幼兒教師教育網,為您提供優(yōu)質的幼兒相關資訊

勾股定理教案

發(fā)布時間:2023-03-17 勾股定理教案

勾股定理教案通用。

小編為大家呈上收集和整理的勾股定理教案,相信您在本文中有所收獲。教案課件是老師教學工作的起始環(huán)節(jié),也是上好課的先決條件,因此教案課件可能就需要每天都去寫。老師在上課時要以教案課件為依據。

勾股定理教案(篇1)

一、勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用. 據此,制定教學目標如下:

1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.

3.情感與態(tài)度目標:感受數學在生活中的應用,感受數學定理的美.

教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用.

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.

二.說教法和學法

1.以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.

2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.

3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望.

三、教學程序本節(jié)內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.

勾股定理教案(篇2)

尊敬的各位領導,各位老師:

大家好!今天我說課的內容是初中八年級數學人教版教材第十八章第一節(jié)《勾股定理》(第一課時),下面我分五部分來匯報我這節(jié)課的教學設計,這就是"教材分析"、"學情分析"、"教法選擇"、"學法指導"、"教學過程"。

一、教材分析

(一) 教材地位和作用

勾股定理是幾何中的重要定理之一,它揭示的是直角三角形中三邊的數量關系,將幾何圖形與數字聯系起來。它在數學的發(fā)展中起過重要的作用,在生產生活中有著廣泛的應用。而且它在其它自然學科中也常常用到。因此,這節(jié)課有著舉足輕重的地位。

(二)教學目標

根據新課程標準的要求和本課的特點,結合學生的實際情況,我確定了本課的教學目標:

1、知識與技能方面

了解勾股定理的文化背景,經歷探索勾股定理的過程,掌握直角三角形三邊之間的數量關系, 并能簡單應用。

2、過程與方法方面

經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,能感受到數學思考過程的條理性,發(fā)展數學的說理和簡單的推理的意識,和語言表達的能力,并體會數形結合和特殊到一般的思想方法。

3、情感態(tài)度與價值觀方面

(1)通過了解勾股定理的歷史,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

(2) 通過研究一系列富有探 究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。

(三)教學重點難點

教學重點:掌握勾股定理,并能用它來解決一些簡單的問題。

教學難點:勾股定理的證明。

二、學情分析

我們班日常經常使用多媒體輔助教學。經過一年多的幾何學習,學生對幾何圖形的觀察,幾何圖形的分析能力已初步形成。部分學生解題思維能力比較高,能夠正確 歸納所學知識,通過學習小組討論交流,能夠形成解決問題的思路。 現在的學生已經厭倦教師單獨的說教方式,希望教師設計便于他們進行觀察的.幾何環(huán)境,給他們自己探索、發(fā)表自己見解和表現自己才華的機會;更希望教師滿足他 們的創(chuàng)造愿望。

三、教法選擇

根據本節(jié)課的教學目標、教學內容以及學生的認知特點,結合我校的“當堂達標”教學模式,我在教法上采用引導發(fā)現法為主,并以分析法、討論法相結合。設計" 觀察——討論—歸納"的教學方法,意在幫助學生通過自己動手實驗和直觀情景觀察,從實踐中獲取知識,并通過討論來深化對知識的理解。本節(jié)課采用了多媒體輔 助教學,能夠直觀、生動的反應圖形,增加課堂的容量,同時有利于突出重點、分散難點,增強教學形象性,更好的提高課堂效率。

四、學法指導:

為了充分體現《新課標》的要求,培養(yǎng)學生的觀察分析能力,邏輯思維能力,積累豐富的數學學習經驗,這節(jié)課主要采用觀察分析,自主探索與合作交流的學習方 法,使學生積極參與教學過程。在教學過程中展開思維,培養(yǎng)學生提出問題、分析問題、解決問題的能力,進一步體會觀察、類比、分析、從特殊到一般等數學思 想。借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主人。

五、教學過程

根據《新課標》中"要引導學生投入到探索與交流的學習活動中"的教學要求,本節(jié)課的教學過程我是這樣設計的:

