句話?(2分鐘)
松鼠吃松果的過程中,它想到了什么呢?
請(qǐng)同學(xué)讀一讀第2、3自然段。板書:想松果。(2分鐘)
如果光摘松果,不栽松樹,總有一天,一棵松樹也沒有了!
小松鼠、小小松鼠、小小小松鼠……他們吃什么呢?到哪兒去住呢?
出示光禿禿的樹林圖片。松鼠這時(shí)候的心情是怎樣的?害怕、擔(dān)心。板書:擔(dān)心。要把感嘆的語氣和疑問的語氣讀得強(qiáng)烈一些。(3分鐘)
再讀第4自然段?,F(xiàn)在你知道松鼠為什么要埋松果了嗎?(1分鐘)
4.出示插圖2,松鼠在干什么?心情怎么樣?這些小松樹是哪里來的?
板書:長松樹高興(1分鐘)
讀一讀第5自然段,再次讀出高興的語氣。(1分鐘)
“挺拔”是什么意思?直立而高聳。誰能學(xué)學(xué)“挺拔”的樣子?(1分鐘)
5.將來這里會(huì)怎樣?(1分鐘)
齊讀第6自然段。
課后請(qǐng)你把它畫出來。
(三)復(fù)述故事
1.我們一起來說一說這篇課文講了一個(gè)什么故事?出示圖片及句式。(4分鐘)
2.按照句式和你的同桌講一講這個(gè)故事。(3分鐘)
3.找同學(xué)說一說,看誰說得好。(3分鐘)
(四)課堂總結(jié)
1.通過學(xué)習(xí)這篇課文你明白了什么道理?我們可以怎樣做?(3分鐘)
我們要保護(hù)樹林,保護(hù)小動(dòng)物的家。參加植樹活動(dòng)或樹木認(rèn)養(yǎng)活動(dòng)。
2.自由朗讀課文,注意感受松鼠的情感變化。(2分鐘)
數(shù)松果課件 篇4
一、教材簡析
這篇童話故事語言清新明快,情節(jié)生動(dòng),引人入勝,深受兒童喜愛。故事以一只可愛的小松鼠埋松果的行為告訴孩子們植樹造林、維護(hù)生態(tài)平衡的重要性。課文第2、3、4自然段通過小松鼠的心理活動(dòng):惑一一擔(dān)憂——想出好主意,滲透了植樹造林回報(bào)自然的觀念。行文細(xì)膩真切,語氣天真可愛,貼近童心,適合朗讀感悟,情中悟理。結(jié)尾部分的兩句話描述了羨好的愿望:小松林長成了茂密的松林。教師要引導(dǎo)學(xué)生展開想象之翼,感受松樹林的美麗,以及小動(dòng)物們的快樂。
二、學(xué)習(xí)目標(biāo)
1.掌握本課的生字新詞,運(yùn)用分解字法、看圖想象、句式練說等方法引導(dǎo)學(xué)生理解“聰明”、“光禿禿”、“總有一天”、“主意”等詞的意思。
2.正確、流利、有感情地朗讀課文。
3.初步感受人與自然的和諧依存關(guān)系,感受回報(bào)自然、植樹造林的重要性。
三、教學(xué)重難點(diǎn)
重點(diǎn):識(shí)字、寫字和朗讀。
難點(diǎn):引導(dǎo)學(xué)生在朗讀中體會(huì)聰明的小松鼠尊重自然規(guī)律,邊摘松果邊埋松果的正確做法,感受人與自然的和諧。
四、課前準(zhǔn)備
課件、生字卡片
五、課時(shí)安排
兩課時(shí)
六、教學(xué)流程
第一課時(shí)
一、談話激趣
1.小朋友好,認(rèn)真看老師寫一個(gè)詞兒,你認(rèn)識(shí)嗎?(板書:聰明)指名讀,齊讀。
聰明的小朋友身上有四件寶,你知道嗎?
2.你們看,(教師邊描“聰”字邊描述)小耳朵專心聽,小眼睛仔細(xì)看,用口說,用心記。用這種方法記字,也很有趣吧!
3,今天,就是比比哪些小朋友這四件寶用得好,有信心嗎?用你專注的目光告訴我。我借用的這種談話方式可能是第一次,學(xué)生覺得很突然,有點(diǎn)不知所云,但是這句小口訣使得學(xué)生對(duì)“聰”字印象深刻,對(duì)識(shí)字方法也有了新的認(rèn)識(shí)。
二、猜謎入題
I.今天,就讓我們?nèi)フJ(rèn)識(shí)一位聰明的小伙伴,請(qǐng)看(課件:頭像小老鼠,尾像降落傘,常在樹上住,忙著摘果子。)自己讀一讀。
2.謎底就是——(板書:松鼠)對(duì),誰來親切地叫叫它的名字?
3,你知道松鼠最喜歡吃什么嗎?(板書:松果)那好,就讓我們一起欣賞一下松果的圖片。(課件出示松果圖片。)
4.師小結(jié):是呀,松果是松鼠的美味佳肴,(板書:和)齊讀課題
三、初讀課文,學(xué)習(xí)生字
1.那松鼠和松果之間還藏著什么小秘密呢?請(qǐng)打開書本緄頁,自由朗讀課文,把生字讀正確,把課文讀通順。
2.交流詞語和句子。
(1)自由讀輕聲。
(2)指導(dǎo)讀準(zhǔn)“摘松果”,“栽松樹”,注意區(qū)分平翹舌音。
(3)讀生詞:忽然、眨眨眼睛、如果、總有。
(4)范讀句子,注意停頓。指名讀好長句子。齊讀句子。
這段教學(xué)過程所用時(shí)間較久,“摘松果”、“栽松樹”都是難讀詞,課文也有很多長句子,用課件出示并用“”隔開,學(xué)生在提示下讀得通順整齊多了。
3,指名分節(jié)讀課文。(隨機(jī)正音:活潑、以后、主意、幾場。
(一)緣起“摘松果”,學(xué)習(xí)第1自然段
1.導(dǎo)人:小朋友,小松鼠跟我們打招呼呢:“嗨,大家好,今天陽光明媚,我要去大森林摘松果,一起去吧!”
2.那我們也去看看吧!請(qǐng)大家自己來讀讀課文的第1自然段。
(課件:松鼠聰明活潑,學(xué)會(huì)了摘松果吃。他高高興興地走進(jìn)了大森林,摘了一個(gè)又一個(gè)。每個(gè)松果都那么香,那么可口。)
3.如果用一個(gè)詞兒來形容小松鼠此時(shí)的心情,你們覺得是什么?(高高興興)
學(xué)生喜歡用自己的語言來形容“開心”“高興”,我提示:書上是用了什么詞語來形容?學(xué)生馬上就領(lǐng)會(huì)了。我再讓他們比較“高興”和“高高興興”的語氣程度,孩子們都覺得用高高興興更好。
4.小松鼠為什么那么高興呢?小朋友就把自己當(dāng)做這只快樂的小松鼠,再來讀讀這段話,相信你們一定會(huì)有收獲的。
5.師生口語交流:
師:早上好,小松鼠,你今天為什么那么高興啊?
預(yù)設(shè):
生:我聰明活潑,學(xué)會(huì)了摘松果吃。
生:我摘了一個(gè)又一個(gè)的松果。(指導(dǎo)朗讀這句話。)
在理解“一個(gè)又一個(gè)”時(shí),我問“到底是多少個(gè)”,有學(xué)生說是“兩個(gè)”,有學(xué)生說“很多個(gè)”,黃晨說:松鼠一直吃一直吃,想吃多少就吃多少,不止兩個(gè)?!蔽冶頁P(yáng)了他的說法,再讓學(xué)生說一說像“一個(gè)又一個(gè)”這樣還能用其他的數(shù)量詞說嗎?深思說“一本又一本,我看書看了一本又一本?!?/p>
生:每個(gè)松果都那么香,那么可口。(指導(dǎo)朗讀這句話。)
6.有感情地齊讀第1自然段。
(二)移情“想松果”,學(xué)習(xí)第2、3自然段
1.導(dǎo)人:小松鼠吃著吃著,忽然,他想到了什么,不由皺起了眉頭。小松鼠究竟在想什么呢?請(qǐng)大家細(xì)細(xì)品讀課文的第2、3自然段。
2.交流句子。(課件出示:如果光摘松果,不栽松樹,總有一天,一棵松樹也沒有了!)
3.換詞比較:這兒的“光”指的是什么?再把“只”放進(jìn)句子中來讀一讀⊙
4.圖文并茂,創(chuàng)設(shè)情境,感悟理解“總有一天”。
如果光摘松果,不栽松樹,森林會(huì)發(fā)生怎樣的變化呢?請(qǐng)看:(音樂聲中教師描述:原來這兒是一片茂密的松樹林,可是,十年以后,松樹,二十年以后呢,松樹___,那么,總有一天___。)
5,句式鋪墊,暢談感受。
現(xiàn)在誰能看圖來說說呢?
6.想象說話,理解“光禿禿”。
一天又一天,一年又一年,沒有了松樹,沒有了森林,只剩下一座怎樣的山?(讀詞卡:光禿禿)刀阝光禿禿的山就是怎樣的山?7.如果你就是小松鼠,一想到以后到處光禿禿的,你又會(huì)擔(dān)心什么?
8.交流句子:(課件:小松鼠、小小松鼠、小小小松鼠,他們吃什么呢?到哪兒去住呢?)
9.“他們”指的是誰?指導(dǎo)讀好這個(gè)問句。
10.小朋友,現(xiàn)在來說說,小松鼠心里真正擔(dān)心的是什么?能用白己的話來說說嗎?
11.小結(jié)齊讀:這真是一只聰明的松鼠,吃著眼前的松果,心里卻想到了將來的生活,真了不起!一起來讀2、3自然段。
(二)理解“埋松果”(感悟第4自然段)
1.聰明的小松鼠眨眨眼睛,想出了一個(gè)好主意,引讀句子:每次摘松果,吃一個(gè),就在土里埋下一個(gè)。
2.原來,聰明的小松鼠不但學(xué)會(huì)了摘松果,而且學(xué)會(huì)了埋松果。(板書:埋)
3.師生反復(fù)引讀中心句。師:小松鼠叉來摘松果了,它心里牢記著哥哥的話——
生:“每次摘松果,吃一個(gè),就在土里埋下一個(gè)?!?/p>
師:小小松鼠也來摘松果了,它心里牢記著爸爸的話——
生:“每次摘松果,吃一個(gè),就在土里埋下一個(gè)?!?/p>
師:小小小松鼠也來摘松果了,它心里牢記著爺爺?shù)脑挕?/p>
生:“每次摘松果,吃一個(gè),就在土里埋下一個(gè)。”
這段設(shè)計(jì)讓學(xué)生在趣味中讀課文中的重點(diǎn)句“每次摘松果,吃一個(gè),就在土里埋下一個(gè)?!?,又理解了“小松鼠”“小小松鼠”“小小小松鼠”指的是松鼠的后代子孫。
五、復(fù)現(xiàn)兒歌、指導(dǎo)書寫
1,直到今天,松鼠家族還流傳著這樣一首歌謠。(課件:聰明活潑小松鼠,眨眨眼睛想主意,摘下松果埋進(jìn)土。春風(fēng)吹,春雨飄,滿山松樹綠油油,以后子孫不用愁!)
2.自讀,齊讀,起立拍手讀,讀生詞。
3.開雙軌火車組詞,鞏固生字?!盎顫姟边@兩個(gè)字你們發(fā)現(xiàn)了什么?(交流識(shí)字方法。)
4.指導(dǎo)書寫
(1)生觀察生字在田字格中的位置。
(2)師在黑板范寫。
(3)生練習(xí),師提醒寫字姿勢(shì)。
(4)師生點(diǎn)評(píng)
第二課時(shí)
一、復(fù)習(xí)導(dǎo)入
認(rèn)讀生字卡。
二、學(xué)習(xí)課文第5自然段
1.出示插圖,理解“挺拔”。
在蒙蒙細(xì)雨的滋潤下,在松鼠埋松果的地方,長出了一棵棵小松樹,你們覺得這些小松樹長得怎么樣?
結(jié)合學(xué)生回答理解“挺拔”。
師:誰也能像小松樹一樣站得很挺拔?指名表演。
采訪表演的同學(xué):小松樹,你站得那么挺拔,最想感謝的是誰?請(qǐng)你用朗讀來感謝埋松果的小松鼠吧!讀第5自然,讀出感謝和欣喜。
2.齊讀第5自然段。
三、想象升華、復(fù)述故事
1.日子一天天過去,將來這片小松樹林會(huì)怎么樣?朗讀最后一個(gè)自然段。
“更茂密”那是怎么樣的?哪只松鼠見過茂密的樹林,給大家說說。圖片欣賞茂密的松樹林。
2.這片松樹林是那么茂密美麗。小松鼠們歡歡喜喜地住在那里。嗨,小松鼠們,你們?cè)谶@里生活得怎么樣?
3.想象說話:將來的松樹林又會(huì)是一番什么景象?松鼠生活得怎么樣?
4.練習(xí)復(fù)述:引導(dǎo)學(xué)生按照“吃松果——想松樹——種松果——長松樹”的順序進(jìn)行復(fù)述。
課件出示課文插圖,幫助學(xué)生復(fù)述。
四、指導(dǎo)寫字
數(shù)松果課件 篇5
(一)、教材分析
《數(shù)松果》是北師大版第三冊(cè)教材第二單元的第一課,是學(xué)習(xí)乘法口訣的起始課。舊教材在學(xué)習(xí)口訣的編排上以2的乘法口訣為開端,而北師大版教材則是以本課即“5的乘法口訣”為切入點(diǎn)來學(xué)習(xí)的,這樣的安排使教材更加的生活化,更貼近學(xué)生的生活實(shí)際,有助于他們自覺進(jìn)行自主性的探究學(xué)習(xí),更便于學(xué)生運(yùn)用方法的遷移來學(xué)習(xí)其他口訣,因?yàn)?的乘法口訣與學(xué)生的生活實(shí)際有著千絲萬縷的聯(lián)系,他們學(xué)習(xí)時(shí)可以利用直觀形象的手指及借助已有的生活經(jīng)驗(yàn)來理解口訣。
(二)、學(xué)生分析:
大部分學(xué)生已初步了解了乘法的意義,掌握了連加的計(jì)算方法,他們已能根據(jù)情境列出的乘法算式,并結(jié)合情境用數(shù)數(shù)或連加的方法算出乘法算式的得數(shù),這些知識(shí)儲(chǔ)備都為學(xué)生在本課進(jìn)行自主編制口訣奠定了一定的基礎(chǔ),而且有一部分學(xué)生對(duì)乘法口訣已經(jīng)有了初步的認(rèn)識(shí),有的甚至可以背出部分的乘法口訣。
(三)、教學(xué)目標(biāo):
1、經(jīng)歷編制5的乘法口訣的過程,知道5的乘法口訣的來源,理解乘法口訣的含義,產(chǎn)生自覺記憶口訣的欲望。
2、能夠歸納學(xué)習(xí)步驟,掌握乘法口訣的學(xué)習(xí)方法。
3、掌握5的乘法口訣,會(huì)用5的乘法口訣進(jìn)行計(jì)算和解決簡單的實(shí)際問題。
4、培養(yǎng)學(xué)生初步的觀察和分析能力。
(四)、教學(xué)重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn):經(jīng)歷編制5的乘法口訣的過程
教學(xué)難點(diǎn):記憶5的乘法口訣
(五)、教學(xué)設(shè)想:
教材主要包括“數(shù)松果”、“算一算”、“想一想”“練一練”四大塊內(nèi)容,設(shè)計(jì)“情境導(dǎo)入”、“探究性學(xué)習(xí)”、“游戲”、“應(yīng)用”四大部分。重點(diǎn)從導(dǎo)入的處理、探究性學(xué)習(xí)過程的安排、乘法口訣學(xué)習(xí)方法的掌握三個(gè)方面來說一說。
1、重設(shè)情境,激情導(dǎo)入。
新課程在教學(xué)中非常注重三維目標(biāo)的整合,不僅注重培養(yǎng)學(xué)生的知識(shí)技能,而且非常關(guān)注他們?cè)谇楦?、態(tài)度、價(jià)值觀方面的發(fā)展,強(qiáng)調(diào)了對(duì)學(xué)生進(jìn)行人文關(guān)懷。于是,我改變教材中“數(shù)松果”的情境,用北京奧運(yùn)開幕式及運(yùn)動(dòng)員奪冠的片段為情境導(dǎo)入,以此為契機(jī),利用多媒體展示了舉行北京奧運(yùn)會(huì)時(shí)人們各種興奮歡呼的場面,在一個(gè)個(gè)精彩的片段和歡呼聲中,學(xué)生熱愛祖國、熱愛奧運(yùn)的激情在不自覺中已被成功激起。然后出示奧運(yùn)五環(huán)旗,由學(xué)生說說對(duì)它的認(rèn)識(shí),教師再進(jìn)行簡單介紹。
2、重組教材,自主探究。
①“五環(huán)旗”及“算一算”兩部分的整合。
在新課探究這一環(huán)節(jié)中,原本教材分“數(shù)松果”和“算一算”這兩大部分,潛意識(shí)已經(jīng)把解決“一共有多少個(gè)松果?”這個(gè)問題的解決方法割裂為先用最基礎(chǔ)的數(shù)數(shù)的方法來解決,而后才是采用根據(jù)圖意列乘法算式的方法。學(xué)生對(duì)于5的乘法口訣的學(xué)習(xí),已有了充分的知識(shí)準(zhǔn)備,根據(jù)學(xué)生這一實(shí)際情況,我將教材中的“數(shù)松果”這部分換成“五環(huán)旗”的內(nèi)容,并與“算一算”這部分進(jìn)行有機(jī)的整合,在導(dǎo)入部分教學(xué)完后直接出示9面五環(huán)旗,讓學(xué)生觀察并提出問題,在學(xué)生自主提問以后,便將“一共有多少個(gè)環(huán)?”