(一)創(chuàng)設情境,引入新課

一個設計合理的情境引入可以說在一定程度上決定著學生能否帶著興趣積極投入到本節(jié)課的學習中。為了體現數學源于生活,數學是從人的需要中產生的,學習數學的目的是為了用數學解決實際問題。我設計了以下題目:

星期日老師帶領全班同學去某山風景區(qū)游玩,同學們看到山勢險峻,查看景區(qū)示意圖得知:這座山主峰高約為900米,如圖:為了方便游人,此景區(qū)從主峰A處向地面B處架了一條纜車線路,已知山底端C處與地面B處相距1200米,

∠ACB=90° ,你能用所學知識算出纜車路線AB長應為多少?

答案是不能的。然后教師指出,通過這節(jié)課的學習,問題將迎刃而解。

設計意圖:以趣味性題目引入。從而設置懸念,激發(fā)學生的學習興趣。 教師引導學生把實際問題轉化為數學問題,這其中滲透了一種數學思想,對于學生也是一種挑戰(zhàn),能激發(fā)學生探究的欲望,自然引出下面的環(huán)節(jié)。

緊接著出示本節(jié)課的學習目標:

1、了解勾股定理的文化背景,體驗勾股定理的探索過程。

2、掌握勾股定理的內容,并會簡單應用。

(二)勾股定理的探索

1、猜想結論

(1)探究一:等腰直角三角形三邊關系。

由課本64頁畢達哥拉斯的故事,探究等腰直角三角形三邊關系。結合課件中格點圖形的面積,學生自主探究,通過計算、討論、總結,得出結論:等腰直角三角形的斜邊的平方等于兩直角邊的平方和。

在此過程中,給學生充分的時間、觀察、比較、交流,最后通過活動讓學生用語言概括總結。

提問:等腰直角三角形有這樣的性質,其他的直角三角形也有這樣的性質嗎?

(2、)探究二:一般的直角三角形三邊關系。

在課件中的格點圖形中,利用面積,再次探究直角三角形的三邊關系。學生自主探究,通過計算、討論、總結,得出結論:在直角三角形中,兩直角邊的平方和等于斜邊的平方。

設 計意圖:組織學生進行討論,在此基礎上教師引導學生從三邊的平方有何大小關系入手進行觀察。教師在多媒體課件上直觀地演示。通過學生自己探索、討論,由學 生自己得出結論。這樣,讓學生參與定理的再發(fā)現過程,他們通過自己觀察、計算所得出的定理,在心理產生自豪感,從而增強學生的學習數學的自信心。

2、證明猜想

目前世界上證明該勾股定理的方法有很多種,而我國古代數學家利用拼接、割補圖形,計算面積的思路提供了很多種證明方法,下面我們通過古人趙爽的方法進行證 明。學生分組活動,根據圖形的面積進行計算,推導出勾股定理的一般形式:a + b = c。即直角三角形兩直角邊的平方和等于斜邊的平方、

設計意圖:通過利用多媒體課件的演示,更直觀、形象的向學生介紹用拼接、割補圖形,計算面積的證明方法,使學生認識到證明的必要性、結論的確定性,感受到前人的偉大和智慧。

3、簡要介紹勾股定理命名的由來

我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即 “勾三、股四、弦五”,它被記載于我國古代著名的數學著作《周髀算經》中、我國稱這個結論為"勾股定理",西方畢達哥拉斯于公元前五世紀發(fā)現了勾股定理, 但他比商高晚出生五百多年。

設計意圖:對比以上事實對學生進行愛國主義教育,激勵他們奮發(fā)向上。

(三)勾股定理的應用

1、利用勾股定理,解決引入中的問題。體會數學在實際生活中的應用。

2、教學例1:課本66頁探究1

師生討論、分析: 木板的寬2、2米大于1米,所以橫著不能從門框內通過.

木板的寬2、2米大于2米,所以豎著不能從門框內通過.

因為對角線AC的長度最大,所以只能試試斜著 能否通過.

從而將實際問題轉化為數學問題.

提示:

(1)在圖中構造出一個直角三角形。(連接AC)

(2)知道直角△ABC的那條邊?

(3)知道直角三角形兩條邊長求第三邊用什么方法呢?

設計意圖:此題是將實際為題轉化為數學問題,從中抽象出Rt△ABC,并求出斜邊A C的長。本例意在滲透實際問題和勾股定理的知識聯系。通過系列問題的設置和解決,旨在降低難度,分散難點,使難點予以突破,讓學生掌握勾股定理在具體問題中的應用,使學生獲得新知,體驗成功,從而增加學習興趣。

(四)、課堂練習 習題18、1 1、5。 學生板演,師生點評。

設計意圖:通過練習使學生加深對勾股定理的理解,讓學生比較練習題和例題中條件的異同,進一步讓學生理解勾股定理的運用。

(五)課堂小結

對學生提問:"通過這節(jié)課的學習有什么收獲?"

學生同桌間暢談自己的學習感受和體會,并請個別學生發(fā)言。

設計意圖:讓學生自己小結,活躍了氣氛,做到全員參與,理清了知識脈絡,強化了重點,培養(yǎng)了學生口頭表達能力。

(六)達標訓練與反饋

設計意圖:必做題較為簡單,要求全體學生完成;選作題有一點的難度,基礎較好的學生能夠完成,體現分層教學。

以上內容,我僅從"說教材","說學情"、"說教法"、"說學法"、"說教學過程"五個方面來說明這堂課"教什么"和"怎么教",也闡述了"為什么這樣 教",讓學生人人參與,注重對學生活動的評價, 探索過程中,會為學生創(chuàng)設一個和諧、寬松的情境。希望得到各位專家領導的指導與指正,謝謝!

勾股定理教案(篇3)

尊敬的各位考官:

大家好,我是X號考生,今天我說課的題目是《勾股定理的逆定理》。

新課標指出:數學課程要面向全體學生,適應學生個性發(fā)展的需要,使得人人都能獲得良好的數學教育,不同的人在數學上都能得到不同的發(fā)展。今天我將貫徹這一理念從教材分析、學情分析、教學過程等幾個方面展開我的說課?!緒WW.277433.cOM 正能量句子】

一、說教材

首先來談一談我對教材的理解。

本節(jié)課選自人教版初中數學八年級下冊第十七章第二節(jié)《勾股定理的逆定理》,它是在學生掌握勾股定理及一般三角形性質的基礎上進行教學的。應用前面學習的勾股定理及三角形全等證明逆定理是本節(jié)課的關鍵步驟,同時本節(jié)課又豐富了三角形的性質,是后面幾何問題的基礎理論性知識。

二、說學情

接下來談談學生的實際情況。本階段的學生已經掌握了一定的基礎知識,處于由幾何內容的初級向高級行進的過程。他們的幾何思維正在逐步形成和發(fā)展,對幾何題目具有一定的分析、想象、概括能力,具有對未知事物的新鮮感和探求欲。同時也要注意到學生能力的不成熟,教學中鼓勵與引導并重。

三、說教學目標

根據以上對教材的分析以及對學情的把握,我制定了如下教學目標:

(一)知識與技能

理解并掌握勾股定理的逆定理,會應用定理判定直角三角形;理解勾股定理與勾股定理逆定理的區(qū)別與聯系;理解原命題和逆命題的概念,知道二者的關系及二者真假性的關系。