②口訣的記憶。
在學(xué)生記憶口訣時(shí),重點(diǎn)讓學(xué)生觀察口訣說說自己發(fā)現(xiàn)了什么?因?yàn)榘l(fā)現(xiàn)了規(guī)律才能更好更快地記住口訣,然后讓學(xué)生說說有什么好辦法可以很快記住口訣,這樣學(xué)生自然而然就會(huì)利用規(guī)律去記憶口訣,即“找規(guī)律記口訣”。另外,在學(xué)生利用規(guī)律記憶口訣后,安排游戲“看手指說口訣”和“對(duì)口令”,也是為了加強(qiáng)學(xué)生對(duì)口訣的記憶,尤其是“看手指說口訣”這個(gè)游戲,更能激發(fā)學(xué)生記憶口訣的興趣,由于我們每只手都有5個(gè)手指,所以讓學(xué)生進(jìn)行小組游戲,根據(jù)整個(gè)小組伸出手的數(shù)量來說出口訣,這樣學(xué)生更容易也更深刻地記住口訣。
3、歸納步驟,掌握方法。
掌握學(xué)習(xí)方法是學(xué)生知識(shí)過程的基礎(chǔ),在新課程課堂教學(xué)中,讓學(xué)生學(xué)習(xí)知識(shí)的過程結(jié)構(gòu),指導(dǎo)學(xué)生掌握學(xué)習(xí)的步驟,學(xué)生才能逐漸地、獨(dú)立地策劃自己的學(xué)習(xí)活動(dòng),在學(xué)習(xí)同類知識(shí)的過程中,真正地發(fā)揮主體作用。因此,在整個(gè)教學(xué)設(shè)計(jì)中,引導(dǎo)和幫助學(xué)生在學(xué)的過程中,歸納出乘法口訣的學(xué)習(xí)步驟:
①看算式編口訣;
②找規(guī)律記口訣;
③用口訣做算式。
學(xué)生在掌握了口訣的學(xué)習(xí)方法后,在教學(xué)其他乘法口訣時(shí),學(xué)生就可以進(jìn)行自主學(xué)習(xí)了。這樣,既有利于學(xué)生認(rèn)知結(jié)構(gòu)的形成,又為學(xué)生的主動(dòng)學(xué)習(xí)提供了方法上的遷移,便于學(xué)生真正的獨(dú)立學(xué)習(xí)。
(六)、教學(xué)流程:
『教學(xué)內(nèi)容』5的乘法口訣(教材第10~11頁數(shù)松果)
『教學(xué)過程』
1、創(chuàng)創(chuàng)設(shè)數(shù)松果情境,導(dǎo)入新課
2、提出問題,探究新知
(1)提出問題。
師:看著主題圖,你能提出哪些數(shù)學(xué)問題?
生1:一共有多少個(gè)松果?……
(2)確定研究主題,尋找解題策略。
師:有什么好辦法解決這個(gè)問題嗎?
生:可以數(shù)一數(shù),算一算。師:那可以怎樣數(shù)呢?(學(xué)生說出各自不同的數(shù)法。)
①1,2,3,4,…1個(gè)1個(gè)地?cái)?shù)。
②5+5,10+5,15+5,20+5,……連續(xù)加5算出得數(shù)。
③5,10,15,20,…5個(gè)5個(gè)地?cái)?shù)。
④一五,一十,十五,二十,……也是5個(gè)5個(gè)地?cái)?shù)。
……
師:大家的數(shù)法真多,你喜歡哪一種數(shù)法?為什么?
生:我喜歡5個(gè)5個(gè)地?cái)?shù),這樣簡便。
師:你能用乘法算式表示嗎?
生答師板書:1×5=52×5=103×5=154×5=205×5=256×5=307×5=358×5=409×5=455×1=55×2=105×3=155×4=205×6=305×7=355×8=405×9=45(讓學(xué)生說一說這些算式表示的意義、算法。)
師:剛才我們根據(jù)松果的排數(shù),寫出了這些乘法算式??粗@些算式,你有什么想法?生1:算式和得數(shù)都有一定的規(guī)律。
師:你能記住這些算式嗎?動(dòng)腦筋想想,然后4人小組商量一下,看誰有好辦法記住這些算式和得數(shù)。
(學(xué)生討論。)
生1:多讀幾遍就能記住。
生2:想著圖記:1排有5個(gè)松果,2排有10個(gè)松果……
生3:記住1個(gè)5是5,2個(gè)5是10……
師補(bǔ)充:這是根據(jù)乘法的意義來記的
生4:記住每個(gè)乘法算式中都有乘數(shù)5。積一個(gè)比一個(gè)大5,就好記了。
生5:用口訣來記方便。一五得五,二五一十,三五十五……五九四十五。
師:你怎么知道的?
生:鉛筆盒上有。
師:利用口訣順口、方便。(手指板書:1×5=5)1個(gè)5是5,為了記起來順口,編成口訣是:“一五得五”。(師板書)你們能編出下面的口訣嗎?如果有困難,可以先看圖數(shù)一數(shù)有幾個(gè)5,再根據(jù)乘法算式編出相應(yīng)的乘法口訣,能編幾句就編幾句。
(學(xué)生以小組為單位嘗試編制口訣,組織匯報(bào),教師將相應(yīng)的口訣卡片貼在黑板上。)
師:剛才我們學(xué)習(xí)的5的乘法口訣是誰編出來的?
生:我們自己。
師:你們真棒!大家編的口訣中還有很多對(duì)我們有幫助的規(guī)律,你們?cè)敢獍阉鼈冋页鰜韱幔?/p>
生1:我們組發(fā)現(xiàn)上下兩句口訣之間的積,都相差“5”。師:觀察得很仔細(xì)!為什么會(huì)這樣呢?
生2:每次都多了1個(gè)5!多了1排松果嘛!
生3:我們組發(fā)現(xiàn)“五五二十五”這句口訣是5個(gè)字,“四五二十”是4個(gè)字,第一句口訣“一五得五”中有一個(gè)“得”字。
師:為什么這樣編口訣呢?
生4:為了順口、好記,口訣都是四五個(gè)字。
師:你的想法有道理,我們可以利用自己發(fā)現(xiàn)的規(guī)律來記住這些口訣。5的口訣有幾句?如果記住五五二十五,忘記四五是多少怎么辦?誰能教教老師?如果忘記五六是多少呢?
3、鞏固練習(xí)
(1)教師和學(xué)生對(duì)口令記口訣。
(2)任意兩小組“開火車”背口訣。
(3)同桌一人說口訣,另一人口答相對(duì)應(yīng)的兩道乘法算式。
(4)自由讀口訣,比一比,誰能最先背出口訣。
4、綜合應(yīng)用
師:在實(shí)際生活中,你發(fā)現(xiàn)有哪些問題可以用5的乘法口訣來解決?(學(xué)生思考后互相提問。
5、課堂總結(jié)
數(shù)松果課件 篇6
一、教材簡析
這篇童話故事語言清新明快,情節(jié)生動(dòng),引人入勝,深受兒童喜愛。故事以一只可愛的小松鼠埋松果的行為告訴孩子們植樹造林、維護(hù)生態(tài)平衡的重要性。課文第2、3、4自然段通過小松鼠的心理活動(dòng):惑一一擔(dān)憂——想出好主意,滲透了植樹造林回報(bào)自然的觀念。行文細(xì)膩真切,語氣天真可愛,貼近童心,適合朗讀感悟,情中悟理。結(jié)尾部分的兩句話描述了羨好的愿望:小松林長成了茂密的松林。教師要引導(dǎo)學(xué)生展開想象之翼,感受松樹林的美麗,以及小動(dòng)物們的快樂。
二、學(xué)習(xí)目標(biāo)
1.掌握本課的生字新詞,運(yùn)用分解字法、看圖想象、句式練說等方法引導(dǎo)學(xué)生理解“聰明”、“光禿禿”、“總有一天”、“主意”等詞的意思。
2.正確、流利、有感情地朗讀課文。
3.初步感受人與自然的和諧依存關(guān)系,感受回報(bào)自然、植樹造林的重要性。
三、教學(xué)重難點(diǎn)
重點(diǎn):識(shí)字、寫字和朗讀。
難點(diǎn):引導(dǎo)學(xué)生在朗讀中體會(huì)聰明的小松鼠尊重自然規(guī)律,邊摘松果邊埋松果的正確做法,感受人與自然的和諧。
四、課前準(zhǔn)備
課件、生字卡片
五、課時(shí)安排
兩課時(shí)
六、教學(xué)流程
數(shù)松果課件 篇7
【知識(shí)背景】
《小松鼠找花生》是一篇科學(xué)童話,借小松鼠找花生這件事間接告訴學(xué)生花生在地下結(jié)果這一常識(shí)。 花生又稱落花生長生果。一年生草本植物。莖匍匐或直立,有棱,被茸毛。羽狀復(fù)葉。腋生總狀花序,花黃色,受精后子房柄迅速伸長,鉆入土中,子房在土中發(fā)育成繭狀莢果。果仁可以吃,也可以榨油,是重要的油料作物之一。我國栽培極廣,黃河下游各地最多。
【學(xué)情分析】
課文采用科學(xué)言語的形式,寓常識(shí)于生動(dòng)形象的故事之中,語言活潑淺顯,符合兒童特點(diǎn)。課文結(jié)尾小松鼠的問題即與課文呼應(yīng)又能引發(fā)學(xué)生的思考,相信學(xué)生會(huì)有極大的閱讀興趣。這篇課文的大部分生字(8個(gè)會(huì)認(rèn),2個(gè)會(huì)寫)都集中在第一自然段,學(xué)生讀順了第一自然段,接下來的閱讀就容易了。本課難讀的是第四、五自然段的兩句話。前句講小松鼠始終沒看見花生的果實(shí),間接地說出花生的果實(shí)不是結(jié)在莖上的這一特點(diǎn),后一句講小松鼠弄不明白,自己每天都來看花生,花都落光了,怎么沒見一個(gè)花生,于是獨(dú)自猜想:是誰把花生摘走了?為突破這一難點(diǎn),我們可以制作花生生長過程的課件或掛圖,以幫助學(xué)生形象地感知。
【設(shè)計(jì)理念】
人教版義務(wù)教育課程標(biāo)準(zhǔn)語文實(shí)驗(yàn)教材,致力于構(gòu)建開放的富有活力的教材體系,倡導(dǎo)自主、合作、探究的語文學(xué)習(xí)方式。在本課的設(shè)計(jì)中,我作了以下幾點(diǎn)嘗試:
一、注重識(shí)字形式的多樣化
新課程標(biāo)準(zhǔn)第一學(xué)段的識(shí)字目標(biāo)告訴我們:喜歡學(xué)習(xí)漢字,有主動(dòng)識(shí)字的愿望。如何使學(xué)生有這樣的愿望,我覺得識(shí)字的形式應(yīng)該多樣化。在教案中,我設(shè)計(jì)了這樣幾種形式,首先是小組交流識(shí)字情況,然后小組把好的識(shí)字方法推廣到全班。在鞏固識(shí)字階段,我設(shè)計(jì)了小松鼠過河游戲、花瓶開花等游戲,最后圍繞課文內(nèi)容自編了一首帶有本課生字的兒歌。這樣的設(shè)計(jì),激發(fā)了學(xué)生識(shí)字的激情,課堂頓時(shí)活躍起來。同時(shí)學(xué)習(xí)中也加入了合作學(xué)習(xí),讓識(shí)字在游戲中完成,讓知識(shí)在合作中滲透。
二、注重在合作學(xué)習(xí)中朗讀與感悟
《語文課程標(biāo)準(zhǔn)》強(qiáng)調(diào):閱讀教學(xué)是學(xué)生、教師、文本之間對(duì)話的過程。一年級(jí)的閱讀教學(xué)應(yīng)把讓學(xué)生能朗讀課文并感受閱讀的興趣作為起步階段閱讀教學(xué)的第一要求,采用多種手段讓每一個(gè)學(xué)生都喜歡讀書,主動(dòng)地讀書,進(jìn)而視讀書為一種樂趣、一種享受。讓學(xué)生通過讀書實(shí)踐向往美好的情境,感受語言的特點(diǎn)和閱讀的樂趣。
人們都知道一千個(gè)觀眾心中就有一千個(gè)哈姆雷特,學(xué)生閱讀文章后到底有什么樣的感受,這是教師應(yīng)把握住的。要為學(xué)生營造寬松的氛圍,鼓勵(lì)學(xué)生大膽起來發(fā)表意見,教師應(yīng)珍視學(xué)生的獨(dú)特感受,不要在剛?cè)雽W(xué)不久,就把學(xué)生的獨(dú)到意見扼殺在搖籃里。在教案中,我只設(shè)計(jì)了教師的導(dǎo)語,而把大量的時(shí)間留給學(xué)生從讀中悟,讓學(xué)生參與評(píng)價(jià)。同時(shí)為加強(qiáng)小組的合作性,我設(shè)計(jì)了每組輔導(dǎo)一名學(xué)生參加朗讀比賽,組織記者招待會(huì)讓優(yōu)勝學(xué)生談體會(huì),這樣的設(shè)計(jì)不僅練習(xí)了朗讀,也鍛煉了口語交際能力。
三、注重培養(yǎng)學(xué)生的觀察與想象力
新教材注重了圖文并茂,所以學(xué)生愛讀。我充分發(fā)揮多媒體的作用,讓學(xué)生仔細(xì)觀察,透過觀察了解文章內(nèi)容,透過文章內(nèi)容想象文章以外的內(nèi)容。教案中,我讓學(xué)生觀察花生開花圖,引出格外、鮮艷一詞,引出松鼠與鼴鼠的對(duì)話,引出松鼠高興的心情,觀察小松鼠疑問圖,引出奇怪和自言自語,從而激發(fā)學(xué)生的想象:花生到底到哪兒去了?
四、注重課內(nèi)與生活實(shí)際的結(jié)合
教案中,我還設(shè)計(jì)了續(xù)編故事和了解還有哪些植物的果實(shí)長在地里。這實(shí)際上是讓語文學(xué)習(xí)與生活實(shí)際緊密相連。
【學(xué)習(xí)目標(biāo)】
1、知識(shí)與能力:有主動(dòng)識(shí)字的愿望,自主認(rèn)識(shí)12個(gè)生字,能按筆順規(guī)則正確、美觀地書寫生字生、里、果,能自我審視間架結(jié)構(gòu),感知漢字的形體美。
2、過程與方法:在讀文中交流自己的感受,在合作討論中解決疑問:花生真的被摘走了嗎?以此明白花生的果實(shí)是埋在地里的。
3、情感、態(tài)度、價(jià)值觀:根據(jù)自己的體驗(yàn)正確、流利、入情入境地朗讀課文,感受祖國語言的美感。大膽想象,續(xù)編故事,樂于與同學(xué)、老師分享續(xù)編的故事,培養(yǎng)專注他人發(fā)言的好習(xí)慣。
【學(xué)習(xí)重點(diǎn)、難點(diǎn)】
1、認(rèn)識(shí)本課中的12個(gè)生字,會(huì)寫生、里、果三個(gè)字,練習(xí)朗讀,激發(fā)學(xué)生觀察的興趣。
2、知道花生在地里結(jié)果的這一特點(diǎn)。
【學(xué)習(xí)輔助手段】
老師:生字卡片,課件。
學(xué)生:小松鼠和小鼴鼠的頭飾。
【學(xué)時(shí)安排】
兩課時(shí)。
第一課時(shí)
【學(xué)習(xí)目標(biāo)】
1、認(rèn)識(shí)12個(gè)生字,能準(zhǔn)確認(rèn)讀。
2、能采用多種方法識(shí)記12個(gè)生字。
3、正確流利地朗讀課文,做到:讀準(zhǔn)字音,不加字、不改字、不漏字、不回讀。
4、初讀課文,了解課文內(nèi)容。
【教學(xué)過程】
一、創(chuàng)設(shè)情景,激趣導(dǎo)入
1、小朋友,在森林里的一棵大松樹上,住著一位可愛的朋友,瞧,它來了!大家看看是誰啊?──(多媒體課件出示:小松鼠)你認(rèn)識(shí)它嗎?大聲地和它打聲招呼吧! (你好,小松鼠!)誰還愿意和它說說話?(生:小松鼠,你在干什么呀?)師導(dǎo):他怎么啦?他的表情你會(huì)想到一個(gè)什么詞?(著急、驚訝,不知所措等) 聽他在跟你們說什么?
2、(多媒體課件演示小松鼠的話)小朋友,我今天要找一樣?xùn)|西,你們能幫我找找嗎?這件東西啊,它是紅房子,麻帳子,里面有個(gè)白胖子。你知道是什么嗎?
3、那就讓我們和小松鼠一起去大森林找花生吧。(板書:小松鼠找花生)齊讀課題,認(rèn)識(shí) (找、生)誰來認(rèn)一認(rèn)這兩個(gè)字?(先指名讀,再齊讀)
4、全班齊讀課題。
(運(yùn)用直觀、形象的畫面創(chuàng)設(shè)愉悅、輕松的課堂教學(xué)情境,符合低年級(jí)兒童的認(rèn)知規(guī)律,為學(xué)生學(xué)習(xí)活動(dòng)的充分開展創(chuàng)設(shè)了鮮活的空間,教師也變換角色參與其中,整個(gè)情境立體化,趣味縱橫。)
數(shù)松果課件 篇8
教學(xué)目標(biāo):
1、認(rèn)識(shí)“聰、活”等11個(gè)生字,會(huì)寫“更、以”等6個(gè)生字。
2、正確、流利、有感情地朗讀本課,并能復(fù)述這個(gè)童話。
3、體會(huì)小松鼠的聰明活潑可愛,感受文中的美,培養(yǎng)環(huán)保意識(shí)。
教學(xué)重點(diǎn):
1、認(rèn)識(shí)“聰、活”等11個(gè)生字,會(huì)寫“更、以”等6個(gè)生字。
2、正確、流利、有感情地朗讀本課。
教學(xué)難點(diǎn):能復(fù)述這個(gè)童話。
教學(xué)時(shí)間:2課時(shí)
教學(xué)過程:
第一課時(shí)
一、談話導(dǎo)入
同學(xué)們,你們喜歡小松鼠嗎?看,有兩只可愛的小松鼠。今天要和我們一起上課呢!(出示:兩只小松鼠在樹上跳來跳去,還和小朋友們打招呼)
你們了解小松鼠嗎?誰來說一說?
出示課題:松鼠和松果
齊讀課題。
二、初讀課文
1、聽老師講故事。
2、喜歡這兩只小松鼠嗎?喜歡這個(gè)童話故事嗎?想不想和老師一樣把故事講給大家聽?自己認(rèn)真地讀讀課文。有什么困難,你可以舉手或等會(huì)兒提出來。
3、你讀懂了什么?還有哪些疑問?
三、學(xué)習(xí)生字新詞
1、(出示詞語):聰明、活潑、忽然、眨眼睛、如果、總有、以后、主意
自己讀一讀、認(rèn)一認(rèn)。
2、指名讀。
3、交流識(shí)記生字的方法。
4、“開火車”讀詞語。(去掉拼音)
5、讀句子:(出示)
(1)松鼠聰明活潑,學(xué)會(huì)了摘松果吃。
(2)忽然,松鼠眨眨眼睛,想起來了:如果光摘松果,不栽松樹,總有一天,一棵松樹也沒有了!
(3)松鼠有了好主意:每次摘松果,吃一個(gè),就在土里埋下一個(gè)。以后,這里就會(huì)長出一片松樹林的。
四、學(xué)習(xí)第一段
1、(出示:小松鼠在摘松果吃)如果你是小松鼠,在這么美麗的森林里,摘吃松果,心里會(huì)怎么想?
2、誰來讀這一段,讀出小松鼠的高興勁兒!其他小朋友仔細(xì)聽,你從哪兒體會(huì)到了小松鼠的高興了?這樣評(píng)價(jià)他的朗讀,好嗎?
3、評(píng)議、朗讀。
重點(diǎn):每個(gè)松果都那么香,那么可口。
怎么讀才能讓人覺得:啊,真香,真可口,真高興!自己試試吧!
指名朗讀,感受。
在生活中,小朋友們也一定遇到過這么開心的事情吧!能像小松鼠一樣地說說嗎?
交流。(可以用上“那么……那么……”,也可以鼓勵(lì)學(xué)生用不同的詞語句式:如“真”、“特別”、“很”……)
4、齊讀第一段。
五、指導(dǎo)寫字
1、觀察。(觀察筆畫在田字格中的位置,筆畫之間的相對(duì)位置)“以”、“后”、“更”書寫時(shí)要注意什么?
2、范寫。(師邊范寫邊講解要點(diǎn),強(qiáng)調(diào)“以”的末筆是點(diǎn);“后”的第一、二兩筆是平撇和豎撇,豎撇要豎起來;“更”最后兩筆交叉的位置。)
3、仿寫、比較。
寫完一個(gè)字,把這個(gè)字與范字比較,找到要注意的地方,再寫下一個(gè)。
4、練習(xí)寫字,教師巡視。
5、展示評(píng)議。
第二課時(shí)
一、復(fù)習(xí)導(dǎo)入
(每位學(xué)生頭戴松鼠頭飾)
1、“采松果”。(課件出示松樹林,松果上寫著詞語)
2、(出示松鼠邊摘邊吃松果圖)小朋友們,摘松果開心嗎?把這份快樂帶給我吧!(學(xué)生朗讀第一段。)
二、朗讀感悟
1、小松鼠一直這么快樂的嗎?
為什么擔(dān)心呢?請(qǐng)你讀讀課文告訴我,好嗎?
2、光摘松果,不栽松樹,總有一天一棵松樹也沒有了!你們說這句話時(shí),想到了什么?
你能把你們松鼠的擔(dān)心、著急讀出來嗎?(引導(dǎo)學(xué)生注意感嘆號(hào))
指名讀,評(píng)議,男女賽讀。
3、你們臉上的表情好像越來越著急了,想到什么了?把你們想的大膽地說出來。
指導(dǎo)朗讀第三自然段。
小松鼠們加上動(dòng)作、表情表演讀這段。
4、聰明的小松鼠想出辦法來了嗎?有好主意了嗎?
指名讀句子說說為什么要這么做?
5、(出示:春雨綿綿,一片挺拔的小松樹林。小松鼠高興地在樹林里玩)朗讀第五自然段。
6、別的小松鼠還有好主意嗎?
再次朗讀第五自然段,欣喜的。
三、想象升華
1、日子一天天過去,將來這片小松樹林會(huì)怎么樣?朗讀最后一句。
“更茂密”那是怎么樣的?哪只松鼠見過茂密的樹林,給大家說說。
2、這片松樹林是那么茂密美麗。小松鼠們歡歡喜喜地住在那里。嗨,介紹一個(gè)你們可愛的鄰居吧。你們?cè)谶@里生活得怎么樣?
想象說話。
3、今天回到家,把故事講給爸爸媽媽聽,還要畫畫將來的這片茂密的松樹林。小動(dòng)物們?cè)谶@里快活地生活著。
四、指導(dǎo)寫字
1、觀察“主”、“意”、“總”在田字格里的位置,筆畫間的相對(duì)位置。
2、范寫,講解。
3、仿寫,比較
4、練習(xí)書寫。
5、展示評(píng)議。
五、自選練習(xí)
1、收集有關(guān)植物的圖片和資料,舉辦“可愛的植物”展覽。
2、參加一次植樹活動(dòng),或養(yǎng)(認(rèn)養(yǎng))花、樹,體會(huì)這些活動(dòng)的美好情緒。
數(shù)松果課件 篇9
教學(xué)目標(biāo):
1、正確、流利、有感情地朗讀課文,背誦課文。
2、認(rèn)識(shí)16個(gè)生字,會(huì)寫其中的9個(gè)生字,認(rèn)識(shí)2個(gè)偏旁。
3、知道花生在地下結(jié)果這一特征,激發(fā)學(xué)生觀察植物的興趣。
教學(xué)重、難點(diǎn):識(shí)字寫字,朗讀課文,背誦課文,了解花生結(jié)果的特點(diǎn)。
教學(xué)課時(shí):二課時(shí)。
第一課時(shí)
教學(xué)過程:
一、導(dǎo)入新課
1、認(rèn)識(shí)花生果實(shí)。
2、同學(xué)們喜難免吃花生嗎?小松鼠也喜歡吃啦,他還打算靠花生過冬呢!可他到花生地里卻沒有找到花生果,這是為什么呢?今天我們就學(xué)習(xí)第25課。認(rèn)讀生字:鼠
二、初讀課文
1、請(qǐng)學(xué)生自由、大聲地朗讀課文。
2、圈出文中的16個(gè)生字,讀一讀,不會(huì)讀的拼一拼。
3、認(rèn)讀生字組成的詞語。
引導(dǎo)學(xué)會(huì)用ABB
4、學(xué)生自由讀。
三、指導(dǎo)寫字
1、復(fù)習(xí)鞏固生字
2、示范、指導(dǎo)。
3、描紅、臨寫。
交流、反饋。
教學(xué)后記:學(xué)生很容易會(huì)漏掉直的里面是三橫。
第二課時(shí)
一、復(fù)習(xí)生字引入課文
二、學(xué)習(xí)第一至第五自然段。
1、鞏固字詞。
2、圖文對(duì)照。
3、出示課件:填空。
4、自由朗讀課文。
5、指導(dǎo)讀書。
6、試背課文,
三、你知道哪些植物是在什么地方生長的嗎?
四、小結(jié)
五、教學(xué)后記:學(xué)生能了解更多的生物在何處生長。
數(shù)松果課件 篇10
1、認(rèn)識(shí)“聰”、“活”等11個(gè)生字,會(huì)寫“以”、“后”等6個(gè)字。
2、正確、流利、有感情地朗讀課文。
3、理解課文內(nèi)容,懂得植樹造林的道理
1、重點(diǎn):認(rèn)識(shí)11個(gè)生字,會(huì)寫6個(gè)字;能正確流利地讀課文。
2、難點(diǎn):書寫“以、更”。
兩課時(shí)。
第一課時(shí)
〖教學(xué)要求〗
正確、流利、有感情地朗讀課文,認(rèn)識(shí)“聰”、“活”等11個(gè)生字。
〖教學(xué)過程〗
一、猜謎導(dǎo)入
同學(xué)們,你們喜歡小松鼠嗎?
板書:松鼠
你們知道松鼠住哪?
松鼠愛吃什么嗎?
板書:松果
齊讀課題。
小松鼠和松果之間會(huì)發(fā)生什么事呢?我們今天來讀一讀這個(gè)故事吧!
二、初讀課文
1、學(xué)生出聲讀課文:
讀完后把圈出的生字多讀幾遍。
2、學(xué)習(xí)生字詞:
⑴ 出示以下生字詞(帶拼音):
聰明 活潑 忽然 眨眼睛 如果 總有 以后 主意
指名讀。
⑵ 學(xué)生認(rèn)讀去掉拼音后的詞語、生字:
個(gè)別讀、小組讀、全班讀。
⑶ 換詞讀。
3、讀課文:
要求讀正確,想想在小松鼠和松果之間發(fā)生什么事?
二、精讀課文
1、學(xué)習(xí)課文第一自然段:
⑴ (出示掛圖)小松鼠,在這么美麗的森林里??粗G油油的松樹,他吃的小松果是什么樣的,出聲讀第一自然段?
⑵ 指導(dǎo)讀句子:
每個(gè)松果都那么香,那么可口。
⑶ 變式練習(xí):
每個(gè)松果( )香( )甜。
2、學(xué)習(xí)第二自然段:
⑴ 小松鼠一邊玩一邊吃香甜的果子,忽然,小松鼠眨眨眼睛,想起來了……
(出示投影)引讀:
如果光摘松果,不栽松樹,總有一天,一棵松樹也沒有了!
學(xué)生自由讀句子。
討論:
讀了這句話,大家知道惡劣什么?想到了什么?
⑵ 指導(dǎo)朗讀這句話,注意讀出擔(dān)心、驚訝的語氣。
提示:大家想一想,沒有了松樹,沒有了森林,到處是(讀詞)光禿禿的,小松鼠們吃什么?到哪兒去住呢?
3、學(xué)習(xí)四、五、六自然段:
⑴ 讀“好主意”:
小松鼠想出了什么好主意?
⑵ 角色體驗(yàn):
下松鼠快把你的主意演一演。
⑶ 春天,幾場蒙蒙細(xì)雨過后,在松鼠埋松果的地方有什么變化?
(貼小松樹)
⑷ 詞語訓(xùn)練:
( )的小松樹。
4、拓展練習(xí):
有了松樹,有了森林,小松鼠,小小松鼠,小小小松鼠……他們( )。
三、朗讀全文
數(shù)松果課件 篇11
1、復(fù)習(xí)“聰、話”等生字。
2、正確、流利、有感情地朗讀課文。
一、復(fù)習(xí)導(dǎo)入
同學(xué)們,今天我們繼續(xù)學(xué)習(xí)第10課《松鼠和松果》,讓我們和小松鼠一起走進(jìn)茂密的松樹林。
看,好大的松樹呀!板畫松樹。樹上結(jié)了好多的松果呀!要想摘到這些松果必須讀對(duì)上邊的生字,大家試著讀一讀!
誰來做采松果的游戲?
指名認(rèn)讀生字。談采松果的感受。
二、學(xué)習(xí)課文
1、課文中的小松鼠采到松果時(shí)也非常開心,快讓我們一起來讀讀課文吧。
生讀課文。
2、你們快找找哪一句話告訴我們小松鼠摘松果吃松果時(shí)非常開心?
指名讀第一段話。
每個(gè)松果都那么香那么可口。怎樣讀才能讓人感到啊真香真可口?自己試試吧。
指名朗讀,感受。
在生活中,小朋友們也一定遇到過這么開心的事情吧!能像小松鼠一樣地說說嗎?
交流。(可以用上“那么……那么……”,也可以鼓勵(lì)學(xué)生用不同的詞語句式:如“真”、“特別”、“很”……)
在這么美麗的森林里吃著這么可口的松果真是一件讓人高興的事,讓我們愉快地齊讀第一段。
3、教師深情講訴:小松鼠津津有味地吃著松果,突然他再也高興不起來了,他想,如果光摘松果不栽松樹,總有一天一棵松樹也沒有了,沒有了松樹沒有了森林,以后到處光禿禿的,小松鼠,小小松鼠,小小小松鼠,他們吃什么呢?到哪兒去住呢?如果你是小松樹的朋友你一定和他一樣擔(dān)心,請(qǐng)讀課文的二三自然段替小松鼠分擔(dān)憂愁。
自由讀課文,指名讀課文,指導(dǎo)讀問句和感嘆句。用你的面部表情告訴我你很擔(dān)心很著急。
你們臉上的表情好像越來越著急了。
小松鼠們加上動(dòng)作、表情表演讀這段。
4、聰明的小松鼠想出辦法來了嗎?有好主意了嗎?
指名讀第四自然段。你是小松樹的朋友現(xiàn)在你準(zhǔn)備怎樣幫小松鼠?
所有的小松鼠讓我們一起來埋松果栽松樹吧。朗讀第五自然段。
你們這些小松鼠還有好主意嗎?是呀,沒有比植樹造林的辦法了!
5、想象升華
日子一天天過去,春天又來了,幾場蒙蒙的細(xì)雨過后,在松鼠埋松果的地方長出了一棵棵挺拔的小松鼠。大家想想將來這片小松樹林會(huì)怎么樣?
朗讀最后一句。
“更茂密”那是怎么樣的?哪只松鼠見過茂密的樹林,給大家說說。
這片松樹林是那么茂密美麗。小松鼠們歡歡喜喜地住在那里。嗨,介紹一個(gè)你們可愛的鄰居吧。你們?cè)谶@里生活得怎么樣?
想象說話。如果讓你畫這片茂密的松樹林你準(zhǔn)備畫些什么?
三、布置作業(yè):
畫出將來森林的樣子。
函數(shù)課件(必備11篇)
我們常說,機(jī)會(huì)是留給有準(zhǔn)備的人。在平日里的學(xué)習(xí)中,幼兒園教師時(shí)常會(huì)提前準(zhǔn)備好有用的資料。資料一般指生產(chǎn)、生活中閱讀,學(xué)習(xí),參考必需的東西。資料可以幫助我們更高效地完成各項(xiàng)工作。可是,我們的幼師資料具體又有哪些內(nèi)容呢?以下由小編為大家精心整理的“函數(shù)課件(必備11篇)”,供你參考,希望能夠幫助到大家。
函數(shù)課件【篇1】
23冪函數(shù) 教學(xué)設(shè)計(jì)
一. 教材分析冪函數(shù)是繼指數(shù)函數(shù)和對(duì)數(shù)函數(shù)后研究的又一基本函數(shù)。通過本節(jié)的學(xué)習(xí),學(xué)生將建立冪函數(shù)這一函數(shù)模型,并能用系統(tǒng)的眼光看待以前已經(jīng)接觸的函數(shù),進(jìn)一步確立利用函數(shù)的定義域、值域、奇偶性、單調(diào)性研究一個(gè)函數(shù)的意識(shí),因而本節(jié)更是一個(gè)對(duì)學(xué)生研究函數(shù)的方法和能力的綜合檢測。二. 學(xué)情分析學(xué)生通過對(duì)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的學(xué)習(xí),已經(jīng)初步掌握了如何去研究一類函數(shù)的方法,即由幾個(gè)特殊的函數(shù)的圖象,歸納出此類函數(shù)的一般的性質(zhì)這一方法,為學(xué)習(xí)本節(jié)打下了基礎(chǔ)。三. 教學(xué)目標(biāo)1.知識(shí)目標(biāo)(1)通過實(shí)例,了解冪函數(shù)的概念;(2)會(huì)畫簡單冪函數(shù)的圖象,并能根據(jù)圖象得出這些函數(shù)的性質(zhì);(3)了解冪函數(shù)隨冪指數(shù)改變的性質(zhì)變化情況。
2.能力目標(biāo)在探究冪函數(shù)性質(zhì)的活動(dòng)中,培養(yǎng)學(xué)生觀察和歸納能力,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識(shí)和思想。3.情感目標(biāo)
通過師生、生生彼此之間的討論、互動(dòng),培養(yǎng)學(xué)生合作、交流、探究的意識(shí)品質(zhì),同時(shí)讓學(xué)生在探索、解決問題過程中,獲得學(xué)習(xí)的成就感。四. 教學(xué)重點(diǎn)
常見的冪函數(shù)的圖象和性質(zhì)。五. 教學(xué)難點(diǎn)
畫冪函數(shù)的圖象引導(dǎo)學(xué)生概括出冪函數(shù)性質(zhì)。六. 教學(xué)用具
多媒體七. 教學(xué)過程
(一)創(chuàng)設(shè)情境(多媒體投影)問題一:下列問題中的函數(shù)各有什么特征?(1)如果張紅購買了每千克1元的蔬菜(g),那么她應(yīng)支付p=元.這里p是的函數(shù).(2)如果正方形的邊長為a,那么正方形的面積為S=a2.這里S是a的函數(shù).(3)如果立方體的邊長為a,那么立方體的體積為V=a3.這里V是a的函數(shù).(4)如果一個(gè)正方形場地的面積為S,那么這個(gè)正方形的邊長為a=.這里a是S的函數(shù).()如果某人t(s)內(nèi)騎車行進(jìn)了1,那么他騎車的平均速度為v=t-1(/s).這里v是t的函數(shù).由學(xué)生討論、總結(jié),即可得出:p=,s=a2,a=,v=t-1都是自變量的若干次冪的形式.問題二:這五個(gè)函數(shù)關(guān)系式從結(jié)構(gòu)上看有什么共同的特點(diǎn)嗎?這時(shí),學(xué)生觀察可能有些困難,老師提示,可以用x表示自變量,用表示函數(shù)值,上述函數(shù)式變成:=xa的函數(shù),其中x是自變量,a是實(shí)常數(shù).由此揭示題:今天這節(jié),我們就來研究:§23冪函數(shù)
(二)、建立模型定義:一般地,函數(shù)=xa叫作冪函數(shù),其中x是自變量,a是實(shí)常數(shù)。(投影冪函問題二:數(shù)的定義。)深化認(rèn)知
(1)下列函數(shù)是冪函數(shù)的是:A.=2x+1
B.=3x2
.=x-3
D.=1
(2)冪函數(shù)與指數(shù)函數(shù)有什么聯(lián)系和區(qū)別?學(xué)生回答,老師點(diǎn)評(píng)。引導(dǎo):有了冪函數(shù)的概念后,我們接下來做什么?―――研究冪函數(shù)的性質(zhì)。
通過什么方式來研究?――――――畫函數(shù)的圖象。
為使作圖高效,我們可先做點(diǎn)什么―――分析函數(shù)的定義域、奇偶性。
(三)問題探究1對(duì)于冪函數(shù)=xa,討論當(dāng)a=1,2,3,-1時(shí)的函數(shù)性質(zhì).
填表以上問題給學(xué)生留出充分時(shí)間去探究,教師引導(dǎo)學(xué)生從函數(shù)解析式出發(fā)來研究函數(shù)性質(zhì).2在同一坐標(biāo)系中,畫出=x,=x2,=x3,=,=x-1的圖像,并歸納出它們具有的共同性質(zhì).學(xué)生回答,老師點(diǎn)評(píng):冪函數(shù)的性質(zhì).(1)函數(shù)=x,=x2,=x3,=,=x-1的圖像都過點(diǎn)(1,1);(2)函數(shù)=x,=x3,=x-1是奇函數(shù),函數(shù)=x2是偶函數(shù);(3在(0,+∞)上,函數(shù)=x,=x2,=x3,=是增函數(shù),函數(shù)=x-1是減函數(shù);(4)在第一象限內(nèi),函數(shù)=x-1圖像向上與軸無限接近;向右與x軸無限接近。
(四)解釋應(yīng)用例1.寫出下列函數(shù)的定義域,并指出奇偶性:(投影)①=x ②=x ③=x ④=x學(xué)生解答,并歸納解決辦法。引導(dǎo)學(xué)生與指數(shù)函數(shù)、對(duì)數(shù)函數(shù)對(duì)照比較。(演示)例2.比較下列各組中兩個(gè)值的大小,并說明理由:①07,076;②,;③023,024;④031,031學(xué)生思考、作答,教師引導(dǎo)學(xué)生敘述語言的邏輯性。注意:由于學(xué)生對(duì)冪函數(shù)還不是很熟悉,所以在講評(píng)中要刻意體現(xiàn)出冪函數(shù)圖像的畫法,即再一次讓學(xué)生體會(huì)根據(jù)解析式來畫圖像例題這一基本思路.
(五)拓展延伸探究:①已知
(六)歸納小結(jié)今天的學(xué)習(xí)內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗(yàn)?
(七)布置作業(yè):本第87頁 2、3題思考:冪函數(shù)=x在區(qū)間上是減函數(shù),求的值。附:板書設(shè)計(jì)題…………
問題一(1)………………(2)………………(3)………………(4)………………()………………問題二:………………………………………………定義:……………………………填表冪函數(shù)的性質(zhì).(1)………………(2)………………(3)………………(4)………………例1……………①=x②=x ③=x④=x例2.(1)………………(2)………………(3)………………(4)………………拓展延伸……………布置作業(yè)……………教學(xué)后記(1)本節(jié)開始時(shí)要注意用相關(guān)熟悉例子引入新。(2)畫函數(shù)圖象時(shí),如果學(xué)生已能夠運(yùn)用計(jì)算器或相關(guān)計(jì)算機(jī)軟作圖,可以讓學(xué)生自己操作,以提高學(xué)生探索問題的興趣和能力,并提高教學(xué)效率。(3)由于程標(biāo)準(zhǔn)對(duì)冪函數(shù)的研究范圍有相對(duì)限制,故要求較低。(4)由于冪函數(shù)的性質(zhì)隨冪指數(shù)的改變會(huì)出現(xiàn)較大的變化,因此要學(xué)生在一節(jié)中象指數(shù)函數(shù)和對(duì)數(shù)函數(shù)那樣完全掌握這類函數(shù)的性質(zhì)是比較困難的,因此本人采用了從特殊到一般、再從一般到特殊的方法安排教學(xué):先重點(diǎn)研究了幾個(gè)常見的冪函數(shù)的圖象和性質(zhì),然后通過幾何畫板軟動(dòng)態(tài)演示冪函數(shù)的圖象(在第一象限)隨冪指數(shù)連續(xù)變化情況,讓學(xué)生歸納冪函數(shù)性質(zhì)隨冪指數(shù)改變的變化情況(其他象限內(nèi)的情況,可結(jié)合奇偶性得到),最后再通過改變畫板中的冪函數(shù)的冪指數(shù)(用參數(shù)的方法),讓學(xué)生預(yù)測將要出現(xiàn)什么樣的圖象,讓學(xué)生檢測自己探索成果的有效性,體驗(yàn)成功,享受學(xué)習(xí)的樂趣。
函數(shù)課件【篇2】
函數(shù)的概念教學(xué)設(shè)計(jì)說明
一、本質(zhì)、地位、作用分析:
函數(shù)這一章在高中數(shù)學(xué)中,起著承上啟下的作用,本節(jié)《函數(shù)的概念》是函數(shù)這一章的起始課.它上承集合,下引性質(zhì).是派生數(shù)學(xué)概念的強(qiáng)大“固著點(diǎn)”.本節(jié)在復(fù)習(xí)初中函數(shù)概念的基礎(chǔ)上,用集合和對(duì)應(yīng)的觀點(diǎn)來研究函數(shù),加深對(duì)函數(shù)概念的理解,為高中后續(xù)課程的學(xué)習(xí)打下基礎(chǔ),函數(shù)的概念將貫穿整個(gè)高中數(shù)學(xué)的始終,滲透到數(shù)學(xué)的各個(gè)領(lǐng)域。
二、教學(xué)目標(biāo)分析
我們生活的世界時(shí)刻都在發(fā)生變化,變化無處不在.這些變化著的現(xiàn)象都可以用數(shù)學(xué)有效地描述它們的變化規(guī)律.函數(shù)正是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型,通過函數(shù)模型可以幫助我們科學(xué)地預(yù)測將發(fā)生什么,進(jìn)而解決實(shí)際問題.因此,學(xué)習(xí)函數(shù)知識(shí)對(duì)研究客觀世界、掌握事物變化規(guī)律具有重要的意義.教科書采用了從實(shí)際例子中抽象概括出用集合與對(duì)應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運(yùn)用函數(shù)模型表述、思考和解決現(xiàn)實(shí)世界中蘊(yùn)涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會(huì)數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識(shí).本課主要是從兩集合間對(duì)應(yīng)來描繪函數(shù)的概念,是一個(gè)抽象過程,學(xué)生學(xué)習(xí)可能有所不適應(yīng).教學(xué)中宜逐步設(shè)計(jì)合理的階梯,從實(shí)際問題逐步建構(gòu)函數(shù)的初步定義,對(duì)函數(shù)的概念的研究遵循“直觀感知、抽象概括”的認(rèn)知過程展開,學(xué)生在對(duì)生活中的實(shí)例觀察感知基礎(chǔ)上,借助幫助學(xué)生總結(jié)它們的共同特征得出定義,構(gòu)建函數(shù)的一般概念,并通過辨析問題深化對(duì)定義的理解,這樣就避免了學(xué)生死記硬背概念,有利于理解數(shù)學(xué)概念的本質(zhì)。使學(xué)生更好地參與教學(xué)活動(dòng),展開思維,體驗(yàn)探索的樂趣,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.為更好地鞏固函數(shù)的概念,設(shè)置了有梯度的例題,例1的三個(gè)小題都是選擇題,第一小題重點(diǎn)考察是變量x與y是否具有函數(shù)關(guān)系,緊扣定義,驗(yàn)證定義即可;第二小題考察從集合A到集合B的函數(shù)應(yīng)該滿足什么條件,方法一可以通過定義驗(yàn)證對(duì)于集合A中的每一個(gè)元素,在集合B中是否有元素而且是唯一的元素與之相對(duì)應(yīng);另一種方法是從集合A到集合B的函數(shù),其特點(diǎn)是:A就是函數(shù) 的定義域,B包含函數(shù)的值域,值域可以變化,只要是B的子集即可。如果條件“從A到B的函數(shù)”改為“以A為定義域,以B為值域的函數(shù)”,學(xué)生應(yīng)當(dāng)注意這道題變化前后的區(qū)別,再次加深函數(shù)的概念的理解;第三個(gè)題考察函數(shù)相等的條件,了解函數(shù)的三要素是定義域、對(duì)應(yīng)關(guān)系和值域,而三者中起決定因素的是定義域和對(duì)應(yīng)關(guān)系,使學(xué)生對(duì)于函數(shù)有直觀的認(rèn)識(shí)。例2是一道解答題,考察求函數(shù)的定義域問題,函數(shù)問題首要考慮定義域,這是研究函數(shù)的值域,單調(diào)性等一些性質(zhì)的前提,所以函數(shù)的定義域顯得尤為重要,本例的意圖是讓學(xué)生總結(jié)如何求函數(shù)的定義域;例3是求函數(shù)值問題,旨在讓學(xué)生明白f(a)與f(x)的區(qū)別,真正理解函數(shù);最后設(shè)計(jì)了一道易錯(cuò)題,考察含參問題一定要注意分類討論。這四個(gè)題都是學(xué)生自己討論、自己寫出解題過程、自己講解,最后教師點(diǎn)評(píng)。
整個(gè)教學(xué)過程主要是對(duì)函數(shù)概念的探究和應(yīng)用。通過對(duì)概念的探究,不僅培養(yǎng)和提高了學(xué)生對(duì)抽象問題的感知和概括能力,而且通過對(duì)函數(shù)概念的感性認(rèn)識(shí)進(jìn)一步讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)和生活密不可分,數(shù)學(xué)來源于生活并服務(wù)于生活,加深了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。
三、教學(xué)問題診斷:
(1)班級(jí)學(xué)生狀況分析:
1.在學(xué)習(xí)本節(jié)課之前,學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù)的概念,對(duì)函數(shù)已經(jīng)有了一些直觀的認(rèn)識(shí);
2.學(xué)生已具有小組合作學(xué)習(xí)的經(jīng)驗(yàn),能積極參與討論,對(duì)高效課堂的學(xué)習(xí)模式已經(jīng)熟悉,但部分學(xué)生課前預(yù)習(xí)抓不住重點(diǎn),自學(xué)能力不強(qiáng);
3.少部分學(xué)生能從初中所學(xué)的函數(shù)的概念再加上生活中一些函數(shù)模型學(xué)習(xí)本課,大部分學(xué)生對(duì)于抽象的、不可觸摸的函數(shù)概念理解不透徹,不知道怎么應(yīng)用,因此我們采取對(duì)生活中常見的三類例子進(jìn)行分析,從實(shí)際例子中抽象概括出用集合與對(duì)應(yīng)的語言定義函數(shù)的方式介紹函數(shù)概念.這樣不僅為學(xué)生理解函數(shù)概念打了感性基礎(chǔ),而且注重培養(yǎng)了學(xué)生的抽象概括能力,啟發(fā)學(xué)生運(yùn)用函數(shù)模型表述、思考和解決現(xiàn)實(shí)世界中蘊(yùn)涵的規(guī)律,逐漸形成善于提出問題的習(xí)慣,學(xué)會(huì)數(shù)學(xué)表達(dá)和交流,發(fā)展數(shù)學(xué)應(yīng)用意識(shí).4.學(xué)生對(duì)學(xué)習(xí)概念興趣不高,對(duì)學(xué)習(xí)抽象的函數(shù)概念有畏懼情緒,所以,學(xué)生需要受到鼓勵(lì)和安慰,增強(qiáng)學(xué)習(xí)的興趣。
(2)學(xué)情分析:
學(xué)生在初中已經(jīng)學(xué)習(xí)了函數(shù),并且已經(jīng)認(rèn)識(shí)一次函數(shù)、二次函數(shù)、正比例函數(shù)和反比例函數(shù),對(duì)于函數(shù)已經(jīng)有了直觀的認(rèn)識(shí),但對(duì)于類似“x=1”、“y=1”、?x?1x?0等一些表達(dá)式是否是函數(shù)沒有概念,無從下手,這就說明初 f(x)???x?1x?0 中所學(xué)的概念太過狹隘,這就要求我們從更高的層面再次學(xué)習(xí)函數(shù)。函數(shù)的概念從初中的變量學(xué)說到高中階段的對(duì)應(yīng)學(xué)說,顯得很抽象,不好理解,特別“對(duì)于A中的任意一個(gè)元素,B中都有唯一的元素與之相對(duì)應(yīng)”這句話的怎么理解,它有什么深刻的含義,這就要求我們用生活中同學(xué)們所熟悉的實(shí)例出發(fā),提出問題讓學(xué)生思考,解釋為什么要強(qiáng)調(diào)A中任意,B中唯一,很自然的歸納出函數(shù)的定義,并通過一些例題加深對(duì)函數(shù)概念的認(rèn)識(shí)和理解。對(duì)于函數(shù)的三要素、函數(shù)相等的條件、函數(shù)的定義域問題以及函數(shù)求值問題是對(duì)函數(shù)概念的升華,是為了加深對(duì)函數(shù)概念的理解,也是對(duì)函數(shù)概念的應(yīng)用
四、教法特點(diǎn)以及預(yù)期效果分析:
(1)教法特點(diǎn):
·情境激趣策略:根據(jù)學(xué)生的特點(diǎn),本節(jié)課借助對(duì)生活中常見的三類實(shí)例及多媒體手段,觀察思考數(shù)學(xué)在生活中的應(yīng)用,促進(jìn)思維的深層次加工和提高課堂參與度,激發(fā)學(xué)生興趣,調(diào)動(dòng)學(xué)生的積極性,使學(xué)生覺得學(xué)有所用;
·問題目標(biāo)引導(dǎo)探究策略:通過問題目標(biāo)的驅(qū)動(dòng),引導(dǎo)學(xué)生積極思考生活中的函數(shù)問題,并通過直觀感知、抽象概括一步步加深對(duì)函數(shù)概念的理解,使學(xué)習(xí)循序漸進(jìn)、由淺入深,積極地參與到猜想、探究的學(xué)習(xí)中;
·自主合作、實(shí)驗(yàn)探究式學(xué)習(xí)策略:建立小組討論、交流、合作的課堂氛圍,主張“先學(xué)后導(dǎo),問題評(píng)價(jià)”的教學(xué)思維,采用小組合作學(xué)習(xí)方式,師生共同圍繞研究這節(jié)課的主要內(nèi)容和問題進(jìn)行自主學(xué)習(xí)、合作交流,在討論的過程中使學(xué)生思維更加開放、多樣和靈活,給予學(xué)生一定的自主性和創(chuàng)造發(fā)揮的空間,使學(xué)生樂意學(xué)習(xí),主動(dòng)學(xué)習(xí)。(2)預(yù)期效果分析:
本節(jié)課借助多媒體輔助教學(xué),采用“引導(dǎo)-探究式“教學(xué)方法,整個(gè)教學(xué)過程遵循”直觀感知-歸納總結(jié)“的認(rèn)知規(guī)律,注重發(fā)展學(xué)生的合情推理能力,降低對(duì)抽象問題理解的難度,同時(shí)加強(qiáng)了抽象問題具體化的培養(yǎng),注重知識(shí)產(chǎn)生的
過程性,使學(xué)生更容易的記住本節(jié)課知識(shí)。考慮到學(xué)生的實(shí)際,有意地設(shè)計(jì)了一些鋪墊和引導(dǎo),既鞏固已有知識(shí),又為新知識(shí)提供了附著點(diǎn),充分體現(xiàn)學(xué)生的主體地位。
本節(jié)課做題過程中滲透了分類討論的數(shù)學(xué)思想方法,設(shè)計(jì)中注重對(duì)學(xué)生自己發(fā)現(xiàn)問題,自己解決問題能力的培養(yǎng),使學(xué)生學(xué)會(huì)思考、掌握方法,有利于培養(yǎng)學(xué)生思維的廣闊性與深刻性。相信通過這節(jié)課的學(xué)習(xí)會(huì)達(dá)到比較好地教學(xué)效果。
函數(shù)課件【篇3】
教學(xué)目標(biāo)
①從學(xué)生熟悉的情境出發(fā),經(jīng)歷從圖中分析變量之間關(guān)系的過程,理解函數(shù)圖象的意義。會(huì)對(duì)實(shí)際生活中的例子用兩變量之間關(guān)系的圖象進(jìn)行描述表達(dá),初步認(rèn)識(shí)函數(shù)與圖象的對(duì)應(yīng)關(guān)系。
②學(xué)會(huì)觀察圖象、識(shí)別圖象及理解圖象所表示的含義。了解圖象的意義及其與實(shí)際軌道之間的關(guān)系和區(qū)別。
③滲透數(shù)形結(jié)合思想,體會(huì)到數(shù)學(xué)來源于生活,又應(yīng)用于生活。培養(yǎng)學(xué)生的團(tuán)結(jié)協(xié)作精神、探索精神和合作交流的能力。
教學(xué)重點(diǎn)與難點(diǎn)
把實(shí)際問題轉(zhuǎn)化為函數(shù)圖象,再根據(jù)圖象來研究實(shí)際問題。
教學(xué)準(zhǔn)備
三角尺、CAI課件。
教學(xué)設(shè)計(jì)
提出問題
下圖是自動(dòng)測溫儀記錄的圖象,它反映了北京春季某天氣溫T如何隨時(shí)間t的變化而變化。你從下圖中得到哪些信息?
注:挖掘和利用現(xiàn)實(shí)生活中與函數(shù)圖象有關(guān)的背景,讓學(xué)生在觀察背景中認(rèn)識(shí)、理解函數(shù)的圖象。
“做一做”解決生活中的數(shù)學(xué)問題,為的是進(jìn)一步理解函數(shù)圖象的意義。引導(dǎo)學(xué)生主動(dòng)參與學(xué)習(xí)過程,從而培養(yǎng)合作交流能力。
解決問題
下面的圖象反映的過程是:小明從家里出發(fā)去菜地澆水,又去玉米地鋤草,然后回家。其中x表示時(shí)間,y表示小明離他家的距離。
根據(jù)圖象回答下列問題:
1、菜地離小明家多遠(yuǎn)?小明走到菜地用了多少時(shí)間?
2、小明給菜地澆水用了多少時(shí)間?
3、菜地離玉米地多遠(yuǎn)?小明從菜地走到玉米地用了多少時(shí)間?
4、小明給玉米地鋤草用了多少時(shí)間?
5、玉米地離小明家多遠(yuǎn)?小明從玉米地走回家的平均速度是多少?
注:以課本例題中的實(shí)際生活問題為素材,使學(xué)生感受到數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣。師生共同參與合作,完成幾個(gè)問題的探討。體現(xiàn)了以學(xué)生為主體,教師成為問題解決的組織者、引導(dǎo)者與合作者這一新課程教學(xué)理念。
總結(jié)歸納
圍繞下面兩點(diǎn),以師生共同交流的方式進(jìn)行歸納:
(1)函數(shù)圖象會(huì)使函數(shù)關(guān)系更為清晰,怎樣畫出函數(shù)的圖象呢?
(2)如何根據(jù)函數(shù)圖象中獲得的信息來研究實(shí)際問題?
注:進(jìn)一步加深對(duì)函教圖象的理解。
布置作業(yè)
1、必做題:教科書P、109 習(xí)題11、1第5題。
函數(shù)課件【篇4】
教學(xué)設(shè)計(jì)說明
一、本課數(shù)學(xué)內(nèi)容的本質(zhì)、地位、作用分析
本節(jié)課內(nèi)容屬于《全日制義務(wù)教育數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)》中的“數(shù)與代數(shù)”領(lǐng)域,反比例函數(shù)的核心內(nèi)容是反比例函數(shù)的概念、圖象和性質(zhì).反比例函數(shù)的圖象和性質(zhì)的核心,是圖象“特征”、函數(shù)“特性”以及它們之間的相互轉(zhuǎn)化關(guān)系,這也正是反比例函數(shù)的本質(zhì)屬性所在.
反比例函數(shù)是最基本的初等函數(shù)之一,是繼一次函數(shù)學(xué)習(xí)之后,對(duì)函數(shù)學(xué)習(xí)的一般規(guī)律和方法的再次強(qiáng)化.是學(xué)習(xí)后續(xù)各類函數(shù)的基礎(chǔ).反比例函數(shù)的圖象和性質(zhì),蘊(yùn)含著豐富的數(shù)學(xué)思想.首先,反比例函數(shù)圖象和性質(zhì),本身就是“數(shù)”與“形”的統(tǒng)一體.其次,從本節(jié)課知識(shí)的形成過程來看,由“解析式”到“作圖”,再到“性質(zhì)”,充分體現(xiàn)了由“數(shù)”到“形”,再由“形”到“數(shù)”的轉(zhuǎn)化過程,是轉(zhuǎn)化思想的具體應(yīng)用.再次,將函數(shù)中變量x、y之間的對(duì)應(yīng)關(guān)系,通過圖象的形狀、變化趨勢(shì),借助平面直角坐 標(biāo)系和點(diǎn)的坐標(biāo),直觀地予以呈現(xiàn),這又充分體現(xiàn)了變化與對(duì)應(yīng)的數(shù)學(xué)思想.
因此,學(xué)好本節(jié)課內(nèi)容將為今后的函數(shù)學(xué)習(xí)奠定堅(jiān)實(shí)的基礎(chǔ).
二、教學(xué)目標(biāo)分析
1.準(zhǔn)確畫出反比例函數(shù)的圖象,是探究反比例函數(shù)性質(zhì)的前提.雖然學(xué)生已經(jīng)學(xué)過用描點(diǎn)法畫函數(shù)圖象,但是由于反比例函數(shù)圖象的特殊性,會(huì)畫反比例函數(shù)的圖象,仍是學(xué)習(xí)中的目標(biāo)之一.通過列表、描點(diǎn)、畫出反比例函數(shù)的圖象,進(jìn)而觀察、分析、探究、歸納、概括,得到反比例函數(shù)的性質(zhì),可以進(jìn)一步加深對(duì)函數(shù)三種表示方法(列表法、解析式法和圖象法)的理解;
2.?dāng)?shù)學(xué)思想的教學(xué)一般要經(jīng)過滲透孕育期、領(lǐng)悟形成期、應(yīng)用發(fā)展期、鞏固深化期四個(gè)階段,而非能復(fù)制與灌輸.在探究反比例函數(shù)性質(zhì)時(shí),讓學(xué)生領(lǐng)悟到數(shù)形結(jié)合思想、轉(zhuǎn)化思想、變化與對(duì)應(yīng)思想的存在,并能運(yùn)用這些數(shù)學(xué)思想觀察、分析反比例函數(shù)的圖象,探究、歸納、概括反比例函數(shù)的性質(zhì).
3.通過對(duì)反比例函數(shù)性質(zhì)探究,使學(xué)生經(jīng)歷觀察、分析、探究、歸納、概括的認(rèn)知過程,培養(yǎng)學(xué)生良好的思維品質(zhì),提高學(xué)生思維能力.
三、教學(xué)問題診斷
對(duì)于用描點(diǎn)法畫函數(shù)的圖象,學(xué)生已經(jīng)學(xué)過,但對(duì)每步要求的理解并不深刻.因此,在畫反比例函數(shù)圖象時(shí),常遇到如下的問題:(1)“列表”時(shí)確定自變量x的取值缺乏代表性及忽略x?0等現(xiàn)象;(2)“連線”時(shí),由于一次函數(shù)圖象是一條直線,容易使學(xué)生產(chǎn)生知識(shí)上的負(fù)遷移,把雙曲線畫成折線;(3)對(duì)雙曲線與x軸、y軸“越來越靠近”但不相交的趨勢(shì)不易理解.
在學(xué)習(xí)一次函數(shù)的時(shí)候,學(xué)生已經(jīng)對(duì)研究函數(shù)性質(zhì)所用的探究方法也有一定的了解,但由于反比例函數(shù)圖象比一函數(shù)圖象的形態(tài)豐富,結(jié)構(gòu)復(fù)雜,具有自身的特殊性,故對(duì)性質(zhì)的深刻理解和掌握,對(duì)性質(zhì)探究中的數(shù)學(xué)思想的體會(huì)和運(yùn)用,還存在一定的困難.
四、教法、學(xué)法特點(diǎn)分析 1.找準(zhǔn)切入點(diǎn)
從正比例函數(shù)切入,通過類比學(xué)習(xí)揭示本節(jié)課學(xué)習(xí)內(nèi)容,明確學(xué)習(xí)任務(wù);滲透探究反比例函數(shù)圖象和性質(zhì)的方法.
2.抓住關(guān)鍵點(diǎn)
準(zhǔn)確作出反比例函數(shù)的圖象是探究性質(zhì)的前提,探究性質(zhì)的關(guān)鍵是“形”與“數(shù)”間的轉(zhuǎn)化.
① 作圖
(Ⅰ)描點(diǎn)法作圖不是簡單的復(fù)習(xí)與應(yīng)用.“列表——描點(diǎn)——連線”體現(xiàn)的是描點(diǎn)法作圖的一般步驟,而思維的真正起點(diǎn)在于對(duì)“解析式”中常量、變量以及變量間關(guān)系的分析(k?0,x、y的取值以及x與y間的反比例關(guān)系),進(jìn)而對(duì)函數(shù)圖象的大致輪廓形成影象.這也是函數(shù)學(xué)習(xí)中作一般函數(shù)圖象的思維規(guī)律.
(Ⅱ)連線時(shí)需防止學(xué)生受一次函數(shù)圖象是一條直線的影響,而產(chǎn)生認(rèn)識(shí)負(fù)遷移,把曲線連成折線.
(Ⅲ)圖象由 “一條”到“兩支”,形態(tài)由“直”到“曲”,由“連續(xù)”到“間斷”,由與坐標(biāo)軸“相交”到“漸近”,折射出函數(shù)學(xué)習(xí)的深刻性,是繼一次函數(shù)后,知識(shí)上的一次拓展,理解與認(rèn)識(shí)上的一次升華,也是思維上的一次飛躍.
②“形”與“數(shù)”間的轉(zhuǎn)化
(Ⅰ)反比例函數(shù)性質(zhì)本身就是“數(shù)”與“形”的整合體.(Ⅱ)探究反比例函數(shù)性質(zhì)的思維主線是“數(shù)”“形”間的轉(zhuǎn)化.(Ⅲ)“數(shù)形結(jié)合”是研究函數(shù)性質(zhì)的一般方法. 3.注重發(fā)散點(diǎn)
反比例函數(shù)的性質(zhì)是教材中的一個(gè)發(fā)散點(diǎn).可以給學(xué)生一個(gè)更廣闊的思維空間,讓學(xué)生經(jīng)歷觀察、類比、猜想、知識(shí)拓展的過程,在思維的“最近發(fā)展區(qū)”內(nèi),提出更新的問題,得出更多的結(jié)論.但如何發(fā)散,有個(gè)“度”的把握問題,諸如:k的幾何意義;反比例函數(shù)y?kk與反比例函數(shù)y??圖象的對(duì)稱關(guān)系,反比例函數(shù)增減性的嚴(yán)格證明等,我的想法
xx是作為下節(jié)內(nèi)容或以后結(jié)合例題去研究.
4.教學(xué)過程緊扣“三條主線”
教學(xué)中突出三條主線,并注重三條主線的和諧發(fā)展.
一是知識(shí)的“產(chǎn)生(反比例函數(shù)的圖象是什么樣的?)——發(fā)展(描點(diǎn)法作圖、探究)——形成(反比例函數(shù)的圖象和性質(zhì))——應(yīng)用”主線;二是學(xué)生“動(dòng)手(作圖)——探究(觀察、類比、猜想、交流)——鞏固(練習(xí))”的活動(dòng)主線;三是教師“指導(dǎo)作圖(列表:自變量取值, 連線:曲線的間斷、大致趨勢(shì)等)——引導(dǎo)探究(類比)——解析(歸納、概括、)——評(píng)價(jià)”的因“學(xué)”施“教”過程.
4.注重思想方法的培養(yǎng)
反比例函數(shù)的圖象和性質(zhì),蘊(yùn)含著豐富的數(shù)學(xué)思想.首先,反比例函數(shù)圖象和性質(zhì),本身就是“數(shù)”與“形”的統(tǒng)一體.通過對(duì)圖象的研究和分析,可以確定函數(shù)本身的性質(zhì),體現(xiàn)了數(shù)形結(jié)合的思想方法.這在學(xué)習(xí)數(shù)軸、平面直角坐標(biāo)系時(shí),學(xué)生已經(jīng)接觸過,結(jié)合本課內(nèi)容,可以進(jìn)一步加強(qiáng)對(duì)數(shù)形結(jié)合思想方法的理解,發(fā)揮從“數(shù)”和“形”兩個(gè)方面共同分析解決問題的優(yōu)勢(shì).其次,從本節(jié)課知識(shí)的形成過程來看,由“解析式(確定自變量取值范圍)”到“作圖(列表、描點(diǎn)、連線)”,再到“性質(zhì)(觀察圖象探究性質(zhì))”,充分體現(xiàn)了由“數(shù)”到“形”,再由“形”到“數(shù)”的轉(zhuǎn)化過程,這種函數(shù)解析式及性質(zhì)與函數(shù)圖象之間的聯(lián)系,突出體現(xiàn)了兩者間的轉(zhuǎn)化對(duì)分析解決問題的特殊作用,是轉(zhuǎn)化思想的具體應(yīng)用.再次,將函數(shù)中變量x、y之間的對(duì)應(yīng)關(guān)系,通過圖象的形狀、變化趨勢(shì)“細(xì)微”到點(diǎn),借助平面直角坐標(biāo)系和點(diǎn)的坐標(biāo),直觀地予以呈現(xiàn),這又充分體現(xiàn)了變化與對(duì)應(yīng)的數(shù)學(xué)思想.
5.注重學(xué)法指導(dǎo)
對(duì)于反比例函數(shù)圖象及性質(zhì)的研究與學(xué)習(xí),盡管還處于函數(shù)學(xué)習(xí)的初級(jí)階段,但它所體現(xiàn)的函數(shù)學(xué)習(xí)的一般規(guī)律和方法,是繼一次函數(shù)學(xué)習(xí)之后的再一次強(qiáng)化.教材中呈現(xiàn)的“函數(shù)概念——函數(shù)的圖象和性質(zhì)——函數(shù)的實(shí)際應(yīng)用”的結(jié)構(gòu),是學(xué)習(xí)初等函數(shù)時(shí)不可或缺的.使學(xué)生理解這樣的“同構(gòu)現(xiàn)象”,對(duì)于明確學(xué)習(xí)任務(wù),建立完善的認(rèn)知結(jié)構(gòu)也將是非常有意義的.再有,用描點(diǎn)法畫反比例函數(shù)的圖象時(shí),先由函數(shù)解析式考慮自變量的取值范圍,分析x、y的對(duì)應(yīng)變化關(guān)系,然后構(gòu)思函數(shù)圖象的大致位置、輪廓、趨勢(shì),進(jìn)而列表、描點(diǎn)、連線作出函數(shù)圖象,反映了作函數(shù)圖象的一般規(guī)律.另外,利用圖象“特征”確定函數(shù)“特性”,也是初中階段研究函數(shù)性質(zhì)的常用方法.
函數(shù)課件【篇5】
一.內(nèi)容和內(nèi)容解析
【內(nèi)容】變量與函數(shù)的概念
【內(nèi)容解析】
“14.1變量與函數(shù)”是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級(jí)上冊(cè)第十四章第一單元,本設(shè)計(jì)是第1課時(shí),引導(dǎo)學(xué)生從生活實(shí)例中抽象出常量、變量與函數(shù)等概念,其中函數(shù)的概念是本節(jié)核心內(nèi)容.函數(shù)概念的核心是兩個(gè)變量間的特殊對(duì)應(yīng)關(guān)系:(1)由哪一個(gè)變量確定另一個(gè)變量;(2)唯一對(duì)應(yīng)關(guān)系.如果直接研究某個(gè)量y有一定困難,我們可以去研究另一個(gè)與之有關(guān)的量x,從而達(dá)到研究的目的.這也是一種化繁為簡的轉(zhuǎn)化思想.
本節(jié)課是函數(shù)入門課,首先必須準(zhǔn)確認(rèn)識(shí)變量與常量的特征,初步感受到現(xiàn)實(shí)世界各種變量之間聯(lián)系的復(fù)雜性,同時(shí)感受到研究主要從化繁就簡入手,在初中階段主要研究兩個(gè)變量之間的特殊對(duì)應(yīng)關(guān)系.本設(shè)計(jì)把重點(diǎn)放在認(rèn)識(shí)“兩個(gè)變量間的特殊對(duì)應(yīng)關(guān)系:由哪一個(gè)變量確定另一變量;唯一確定的含義.” 而函數(shù)圖象較為直觀形象,有助于學(xué)生理解函數(shù)的概念,因此把函數(shù)圖象中的部分內(nèi)容提前到本課時(shí)學(xué)習(xí).
二.目標(biāo)和目標(biāo)解析
【目標(biāo)】理解常量、變量與函數(shù)的概念.
【目標(biāo)解析】
(1)借助簡單實(shí)例,學(xué)生初步感知用常量與變量來刻畫一些簡單的數(shù)學(xué)問題,能指出具體問題中的常量、變量.初步理解存在一類變量可以用函數(shù)方式來刻畫,能舉出涉及兩個(gè)變量的實(shí)例,并指出由哪一個(gè)變量確定另一個(gè)變量,這兩個(gè)變量是否具有函數(shù)關(guān)系.初步理解對(duì)應(yīng)的思想,體會(huì)函數(shù)概念的核心是兩個(gè)變量之間的特殊對(duì)應(yīng)關(guān)系,能判斷兩個(gè)變量間是否具有函數(shù)關(guān)系.
(2)借助簡單實(shí)例,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體會(huì)從生活實(shí)例抽象出數(shù)學(xué)知識(shí)的方法,感知現(xiàn)實(shí)世界中變量之間聯(lián)系的復(fù)雜性,數(shù)學(xué)研究從最簡單的情形入手,化繁為簡.
(3)從學(xué)生熟悉、感興趣的實(shí)例引入課題,引領(lǐng)學(xué)生參與變量的發(fā)現(xiàn)和函數(shù)概念的形成過程,體驗(yàn)“發(fā)現(xiàn)、創(chuàng)造”數(shù)學(xué)知識(shí)的樂趣.學(xué)生初步感知實(shí)際生活蘊(yùn)藏著豐富的數(shù)學(xué)知識(shí),感知數(shù)學(xué)是有用、有趣的學(xué)科.
三、教學(xué)問題診斷分析
變量與函數(shù)的概念把學(xué)生由常量數(shù)學(xué)的學(xué)習(xí)引入變量數(shù)學(xué)學(xué)習(xí)中.學(xué)生知道代數(shù)式中的字母可以表示數(shù),方程中的未知數(shù)求出來后也是一個(gè)“已知數(shù)”,從“靜態(tài)”的角度理解字母所表示的數(shù),另外,學(xué)生在日常生活中也接觸到函數(shù)圖象、兩個(gè)變量的關(guān)系等樸素的函數(shù)關(guān)系的生活實(shí)例.但是學(xué)生初次接觸函數(shù)的概念,難以理解定義中“唯一確定”的準(zhǔn)確含義.
【教學(xué)重點(diǎn)】借助簡單實(shí)例,從兩個(gè)變量間的特殊對(duì)應(yīng)關(guān)系抽象出函數(shù)的概念.
【教學(xué)難點(diǎn)】怎樣理解“唯一對(duì)應(yīng)”.
四、教學(xué)過程設(shè)計(jì)
(一)導(dǎo)言:
1.《名偵探柯南》中有這樣一個(gè)情景:柯南根據(jù)案發(fā)現(xiàn)場的腳印,鎖定疑犯的身高.你知道其中的道理嗎?
2.我們班中同學(xué)A與職業(yè)相撲運(yùn)動(dòng)員,誰的飯量大?你能說明理由嗎?
問題1中都涉及兩個(gè)量的關(guān)系,腳印確定,對(duì)應(yīng)的身高有多個(gè)取值;問題2涉及多個(gè)量的關(guān)系.這一節(jié)課我們研究兩個(gè)量的關(guān)系,研究怎樣由一個(gè)量來確定另一個(gè)量.
【設(shè)計(jì)意圖】從學(xué)生的生活入手,開門見山,在極短的時(shí)間(一兩分鐘)內(nèi)指明本節(jié)課的學(xué)習(xí)內(nèi)容.現(xiàn)實(shí)世界中各種量之間的聯(lián)系紛繁復(fù)雜,應(yīng)向?qū)W生說明我們數(shù)學(xué)的研究方法是化繁就簡,本節(jié)課只關(guān)注一類簡單的問題.
(二)概念的引入
1.票房收入問題:每張電影票的售價(jià)為10元.
(1)若一場售出150張電影票,則該場的票房收入是 元;若售出205張、310張呢?
(2)若一場售出x張電影票,則該場的票房收入y元,則y= .
思考:
(1)票房收入隨售出的電影票變化而變化,即y隨的變化而變化;
(2)當(dāng)售出票數(shù)x取定一個(gè)確定的值時(shí),對(duì)應(yīng)的票房收入y的取值是否唯一確定?
2.成績問題:如圖是某班同學(xué)一次數(shù)學(xué)測試中的成績登記表:這一次數(shù)學(xué)測試中,13號(hào)的成績?yōu)開_____;15號(hào)的成績?yōu)開_____;16號(hào)的成績?yōu)開_____;23號(hào)的成績?yōu)開_____.
思考:
(1)測試成績隨________的變化而變化;
(2)任意確定一個(gè)學(xué)號(hào)x,對(duì)應(yīng)的成績f的取值是否唯一確定?
3.氣溫問題:圖一是撫順春季某一天的氣溫T隨時(shí)間t變化的圖象,看圖回答:
(1)這天的8時(shí)的氣溫是 ℃,14時(shí)的氣溫是 ℃,最高氣溫是 ℃,最低氣溫是 ℃;
(3)這一天中,在4時(shí)~12時(shí),氣溫( ),在16時(shí)~24時(shí),氣溫( ).
A.持續(xù)升高 B.持續(xù)降低 C.持續(xù)不變
思考:
(1)天氣溫度隨的變化而變化,即T隨的變化而變化;
(2)當(dāng)時(shí)間t取定一個(gè)確定的值時(shí),對(duì)應(yīng)的溫度T的取值是否唯一確定?
【設(shè)計(jì)意圖】這三個(gè)問題中都含有變量之間的單值對(duì)應(yīng)關(guān)系,通過研究這些問題引出常量、變量、函數(shù)等概念,通過這種從實(shí)際問題出發(fā)開始討論的方式,使學(xué)生體驗(yàn)從具體到抽象地認(rèn)識(shí)過程.問題的形式有填空、列表、求值、寫解析式、讀圖等,隱含著在函數(shù)關(guān)系中表示兩個(gè)變量的對(duì)應(yīng)關(guān)系有解析法、列表法、圖象法.
(三)概念的界定
思考:上述三個(gè)問題中,分別涉及哪些量的關(guān)系?通過哪一個(gè)量可以確定另一個(gè)量?
在上面的三個(gè)問題中,其中一個(gè)量的變化引起另一個(gè)量的變化(按照某種規(guī)律變化),變化的量叫做變量;有些量的值始終不變(例如電影票的單價(jià)10元……).并且當(dāng)其中一個(gè)變量取定一個(gè)值時(shí),另一個(gè)變量就隨之確定,且它的對(duì)應(yīng)值只有一個(gè).
教師根據(jù)學(xué)生的回答,在黑板上板書:
師生對(duì)上述三個(gè)問題進(jìn)行分析,找出它們的共性,歸納出函數(shù)的概念.
【設(shè)計(jì)意圖】(1)如何把具體的實(shí)例進(jìn)行抽象,形式化為數(shù)學(xué)知識(shí)是本課的關(guān)鍵.這里提出的問題“上述三個(gè)問題中,分別涉及哪些量的關(guān)系?通過哪一個(gè)量可以確定另一個(gè)量?”是一個(gè)關(guān)鍵的“腳手架”,借助“腳手架”,學(xué)生經(jīng)歷數(shù)學(xué)概念的形成過程,引導(dǎo)學(xué)生認(rèn)識(shí)為什么要引進(jìn)變量、常量、函數(shù)的概念,逐步了解如何給數(shù)學(xué)概念下定義.(2)此處板書是“腳手架”的重要組成部分,揭示“兩個(gè)量的對(duì)應(yīng)關(guān)系”.
問題回顧:指出前面三個(gè)問題中涉及到的量,并指出其中的變量、常量、自變量與函數(shù).
【設(shè)計(jì)意圖】鞏固常量、變量、自變量、函數(shù)的概念.
例1 一個(gè)三角形的底邊為5,這一邊上的高h(yuǎn)可以任意伸縮.
(1)高h(yuǎn)的變化會(huì)引起三角形中哪些量發(fā)生變化?這些變量是高h(yuǎn)的函數(shù)嗎?
(2)試求面積s隨h變化的關(guān)系式,并指出其中的'常量、變量與自變量。
例2如果用r表示圓的半徑,半徑r的變化會(huì)引起圓中哪些量發(fā)生變化?這些變量是半徑r的函數(shù)嗎?
【設(shè)計(jì)意圖】例1、例2的引入用幾何畫板做動(dòng)態(tài)演示.此兩例引導(dǎo)學(xué)生體會(huì)幾何問題中兩個(gè)變量在動(dòng)態(tài)變化過程中的依存關(guān)系.
例3 問題1中,售出票數(shù)是票房的函數(shù)嗎?問題2中,學(xué)號(hào)x是成績f的函數(shù)嗎?
【設(shè)計(jì)意圖】(1)引導(dǎo)學(xué)生從逆向思維的角度進(jìn)行思考,更全面地理解函數(shù)的概念.(2)培養(yǎng)學(xué)生逆向思維的習(xí)慣.(3)讓學(xué)生對(duì)這三個(gè)問題留下更深刻的印象,特別是“成績問題,”它將在函數(shù)這一章書的教學(xué)中反復(fù)被引用,幫助學(xué)生深入理解函數(shù)的概念.
(四)概念鞏固
1.購買一些簽字筆,單價(jià)3元,總價(jià)為y元,簽字筆為x支,根據(jù)題意填表:
(1)y隨x變化的關(guān)系式y(tǒng) = , 是自變量, 是 的函數(shù);
(2)當(dāng)購買8支簽字筆時(shí),總價(jià)為 元.
2.周末,小李8時(shí)騎自行車從家里出發(fā),到野外郊游,16時(shí)回到家里.他離開家后的距離s(千米)與時(shí)間t(時(shí))的關(guān)系如圖所示.
(1)當(dāng)t=12時(shí),s=________;當(dāng)t=14時(shí),s=________;
(2)小李從______時(shí)開始第一次休息,休息時(shí)間為____小時(shí),此時(shí)離家______千米.
(3)距離s是時(shí)間t的函數(shù)嗎?時(shí)間t是距離s的函數(shù)嗎?
函數(shù)課件【篇6】
1.1《反比例函數(shù)》教學(xué)設(shè)計(jì)說明
一、本節(jié)內(nèi)容的數(shù)學(xué)本質(zhì):
1、教材的地位與作用
本節(jié)課是浙教版九年級(jí)上冊(cè)第一章《反比例函數(shù)》1.1反比例函數(shù)。
從知識(shí)體系看,本章知識(shí)是學(xué)生繼學(xué)習(xí)了八上第六章《圖形與坐標(biāo)》和第七章《一次函數(shù)》的基礎(chǔ)上,再一次進(jìn)入函數(shù)領(lǐng)域,是一個(gè)再認(rèn)知的過程,它是初中階段三大函數(shù)之一,區(qū)別于一次函數(shù),但又建立在一次函數(shù)之上,本章內(nèi)容的學(xué)習(xí)為以后更高層次函數(shù)的學(xué)習(xí),以及函數(shù)、方程、不等式間的關(guān)系處理奠定了基礎(chǔ),在數(shù)學(xué)學(xué)習(xí)中起著承上啟下的橋梁作用。
從數(shù)學(xué)思想方法看,本章蘊(yùn)涵的類比、建模、轉(zhuǎn)化、方程等數(shù)學(xué)思想方法,對(duì)學(xué)生觀察問題、研究問題和解決問題都是十分有益的。
2、教學(xué)目標(biāo)定位:
知識(shí)目標(biāo):從現(xiàn)實(shí)情境和已知經(jīng)驗(yàn)出發(fā),討論兩個(gè)變量之間的相互關(guān)系,加深對(duì)概念的理解。經(jīng)歷抽象反比例函數(shù)概念的過程,了解反比例函數(shù)的意義,理解反比例函數(shù)的概念。會(huì)求簡單實(shí)際問題中的反比例函數(shù)解析式。
能力目標(biāo):進(jìn)一步提高探究問題、歸納問題的能力,能運(yùn)用函數(shù)思想方法解決有關(guān)問題。
情感目標(biāo):通過已有知識(shí)經(jīng)驗(yàn)探索的過程,體驗(yàn)數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動(dòng)中主動(dòng)探索的意識(shí)和合作交流的習(xí)
慣,逐步增強(qiáng)用函數(shù)觀點(diǎn)思考問題的能力。
3、教學(xué)重點(diǎn)、難點(diǎn) 重點(diǎn):反比例函數(shù)的概念。
難點(diǎn):
1、理解反比例函數(shù)的概念。
2、例題中涉及《科學(xué)》學(xué)科的知識(shí),學(xué)生理解問題時(shí)有一定的難度,是本節(jié)課的難點(diǎn)。
二、教學(xué)診斷分析
1、學(xué)情分析:雖然學(xué)生在八(上)已學(xué)過一次函數(shù)及特例“正比例函數(shù)”的內(nèi)容,對(duì)函數(shù)有了初步的認(rèn)識(shí)。從學(xué)生接觸函數(shù)所蘊(yùn)含的“變化與對(duì)應(yīng)”思想至今已經(jīng)半年有余,學(xué)生對(duì)與函數(shù)相關(guān)的概念不可避免會(huì)有所遺忘或生疏。因此,學(xué)習(xí)本節(jié)課的關(guān)鍵是處理好新舊知識(shí)的聯(lián)系,盡可能地減少學(xué)生接受新知識(shí)的困難。
2、學(xué)法指導(dǎo):從學(xué)生的生活和已有的知識(shí)出發(fā)創(chuàng)設(shè)情境,目的是讓學(xué)生感受數(shù)學(xué)就在我們身邊;以“海寶提問、海寶小提示”等激發(fā)學(xué)生對(duì)數(shù)學(xué)的興趣和愿望;啟發(fā)學(xué)生將新函數(shù)與正比例函數(shù)進(jìn)行類比,使學(xué)生能輕松的得出反比例函數(shù)的概念;通過合作交流,讓學(xué)生在了解反比例函數(shù)實(shí)質(zhì)的基礎(chǔ)上舉出生活中的反比例函數(shù)實(shí)例,體會(huì)生活中處處有函數(shù);在教師的引導(dǎo)下運(yùn)用反比例函數(shù)解決杠桿問題,讓學(xué)生體會(huì)到“理論來自于實(shí)踐,而理論又反過來指導(dǎo)實(shí)踐”的哲學(xué)思想,從而培養(yǎng)和提高學(xué)生分析問題和解決問題的能力。
三、教法構(gòu)思和預(yù)期效果分析
1、構(gòu)思:采用“創(chuàng)設(shè)情境,激發(fā)熱情——合作學(xué)習(xí),探究新知——鞏固練習(xí),了解概念——合作交流,深化概念——運(yùn)用新知,解
決問題——反思總結(jié),共同提高——分層作業(yè),任務(wù)外延”七個(gè)環(huán)節(jié)貫穿本節(jié)課,使學(xué)生能自然而然地掌握反比例函數(shù)的概念、會(huì)判別反比例函數(shù)、能運(yùn)用反比例函數(shù)解決生活中常見的問題。
2、教法分析:
(1)創(chuàng)設(shè)情境,激發(fā)熱情
由于學(xué)生在八(上)已學(xué)過“變量之間的關(guān)系”和“一次函數(shù)”及特例“正比例函數(shù)”的內(nèi)容,對(duì)函數(shù)已經(jīng)有了初步的認(rèn)識(shí)。但相隔時(shí)間已經(jīng)很長,所以有必要讓學(xué)生對(duì)舊知識(shí)進(jìn)行一個(gè)回顧。因此在導(dǎo)入中設(shè)置的1、2兩個(gè)正比例函數(shù)的問題,且問題與世博會(huì)吉祥物和場館有關(guān),比較貼近學(xué)生生活,讓學(xué)生感受到親切、自然,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生思考問題的積極主動(dòng)性和解決問題的能力。
3、4兩個(gè)問題中又涉及了函數(shù)表達(dá)形式中的表格法讓學(xué)生感知兩個(gè)新的函數(shù),并且讓學(xué)生體會(huì)兩個(gè)變量的乘積是一個(gè)不為零的常數(shù)這一特質(zhì)。
(2)合作學(xué)習(xí),探究新知
通過從四個(gè)等式中找學(xué)生熟悉的函數(shù),回顧正比例函數(shù)的定義,也為反比例函數(shù)的定義順利得出做好鋪墊。學(xué)生在找出熟悉函數(shù)的同時(shí),也對(duì)另兩個(gè)函數(shù)產(chǎn)生了疑惑,激發(fā)了學(xué)生探索新知的欲望。通過回憶小學(xué)兩個(gè)量成反比例,引出課題《反比例函數(shù)》。通過式子的變形,讓學(xué)生抽象出反比例函數(shù)的一般形式,引導(dǎo)學(xué)生類比正比例函數(shù)的定義方法,得出反比例函數(shù)的定義。
(3)鞏固練習(xí),了解概念
通過練習(xí)鞏固反比例函數(shù)的定義;反比例函數(shù)的三種變型形式;注意事項(xiàng)中兩個(gè)不為零;在練習(xí)中通過“小海寶的提示”讓學(xué)生對(duì)反比例函數(shù)定義有更深的認(rèn)識(shí)。
(4)合作交流,深化概念
為了讓學(xué)生深刻感受到數(shù)學(xué)就在我們身邊,檢驗(yàn)學(xué)生是否從真正意義上理解了反比例函數(shù)的本質(zhì),以合作討論的形式讓學(xué)生從生活中尋找反比例函數(shù)的例子,從而加深對(duì)反比例函數(shù)意義的理解。
(5)運(yùn)用新知,解決問題
教材中的例題物理學(xué)中的杠桿原理,由于學(xué)生還沒有接觸過,在講解例題前有必要簡單地對(duì)學(xué)生描述一下杠桿原理。通過此例,讓學(xué)生感受用數(shù)學(xué)模式的變化來理解物理性質(zhì),使學(xué)生在運(yùn)用數(shù)學(xué)知識(shí)的能力上有一個(gè)提高。
(6)反思總結(jié),共同提高
由學(xué)生總結(jié)本節(jié)課的主要內(nèi)容、要注意的地方和所涉及的數(shù)學(xué)思想等。通過小結(jié),培養(yǎng)學(xué)生自我整理的學(xué)習(xí)習(xí)慣,強(qiáng)化對(duì)知識(shí)的理解和記憶,并鍛煉學(xué)生歸納概括的能力。再由老師對(duì)本節(jié)課的知識(shí)要點(diǎn)加以整理歸納,使學(xué)生在腦海中形成一個(gè)完整的知識(shí)體系。
(7)分層作業(yè),任務(wù)外延
讓學(xué)生根據(jù)自己的情況有層次地練習(xí),既使學(xué)生掌握基礎(chǔ)知識(shí),又使學(xué)有佘力的學(xué)生有所提高。并要求學(xué)生在課后細(xì)心觀察生活,留心身邊的數(shù)學(xué)知識(shí),培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣。
3、教學(xué)預(yù)期效果分析
1)本節(jié)課以兩個(gè)正比例函數(shù)的實(shí)例和兩個(gè)反比例函數(shù)的實(shí)例導(dǎo)入,給了學(xué)生親切感的同時(shí),也回顧了已熟悉的正比例函數(shù)及定義方式,從而使新識(shí)和舊知之間產(chǎn)生碰撞,教師通過用類比的方法引導(dǎo)學(xué)生,使得反比例函數(shù)概念水到渠成。
2)在學(xué)生處于一節(jié)課最疲倦的時(shí)間段時(shí),通過合作討論、以有獎(jiǎng)?chuàng)尨鸬姆绞剑僖淮渭ぐl(fā)了學(xué)生踴躍舉手回答問題的欲望,反而使課堂氣氛推向高潮。
3)對(duì)于解決本節(jié)課難點(diǎn)“例題的第3小題”時(shí),在第2小題中又補(bǔ)充了兩個(gè)口答方式的“已知?jiǎng)恿Ρ矍髣?dòng)力”小問題,并用表格形式呈現(xiàn),學(xué)生不難從表格中猜測出當(dāng)動(dòng)力臂擴(kuò)大到原來的n倍,動(dòng)力將縮小為原來的1/n,老師乘勢(shì)用驗(yàn)證猜想的方式推出第3小題,同樣利用表格的形式,讓數(shù)據(jù)直觀地展現(xiàn)在學(xué)生面前,不僅輕松地解決本節(jié)課的一個(gè)難點(diǎn),還讓學(xué)生體驗(yàn)了真理的產(chǎn)生過程,即:實(shí)驗(yàn)——猜想——驗(yàn)證。
函數(shù)課件【篇7】
§5 簡單的冪函數(shù)(第1課時(shí))
交大二附中
劉正偉
一、課標(biāo)三維目標(biāo):
1.知識(shí)技能:了解簡單冪函數(shù)的概念;通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行初步的應(yīng)用.2.過程與方法:通過作函數(shù)圖像,讓學(xué)生體會(huì)冪函數(shù)圖像的特點(diǎn),會(huì)利用定義證
明簡單函數(shù)的奇偶性,了解利用奇偶性畫函數(shù)圖像和研究函數(shù)的方法。
3.情感、態(tài)度、價(jià)值觀:進(jìn)一步滲透數(shù)形結(jié)合與類比的思想方法;培養(yǎng)從特殊歸
納出一般的意識(shí),體會(huì)冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對(duì)稱性。
二、教學(xué)重點(diǎn)與難點(diǎn):
重點(diǎn):冪函數(shù)的概念,函數(shù)奇、偶性的概念。
難點(diǎn):判斷函數(shù)的奇偶性。
三、學(xué)法指導(dǎo):
通過數(shù)形結(jié)合,類比、觀察、思考、交流、討論,理解冪函數(shù)的概念和函數(shù)的奇偶性。
四、教學(xué)方法:
對(duì)奇偶性要求不高,題目不需要過難,盡量用多媒體和計(jì)算機(jī)畫函數(shù)的圖像,重在從圖上看出圖像關(guān)于誰對(duì)稱,著重從對(duì)稱的角度應(yīng)用這一性質(zhì),培養(yǎng)學(xué)生自己歸納總結(jié)的能力。
五、教學(xué)過程:
(一)創(chuàng)設(shè)情境(生活實(shí)例中抽象出幾個(gè)數(shù)學(xué)模型)
1.如果張紅購買每千克1元的蔬菜x千克,那么她需要付的錢數(shù) p=x元,這里p是s的函數(shù).2.如果正方形的邊長為a,那么正方形的面積S=a2,這里S是a的函數(shù).3.如果正方體的邊長為a,那么正方體的體積V=a3,這里V是a的函數(shù)
4.如果正方形場地的面積為S,那么正方形的邊長a=S1/2,這里a是S的函數(shù).5.如果某人t s內(nèi)騎車行進(jìn)了1km,那么他騎車的平均速度 v=t-1km/s,這里v 是t的函數(shù).【思考】上述函數(shù)解析式有什么形式特征?具有什么共同點(diǎn)?(教師將解析式寫成指數(shù)冪形式,以啟發(fā)學(xué)生歸納,板書課題并歸納冪函數(shù)的定義。)
(二)探究冪函數(shù)的概念、圖象和性質(zhì)
1.冪函數(shù)的定義
如果一個(gè)函數(shù),底數(shù)是自變量x,指數(shù)是常量α,即y = x,這樣的函數(shù)稱為冪函數(shù).如
α【練】為了加深對(duì)定義的理解,讓學(xué)生判別下列函數(shù)中有幾個(gè)冪函數(shù)?
212x2(1)y=x+x(2)y=(3)y=2(4)y=2(5)y=2x(6)y=x3xx 22.冪函數(shù)的圖象和性質(zhì)
【1】通過幾何畫板演示讓學(xué)生認(rèn)識(shí)到,冪函數(shù)的圖象因a的不同而形狀各異 【2】引導(dǎo)學(xué)生從5個(gè)具體冪函數(shù)的圖象入手,研究冪函數(shù)的性質(zhì)
① 畫出y?x,y?x,y?x,y?x,y?x?1的圖象(重點(diǎn)畫y=x3和y=x1/2的圖象----學(xué)生畫,再用幾何畫板演示)
2312
學(xué)生活動(dòng):1.學(xué)生自己說出作圖步驟,交流討論單調(diào)性。
學(xué)生活動(dòng):2.觀察交流,分析圖像還有那些特點(diǎn)?
3.觀察函數(shù)值和自變量取值有什么特點(diǎn)?
我們還可以看到,f(x)=x3 的圖像關(guān)于原點(diǎn)對(duì)稱.并且對(duì)任意的x,f(-x)=(-x)3=-x3,即f(-x)=-f(x).
(三)奇函數(shù)、偶函數(shù)的定義
一般地,圖像關(guān)于原點(diǎn)對(duì)稱的函數(shù)叫作奇函數(shù),即f(-x)=-f(x);反之,滿足f(-x)=-f(x)的函數(shù)y=f(x)一定是奇函數(shù)。
2學(xué)生通過類比,自己找出偶函數(shù)的定義,可以建議利用y=x的圖像特征?
一定是偶函數(shù)。
當(dāng)函數(shù)f(x)是奇函數(shù)或偶函數(shù)時(shí),稱函數(shù)具有奇偶性。例1:畫出下列函數(shù)的圖像,判斷奇偶性.(1)f(x)=-3x-1;
(2)f(x)= x2,x∈﹙-3,3〕
(3)f(x)= x2-3
;(4)f(x)= 2(x+1)2+1 圖像關(guān)于y軸對(duì)稱的函數(shù)叫作偶函數(shù),即f(-x)=f(x);反之,滿足f(-x)=f(x)的函數(shù)y=f(x)學(xué)生活動(dòng):思考討論:
1.總結(jié)奇偶性對(duì)函數(shù)定義域的要求.2.總結(jié)利用圖像法判斷函數(shù)奇偶性
(四)根據(jù)定義法判斷奇偶性
例2.判斷f(x)=-2x5 和g(x)= x4 +2的奇偶性.
由于從圖像上進(jìn)行觀察是一種常用而又較為粗略的方法,嚴(yán)格的說,它需要根據(jù)奇偶函數(shù)的定義進(jìn)行證明。
學(xué)生自己先動(dòng)手證明,教師一旁指導(dǎo)。要注意書寫規(guī)范,并討論交流定義法證明的步驟。
例3學(xué)生活動(dòng):動(dòng)手實(shí)踐
在圖2-28 中,只畫出了函數(shù)圖象的一半,請(qǐng)你畫出它們的另一半,并說出畫法的依據(jù).
結(jié)論:
在研究函數(shù)時(shí),如果知道其圖像具有關(guān)于原點(diǎn)或y軸對(duì)稱的特點(diǎn),那么我們可以先研究它的一半,再利用對(duì)稱性了解另一半,從而可以減少工作量.
六.歸納小結(jié):(學(xué)生自己交流總結(jié))
1.本節(jié)課學(xué)習(xí)的主要知識(shí)是什么?
2.如何確定函數(shù)的奇偶性,其定義域有何特征?
3.思考討論填寫常用冪函數(shù)規(guī)律表。
七.作業(yè):課本第50頁A組1(2),2,3(1)(2),4
選做:B組、第2題
八.板書設(shè)計(jì):
簡單的冪函數(shù)
α一. 定義:形如y = x,α是常量.二. 奇、偶函數(shù)的定義: 三. 定義證明奇偶性。(教師板演)
八.教學(xué)反思:
函數(shù)課件【篇8】
本節(jié)課主要內(nèi)容包括:運(yùn)用二次函數(shù)的最大值解決最大面積的問題,讓學(xué)生體會(huì)拋物線的頂點(diǎn)就是二次函數(shù)圖象的最高點(diǎn)(最低點(diǎn)),因此,可利用頂點(diǎn)坐標(biāo)求實(shí)際問題中的最大值(或最小值).在最大利潤這個(gè)問題中,應(yīng)用頂點(diǎn)坐標(biāo)求最大利潤,是較難的實(shí)際問題。
本節(jié)課的設(shè)計(jì)是從生活實(shí)例入手,讓學(xué)生體會(huì)在解決問題的過程中獲取知識(shí)的快樂,使學(xué)生成為課堂的主人。
按照新課程理念,結(jié)合本節(jié)課的具體內(nèi)容,本節(jié)課的教學(xué)目標(biāo)確定為相互關(guān)聯(lián)的三個(gè)層次:
1、知識(shí)與技能
通過實(shí)際問題與二次函數(shù)關(guān)系的探究,讓學(xué)生掌握利用頂點(diǎn)坐標(biāo)解決最大值(或最小值)問題的方法。
2、過程與方法
通過對(duì)實(shí)際問題的研究,體會(huì)數(shù)學(xué)知識(shí)的現(xiàn)實(shí)意義。進(jìn)一步認(rèn)識(shí)如何利用二次函數(shù)的有關(guān)知識(shí)解決實(shí)際問題。滲透轉(zhuǎn)化及分類的數(shù)學(xué)思想方法。
3、情感態(tài)度價(jià)值觀
(1)通過巧妙的教學(xué)設(shè)計(jì),激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受數(shù)學(xué)的美感。
(2)在知識(shí)教學(xué)中體會(huì)數(shù)學(xué)知識(shí)的應(yīng)用價(jià)值。
本節(jié)課的教學(xué)重點(diǎn)是 “探究利用二次函數(shù)的最大值(或最小值)解決實(shí)際問題的方法”,教學(xué)難點(diǎn)是“如何將實(shí)際問題轉(zhuǎn)化為二次函數(shù)的問題”。
作為一線教師,應(yīng)該靈活地處理和使用教材。充分發(fā)揮教師自己的智慧,把學(xué)生置于教學(xué)的出發(fā)點(diǎn)和核心地位,應(yīng)學(xué)生而動(dòng),應(yīng)情境而變,課堂才能煥發(fā)勃勃生機(jī),課堂上才能顯現(xiàn)真正的活力。因此我對(duì)教材進(jìn)行了重新開發(fā),從學(xué)生熟悉的生活情境出發(fā),與學(xué)生生活背景有密切相關(guān)的學(xué)習(xí)素材來構(gòu)建學(xué)生學(xué)習(xí)的內(nèi)容體系。把握好以下兩方面內(nèi)容:
(一)、利用二次函數(shù)解決實(shí)際問題的易錯(cuò)點(diǎn):
①題意不清,信息處理不當(dāng)。
②選用哪種函數(shù)模型解題,判斷不清。
③忽視取值范圍的確定,忽視圖象的正確畫法。
④將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,對(duì)學(xué)生要求較高,一般學(xué)生不易達(dá)到。
(二)、解決問題的突破點(diǎn):
①反復(fù)讀題,理解清楚題意,對(duì)模糊的信息要反復(fù)比較。
②加強(qiáng)對(duì)實(shí)際問題的分析,加強(qiáng)對(duì)幾何關(guān)系的探求,提高自己的分析能力。
③注意實(shí)際問題對(duì)自變量 取值范圍的影響,進(jìn)而對(duì)函數(shù)圖象的影響。
④注意檢驗(yàn),養(yǎng)成良好的解題習(xí)慣。
因此我由課本的一個(gè)問題轉(zhuǎn)化為兩個(gè)實(shí)際問題入手通過創(chuàng)設(shè)情境,層層設(shè)問,啟發(fā)學(xué)生自主學(xué)習(xí)。
1.知識(shí)與能力:初步掌握解決二次函數(shù)在閉區(qū)間上最值問題的一般解法,總結(jié)歸納出二次函數(shù)在閉區(qū)間上最值的一般規(guī)律,學(xué)會(huì)運(yùn)用二次函數(shù)在閉區(qū)間上的圖像研究和理解相關(guān)問題。
2.過程與方法:通過實(shí)驗(yàn),觀察影響二次函數(shù)在閉區(qū)間上的最值的因素,在此基礎(chǔ)上討論探究出解決二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。
3.情感、態(tài)度與價(jià)值觀:通過探究,讓學(xué)生體會(huì)分類討論思想與數(shù)形結(jié)合思想在解決數(shù)學(xué)問題中的重要作用,培養(yǎng)學(xué)生分析問題、解決問題的能力,同時(shí)培養(yǎng)學(xué)生合作與交流的能力。
教學(xué)重點(diǎn):尋求二次函數(shù)在閉區(qū)間上最值問題的一般解法和規(guī)律。
教學(xué)難點(diǎn):含參二次函數(shù)在閉區(qū)間上的最值的求法以及分類討論思想的正確運(yùn)用。
我所代班級(jí)的學(xué)生是高一新生, 他們?cè)诔踔幸褜W(xué)過二次函數(shù)的簡單性質(zhì)與圖像,知道二次函數(shù)在 二次函數(shù)最值教學(xué)設(shè)計(jì)時(shí)在頂點(diǎn)處取得最大值或最小值,在前幾節(jié)課又學(xué)習(xí)了函數(shù)的概念與表示、單調(diào)性與最值的相關(guān)知識(shí),已經(jīng)具備了本節(jié)課學(xué)習(xí)必須的基礎(chǔ)知識(shí)。
根據(jù)教學(xué)實(shí)際,我將本節(jié)課設(shè)計(jì)為數(shù)學(xué)探究課,在探究的過程中,借助于多媒體教學(xué)手段,讓學(xué)生觀察幾何畫板中的動(dòng)態(tài)演示,通過對(duì)二次函數(shù)圖像的“再認(rèn)識(shí)”,探究二次函數(shù)在閉區(qū)間上的最值。同時(shí)為了配合多媒體的教學(xué),準(zhǔn)備了學(xué)案讓學(xué)生配套使用。先讓學(xué)生提前預(yù)習(xí)相關(guān)內(nèi)容,對(duì)所要探究的問題有初步的了解,再在課堂上詳細(xì)的探究,課后在學(xué)案上有相應(yīng)的課后作業(yè)題讓學(xué)生鞏固所學(xué)知識(shí)。
(一)復(fù)習(xí)舊知
回憶二次函數(shù)的圖像與性質(zhì):
1. 圖像:
2. 定義域:
3. 單調(diào)性:
4. 最值:
【設(shè)計(jì)意圖】復(fù)習(xí)舊知,引入新課。
(二)自主探究
探究1:定軸定區(qū)間最值問題
分別在下列范圍內(nèi)求函數(shù)f(x)=x2-2x-3的最值:
二次函數(shù)最值教學(xué)設(shè)計(jì) 二次函數(shù)最值教學(xué)設(shè)計(jì)
二次函數(shù)最值教學(xué)設(shè)計(jì)
規(guī)律總結(jié):作出二次函數(shù)的圖像,通過圖像確定函數(shù)在給定區(qū)間上的最值。
【設(shè)計(jì)意圖】
通過探究
1,讓學(xué)生討論探究定函數(shù)在定區(qū)間上最值的求解方法,并通過二次函數(shù)在閉區(qū)間上圖像直觀形象地觀察、分析問題和解決問題。
(三)合作探究(含參二次函數(shù)最值求解問題 )
探究2:動(dòng)軸定區(qū)間最值問題
求函數(shù)f(x)=x2-2tx-3, t∈R在x∈[-2,2]上的最小值。
【設(shè)計(jì)意圖】
通過探究2,讓學(xué)生討論探究動(dòng)軸定區(qū)間上最小值的求解方法,并通過動(dòng)態(tài)演示二次函數(shù)在閉區(qū)間上的圖像,讓學(xué)生直觀形象地觀察、分析問題和解決問題。
變式訓(xùn)練:求函數(shù)f(x)=x2-2tx-3在x∈[-2,2] ,t∈R上的最大值。
【設(shè)計(jì)意圖】
通過變式訓(xùn)練,讓學(xué)生進(jìn)一步體會(huì)動(dòng)軸定區(qū)間上最大值的求解方法,同時(shí)歸納出動(dòng)軸定區(qū)間最值問題求解的一般規(guī)律。
規(guī)律總結(jié):移動(dòng)對(duì)稱軸,比較對(duì)稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進(jìn)行進(jìn)行分類討論,
注意做到“不重不漏”。
探究3:定軸動(dòng)區(qū)間最值問題
求函數(shù)f(x)=x2-2x-3在x∈[t,t+2],t∈R的最小值。
【設(shè)計(jì)意圖】讓學(xué)生分組討論探究3的求解方法,使學(xué)生體會(huì)運(yùn)動(dòng)的相對(duì)性,從而類比探究2的過程與方法可以制定出解決問題3的方法。
變式訓(xùn)練:求函數(shù)f(x)=-x2+2x-3在x∈[t,t+2], t∈R的最大值.
【設(shè)計(jì)意圖】
通過變式訓(xùn)練,讓學(xué)生進(jìn)一步體會(huì)定軸動(dòng)區(qū)間上最大值的求解方法,同時(shí)歸納出定軸動(dòng)區(qū)間最值問題求解的一般規(guī)律。
規(guī)律總結(jié):移動(dòng)區(qū)間,比較對(duì)稱軸和區(qū)間的位置關(guān)系,再結(jié)合圖像進(jìn)行分類討論,注意做到“不重不漏”。
(四)知識(shí)小結(jié)
本節(jié)課研究了二次函數(shù)的三類最值問題:
(1) 定軸定區(qū)間最值問題; (2) 動(dòng)軸定區(qū)間最值問題; (3) 定軸動(dòng)區(qū)間最值問題.
核心思想是判斷對(duì)稱軸與區(qū)間的相對(duì)位置, 應(yīng)用數(shù)形結(jié)合、分類討論思想求出最值。
【設(shè)計(jì)意圖】
歸納總結(jié)二次函數(shù)問題在閉區(qū)間上最值的一般解法和規(guī)律,完成本節(jié)課知識(shí)的建構(gòu)。
(五)結(jié)束語
數(shù)缺形時(shí)少直觀,形少數(shù)時(shí)難入微.數(shù)形結(jié)合百般好,割裂分家萬事休!
(六)課后作業(yè)
1.二次函數(shù)最值教學(xué)設(shè)計(jì)1.分別在下列范圍內(nèi)求二次函數(shù)f(x)=x2+4x-6的最值。
2. 求函數(shù)f(x)=x2+2tx+2,t∈R在x∈[-5,5]上的最值。
3. 求函數(shù)f(x)=x2-2x+2在x∈[t,t+1], t∈R的最小值。
【設(shè)計(jì)意圖】
學(xué)生應(yīng)用探究所得知識(shí)解決相關(guān)問題,進(jìn)一步鞏固和提高二次函數(shù)在閉區(qū)間上最值的求解方法與規(guī)律。
函數(shù)課件【篇9】
教學(xué)目標(biāo):
1.進(jìn)一步理解函數(shù)的表示方法的多樣性,理解分段函數(shù)的表示,能根據(jù)實(shí)際問題列出符合題意的分段函數(shù);
2.能較為準(zhǔn)確地作出分段函數(shù)的圖象;
3.通過教學(xué),進(jìn)一步培養(yǎng)學(xué)生由具體逐步過渡到符號(hào)化,代數(shù)式化,并能對(duì)以往學(xué)習(xí)過的知識(shí)進(jìn)行理性化思考,對(duì)事物間的聯(lián)系的一種數(shù)學(xué)化的思考.
教學(xué)重點(diǎn):
分段函數(shù)的圖象、定義域和值域.
教學(xué)過程:
一、問題情境
1.情境.
復(fù)習(xí)函數(shù)的表示方法;
已知A={1,2,3,4},B={1,3,5},試寫出從集合A到集合B的兩個(gè)函數(shù).
2.問題.
函數(shù)f(x)=|x|與f(x)=x是同一函數(shù)么區(qū)別在什么地方
二、學(xué)生活動(dòng)
1.畫出函數(shù)f(x)=|x|的圖象;
2.根據(jù)實(shí)際情況,能準(zhǔn)確地寫出分段函數(shù)的表達(dá)式.
三、數(shù)學(xué)建構(gòu)
1.分段函數(shù):在定義域內(nèi)不同的部分上,有不同的解析表達(dá)式的函數(shù)通常叫做分段函數(shù).
(1)分段函數(shù)是一個(gè)函數(shù),而不是幾個(gè)函數(shù);
(2)分段函數(shù)的定義域是幾部分的并;
(3)定義域的不同部分不能有相交部分;
(4)分段函數(shù)的圖象可能是一條連續(xù)但不平滑的曲線,也可能是由幾條曲線共同組成;
(5)分段函數(shù)的圖象未必是不連續(xù),不連續(xù)的圖象表示的函數(shù)也不一定是分段函數(shù),如反比例函數(shù)的圖象;
(6)分段函數(shù)是生活中最常見的函數(shù).
四、數(shù)學(xué)運(yùn)用
1.例題.
例1某市出租汽車收費(fèi)標(biāo)準(zhǔn)如下:在3km以內(nèi)(含3km)路程按起步價(jià)7元收費(fèi),超過3km以外的路程按2.4元/km收費(fèi).試寫出收費(fèi)額關(guān)于路程的函數(shù)解析式.
例2如圖,梯形OABC各頂點(diǎn)的坐標(biāo)分別為O(0,0),A(6,0),B(4,2),C(2,2).一條與y軸平行的動(dòng)直線l從O點(diǎn)開始作平行移動(dòng),到A點(diǎn)為止.設(shè)直線l與x軸的交點(diǎn)為M,OM=x,記梯形被直線l截得的在l左側(cè)的'圖形的面積為y.求函數(shù)y=f(x)的解析式、定義域、值域.
例3將函數(shù)f(x)= | x+1|+| x-2|表示成分段函數(shù)的形式,并畫出其圖象,根據(jù)圖象指出函數(shù)f(x)的值域.
2.練習(xí):
練習(xí)1:課本35頁第7題,36頁第9題.
練習(xí)2:
(1)畫出函數(shù)f(x)= 的圖象.
(2) 若f(x)= 求f(-1),f(0),f(2),f(f(-1)),f(f(0)),f(f(12))的值.
(3)試比較函數(shù)f(x)=|x+1|+|x|與g(x)=|2x+1|是否為同一函數(shù).
(4)定義[x]表示不大于x的最大整數(shù),試作出函數(shù)f(x)=[x] (x[-1,3))的圖象.并將其表示成分段函數(shù).
練習(xí)3:如圖,點(diǎn)P在邊長為2的正方形邊上按ABCDA的方向移動(dòng),試將AP表示成移動(dòng)的距離x的函數(shù).
五、回顧小結(jié)
分段函數(shù)的表示分段函數(shù)的定義域分段函數(shù)的圖象;
含絕對(duì)值的函數(shù)常與分段函數(shù)有關(guān);
利用對(duì)稱變換構(gòu)造函數(shù)的圖象.
六、作業(yè)
課堂作業(yè):課本35頁習(xí)題第3題,36頁第10,12題;
課后探究:已知函數(shù)f(x)=2x-1(xR),試作出函數(shù)f(|x|),|f(x)|的圖象.
函數(shù)課件【篇10】
1.能靈活列反比例函數(shù)表達(dá)式解決一些實(shí)際問題.
2.能綜合利用幾何、方程、反比例函數(shù)的知識(shí)解決一些實(shí)際問題.
1.經(jīng)歷分析實(shí)際問題中變量之間的關(guān)系,建立反比例函數(shù)模型,進(jìn)而解決問題.
2.體會(huì)數(shù)學(xué)與現(xiàn)實(shí)生活的緊密聯(lián)系,增強(qiáng)應(yīng)用意識(shí),提高運(yùn)用代數(shù)方法解決問題的能力.
1.積極參與交流,并積極發(fā)表意見.
2.體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具.
1.教師準(zhǔn)備:課件(課本有關(guān)市煤氣公司在地下修建煤氣儲(chǔ)存室等).
2.學(xué)生準(zhǔn)備:(1)復(fù)習(xí)已學(xué)過的反比例函數(shù)的圖象和性質(zhì),(2)預(yù)習(xí)本節(jié)課的內(nèi)容,嘗試收集有關(guān)本節(jié)課的情境資料.
復(fù)習(xí):反比例函數(shù)圖象有哪些性質(zhì)?
反比例函數(shù) y?k
x 是由兩支曲線組成,
當(dāng)K0時(shí),兩支曲線分別位于第一、三象限內(nèi),在每一象限內(nèi),y隨x的增大而減少;
當(dāng)K0時(shí),兩支曲線分別位于第二、四象限內(nèi),在每一象限內(nèi),y隨x的增大而增大.
[例1]市煤氣公司要在地下修建一個(gè)容積為104m3的圓柱形煤氣儲(chǔ)存室.
(1)儲(chǔ)存室的底面積S(單位:m2)與其深度d(單位:m)有怎樣的函數(shù)關(guān)系?
(2)公司決定把儲(chǔ)存室的底面積S定為500m2,施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深?
(3)當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石,為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃把儲(chǔ)存室的深改為15m,相應(yīng)的,儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要(保留兩位小數(shù))。
設(shè)計(jì)意圖:讓學(xué)生體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,此活動(dòng)讓學(xué)生從實(shí)際問題中尋找變量之間的關(guān)系.而關(guān)鍵是充分運(yùn)用反比例函數(shù)分析實(shí)際情況,建立函數(shù)模型,并且利用函數(shù)的性質(zhì)解決實(shí)際問題.
師生行為:
先由學(xué)生獨(dú)立思考,然后小組內(nèi)合作交流,教師和學(xué)生最后合作完成此活動(dòng).
在此活動(dòng)中,教師有重點(diǎn)關(guān)注:
①能否從實(shí)際問題中抽象出函數(shù)模型;
②能否利用函數(shù)模型解釋實(shí)際問題中的現(xiàn)象;
③能否積極主動(dòng)的闡述自己的見解.
生:我們知道圓柱的容積是底面積×深度,而現(xiàn)在容積一定為104m3,所以S·d=104.變形就可得到底面積S與其深度d的函數(shù)關(guān)系,即S=
所以儲(chǔ)存室的底面積S是其深度d的反比例函數(shù).
104 生:根據(jù)函數(shù)S= ,我們知道給出一個(gè)d的值就有唯一的S的值和它相d
對(duì)應(yīng),反過來,知道S的一個(gè)值,也可求出d的值.
題中告訴我們“公司決定把儲(chǔ)存室的底面積5定為500m2,即S=500m2,”施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)多深,實(shí)際就是求當(dāng)S=500m2時(shí),d=?m.根據(jù)S=104104 ,得500=,解得d=20. dd
即施工隊(duì)施工時(shí)應(yīng)該向下挖進(jìn)20米.
生:當(dāng)施工隊(duì)按(2)中的計(jì)劃挖進(jìn)到地下15m時(shí),碰上了堅(jiān)硬的巖石.為了節(jié)約建設(shè)資金,公司臨時(shí)改變計(jì)劃,把儲(chǔ)存室的深度改為15m,即d=15m,相應(yīng)的儲(chǔ)存室的底面積應(yīng)改為多少才能滿足需要;即當(dāng)d=15m,S=?m2呢?
104 根據(jù)S=,把d=15代入此式子,得 d
S=104 ≈666.67. 15104. d
當(dāng)儲(chǔ)存室的'探為15m時(shí),儲(chǔ)存室的底面積應(yīng)改為666.67m2才能滿足需要. 師:大家完成的很好.當(dāng)我們把這個(gè)“煤氣公司修建地下煤氣儲(chǔ)存室”的問題轉(zhuǎn)化成反比例函數(shù)的數(shù)學(xué)模型時(shí),后面的問題就變成了已知函數(shù)值求相應(yīng)自變量的值或已知自變量的值求相應(yīng)的函數(shù)值,借助于方程,問題變得迎刃而解,
1、(基礎(chǔ)題)已知某矩形的面積為20cm2:
(1)寫出其長y與寬x之間的函數(shù)表達(dá)式,并寫出x的取值范圍;
(2)當(dāng)矩形的長為12cm時(shí),求寬為多少?當(dāng)矩形的寬為4cm,
求其長為多少?
(3)如果要求矩形的長不小于8cm,其寬至多要多少?
2、(中檔題)如圖,某玻璃器皿制造公司要制造一種窖積為1升(1升=1立方分米)的圓錐形漏斗.
(1)漏斗口的面積S與漏斗的深d有怎樣的函數(shù)關(guān)系?
(2)如果漏斗口的面積為100厘米2,則漏斗的深為多少?
設(shè)計(jì)意圖:
讓學(xué)生進(jìn)一步體驗(yàn)反比例函數(shù)是有效地描述現(xiàn)實(shí)世界的重要手段,讓學(xué)生充分認(rèn)識(shí)到數(shù)學(xué)是解決實(shí)際問題和進(jìn)行交流的重要工具,更進(jìn)一步激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的欲望.
師生行為:
由兩位學(xué)生板演,其余學(xué)生在練習(xí)本上完成,教師可巡視學(xué)生完成情況,對(duì)“學(xué)困生”要提供一定的幫助,此活動(dòng)中,教師應(yīng)重點(diǎn)關(guān)注:①學(xué)生能否順利建立實(shí)際問題的數(shù)學(xué)模型;②學(xué)生能否積極主動(dòng)地參與數(shù)學(xué)活動(dòng),體驗(yàn)用數(shù)學(xué)模型解決實(shí)際問題的樂趣;③學(xué)生能否注意到單位問題.
生:解:(1)根據(jù)圓錐體的體積公式,我們可以設(shè)漏斗口的面積為Scm,,漏斗的深為dcm,則容積為1升=l立方分米=1000立方厘米.
13000 所以,S·d=1000, S= . 3d
(2)根據(jù)題意把S=100cm2代入S=30003000中,得 100= .d=30(cm). dd
所以如果漏斗口的面積為100c㎡,則漏斗的深為30cm.
3、(綜合題)新建成的住宅樓主體工程已經(jīng)竣工,只剩下樓體外表面需要貼瓷磚,已知樓體外表面的面積為5X103m2.
(1)所需的瓷磚塊數(shù)n與每塊瓷磚的面積s又怎樣的函數(shù)關(guān)系?
(2)為了使住宅樓的外觀更加漂亮,開發(fā)商決定采用灰、白和藍(lán)三種顏色的瓷磚,每塊磚的面積都是80cm2,灰、白、藍(lán)瓷磚使用比例為2:2:1,則需要三種瓷磚各多少塊?
1、通過本節(jié)課的學(xué)習(xí),你有哪些收獲?
列實(shí)際問題的反比例函數(shù)解析式(1)列實(shí)際問題中的函數(shù)關(guān)系式首先應(yīng)分析清楚各變量之間應(yīng)滿足的分式,即實(shí)際問題中的變量之間的關(guān)系立反比例函數(shù)模型解決實(shí)際問題;(2)在實(shí)際問題中的函數(shù)關(guān)系式時(shí),一定要在關(guān)系式后面注明自變量的取值范圍。
2、利用反比例函數(shù)解決實(shí)際問題的關(guān)鍵:建立反比例函數(shù)模型.
P54—55.第2題、第5題
本節(jié)課是用函數(shù)的觀點(diǎn)處理實(shí)際問題,并且是蘊(yùn)含著體積、面積這樣的實(shí)際問題,而解決這些問題,關(guān)鍵在于分析實(shí)際情境,建立函數(shù)模型,并進(jìn)一步明確數(shù)學(xué)問題,將實(shí)際問題置于已有的知識(shí)背景之中,用數(shù)學(xué)知識(shí)重新解釋這是什么?可以是什么?逐步形成考察實(shí)際問題的能力,在解決問題時(shí),應(yīng)充分利用函數(shù)的圖象,滲透數(shù)形結(jié)合的思想.
函數(shù)課件【篇11】
數(shù)學(xué)必修1第二章《基本初等函數(shù)》之
《3.3冪函數(shù)》
教學(xué)反思
冪函數(shù)作為一類重要的函數(shù)模型,是學(xué)生在系統(tǒng)學(xué)習(xí)了指數(shù)函數(shù)、對(duì)數(shù)函數(shù)之后研究的又一類基本初等函數(shù)。學(xué)生已經(jīng)有了學(xué)習(xí)指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的圖象和性質(zhì)的學(xué)習(xí)經(jīng)歷,冪函數(shù)概念的引入以及圖象和性質(zhì)的研究便水到渠成。因此,學(xué)習(xí)過程中,引入冪函數(shù)的概念之后,嘗試放手讓學(xué)生自己進(jìn)行合作探究學(xué)習(xí)。本節(jié)通過實(shí)例,讓學(xué)生認(rèn)識(shí)到冪函數(shù)同樣也是一種重要的函數(shù)模型,通過研究y?x,y?x,y?x2,y?x?1,y?x3等函數(shù)的圖象和性質(zhì),讓學(xué)生認(rèn)識(shí)到冪12指數(shù)大于零和小于零兩種情形下,冪函數(shù)的共性:當(dāng)冪指數(shù)??0時(shí),冪函數(shù)的圖象都經(jīng)過點(diǎn)(0,0)和(1,1),且在第一象限內(nèi)函數(shù)單調(diào)遞增;當(dāng)冪指數(shù)??0時(shí),冪函數(shù)的圖象都經(jīng)過點(diǎn)(1,1),且在第一象限內(nèi)函數(shù)單調(diào)遞減且以兩坐標(biāo)軸為淅近線,在方法上,我們應(yīng)注意從特殊到一般進(jìn)行類比研究冪函數(shù)的性質(zhì),并注意與指數(shù)函數(shù)進(jìn)行對(duì)比學(xué)習(xí)。
將冪函數(shù)限定為五個(gè)具體函數(shù),通過研究它們來了解冪函數(shù)的性質(zhì)。其中,學(xué)生在初中已學(xué)習(xí)了y?x,y?x2,y?x?1等三個(gè)簡單的冪函數(shù),對(duì)它們的圖象和性質(zhì)已經(jīng)有了一定的感性認(rèn)識(shí),現(xiàn)在明確提出冪函數(shù)的概念,有助于學(xué)生形成完整的知識(shí)結(jié)構(gòu)。學(xué)生已經(jīng)了解了函數(shù)的基本概念、性質(zhì)和圖象,研究了兩個(gè)特殊函數(shù):指數(shù)函數(shù)和對(duì)數(shù)函數(shù),對(duì)研究函數(shù)已經(jīng)有了基本思路和方法。所以本人建議,逐個(gè)畫出五個(gè)函數(shù)的圖象,從定義域、值域、奇偶性、單調(diào)性、過定點(diǎn)等方面進(jìn)行分析、探究,得到各自的性質(zhì),從而再歸納出冪函數(shù)的基本性質(zhì)。除內(nèi)容本身外,掌握研究函數(shù)的一般思想方法也是至關(guān)重要的。
學(xué)習(xí)中學(xué)生容易將冪函數(shù)和指數(shù)函數(shù)混淆,因此在引出冪函數(shù)的概念之后,可以組織學(xué)生對(duì)兩類不同函數(shù)的表達(dá)式進(jìn)行辨析。