(二)過程與方法

經歷得出猜想、推理證明的過程,提升自主探究、分析問題、解決問題的能力。

(三)情感、態(tài)度與價值觀

體會事物之間的聯系,感受幾何的魅力。

四、說教學重難點

在教學目標的實現過程中,教學重點是勾股定理的逆定理及其證明,教學難點是勾股定理的逆定理的證明。

五、說教法學法

為了突破重點,解決難點,順利達成教學目標,教學中我將主要采用小組討論、自主探究的教學方法,輔以適量的教師講解和引導,把課堂還給學生。

六、說教學過程

下面我將重點談談我對教學過程的設計。

(一)導入新課

課堂伊始,我采用復習舊知與創(chuàng)設情境相結合的導入方式。首先我會帶領學生復習勾股定理并明確其題設和結論,為后面提出逆命題、逆定理做鋪墊。接著提問學生如何畫直角三角形,學生很容易想到用三角尺或量角器。此時我會要求學生不能用繩子以外的工具,借助學生的困惑,給出古埃及人利用等長的3、4、5個繩結間距畫直角三角形的情境。以古埃及人所用方法中蘊含何道理為切入點引出課題。

通過這樣的導入方式,能夠帶領學生回顧上節(jié)課的內容,為本節(jié)課奠定好基礎,同時用情境激發(fā)學生的好奇心和求知欲,更好地展開教學。

(二)講解新知

接下來是最重要的新授環(huán)節(jié)。

請學生思考3,4,5之間的關系,結合勾股定理的學習經驗明確

出示數據2.5cm,6cm,6.5cm,請學生計算驗證數據滿足上述平方和關系,并畫出相應邊長的三角形檢驗是否為直角三角形。

學生活動:同桌兩人一組,將三邊換成其他滿足上述平方和關系的數據,如4cm,7.5cm,8.5cm,畫出相應邊長的三角形檢驗是否為直角三角形。

在得到肯定結論后,引導學生基于以上例子大膽猜想得出命題。

勾股定理教案(篇4)

教材中直接給出“趙爽弦圖”的證法對學生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學生的大腦,讓學生發(fā)揮自己的聰明才智證明勾股定理。這是教學的難點也是重點,教師應給學生充分的自主探索的時間與空間,讓學生的思維在相互討論中碰撞、在相互學習中完善。教師深入到學生中間,觀察學生探究方法接受學生的質疑,對于不同的拼圖方案給予肯定。從而體現出“學生是學習的主體,教師是組織者、引領者與合作者”這一教學理念。學生會發(fā)現兩種證明方案。

方案1為趙爽弦圖,學生講解論證過程,再現古代數學家的探索方法。方案2為學生自己探索的結果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學生經歷由表面到本質,由合情推理到演繹推理的發(fā)掘過程,體會數學的嚴謹性。對比“古”、“今”兩種證法,讓學生體會“吹盡黃沙始到金”的喜悅,感受到“青出于藍而勝于藍”的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學生的符號意識。

教師對“勾、股、弦”的含義以及古今中外對勾股定理的研究做一個介紹,使學生感受數學文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學生欣賞數學的精巧、優(yōu)美。

勾股定理教案(篇5)

尊敬的各位評委、老師,大家好!

我說課的題目是華師版八年級上冊第十四章第一節(jié)第一課時《勾股定理》。

教材分析:

如果說數學思想是解決數學問題的一首經典老歌,那么本節(jié)課蘊含的由特殊到一般的思想、數學建模的思想、轉化的思想就是歌中最為活躍的音符!本節(jié)的內容是在學習了二次根式之后的教學,是在學生已經掌握了直角三角形的有關性質的基礎上進行的后繼學習,是中學數學幾個重要定理之一。它揭示了直角三角形三條邊之間的數量關系,是解直角三角形的主要根據之一,是解決四邊形、圓等知識的靈魂,在實際生活中有著極其廣泛的應用。

勾股定理的發(fā)現、驗證和應用蘊含著豐富的文化價值,在理論上占有重要地位,因此本節(jié)在教材中起著承前啟后的橋梁作用。

新課標下的數學教學不僅是知識的教學,更應注重能力的培養(yǎng)及情感的教育,因此,根據本節(jié)在教學中的地位和作用,結合初二學生不愛表現、好靜不好動的特點,我確定本節(jié)教學目標如下:

1、探索并利用拼圖證明勾股定理。

2、利用勾股定理解決簡單的數學問題。

3、感受數學文化,體會解決問題方法的多樣性和數形結合的思想。

本著課標的要求,在吃透教材的基礎上,我確定本節(jié)的教學重點、難點、關鍵如下:

勾股定理的證明和簡單應用是本節(jié)的重點,用拼圖的方法證明勾股定理是難點,而解決難點的關鍵是充分利用圖形面積的各種表示方法構造恒等式。

為了講清重點、突破難點、抓住關鍵,使學生達到預定目標,我對教法和學法分析如下:

教法分析:

新課程標準強調要從學生已有的經驗出發(fā),最大限度的激發(fā)學生學習積極性,新課程下的數學教師更應是學生學習活動的組織者、引導者、合作者,因此,鑒于教材的重點和初二學生的認知水平,我以學生充分預習為前提,以學生的動手操作、講解為中心,讓學生親歷親為,體會做數學的過程,激發(fā)學生的探索興趣,使課堂活躍起來,提高課堂效率。運用觀察法、歸納法、引導發(fā)現法、討論法等多種教學方法相結合的形式,讓學生充分展示預習成果,體驗成功的快樂,為終身學習和發(fā)展打下堅實的基礎。為了增大課堂容量、給學生創(chuàng)設高效的數學課堂,給學生提供足夠從事數學活動的時間,以導學案的形式、運用多媒體輔助教學。

學法分析:

學法是學生再生知識的法寶,為了把學生學習過程當作認知事物的過程來解決,教學中我首先引導學生先動手操作,再合作交流,培養(yǎng)學生良好的學習品質和與人合作的能力;接下來,我讓學生獨立思考,點撥學生用特殊到一般的思想大膽償試,水到渠成的突出勾股定理的探索這一重點,然后通過學生展示成果讓學生抓住用不同的方式拼出圖形,從而用不同的方式表示圖形面積建立恒等式這一關健,以自己拼圖操作、講解展示預習成果突破定理證明這一難點,指導學生嚴謹、合理的書寫格式,培養(yǎng)學生的邏輯思維能力和語言表達能力。

為了充分調動學生的學習積極性,創(chuàng)設優(yōu)化高效的數學課堂,我以導學案的方式循序見進的設計教學流程。

以學生必讀課本48—52頁,選讀課本55、56頁的課前預習為前提,共分四個環(huán)節(jié)來進行教學

1、勾股定理的探究:讓學生歷經量一量、算一算、想一想的由特殊到一般的數學思想引導好學生課前預習,再以檢查預習成果的形式為新知的探究作好鋪墊。

2、勾股定理的證明:以學生拼圖展示、講解預習成果的形式完成對定理的證明。

3、勾股定理的應用:以課堂練習、學生個性補充和老師適當的個性化追加的形式實現對定理的靈活應用。

4、學后反思:以學生小結的形式引導學生從知識、情感兩方面實現對本節(jié)內容的鞏固與升華。

說創(chuàng)新點:

為了給學生營造一個和諧、民主、平等而高效的數學課堂,我以新課程標準的基本理念和總體目標為指導思想,面向全體學生,選擇適當的起點和方法,充分發(fā)揮學生的主體地位與教師主導作用相統(tǒng)一的原則。教學中注重學生的動手操作能力的培養(yǎng),化繁為簡,化抽象為直觀。例如我以展示預習成果為主線,以學生動手操作、講解等直觀方式代替老師畫圖、剪圖、講評費時費力的方式,既讓每個學生都能積極的參與進來,培養(yǎng)學生的語言表達能力、邏輯推理能力,又達到了直觀高效的效果。

教學中我注重人文環(huán)境的創(chuàng)設,使數學課堂充滿親切、民主的氣氛,例如整節(jié)課我以學生的操作、展示、講解、個性補充為主,拉近了數學與學生的距離,激發(fā)了學生的學習興趣;為了使不同的學生得到不同的發(fā)展,人人學有價值的數學,在教學中我創(chuàng)造性的使用教材,在不改變例題的本意為前提,創(chuàng)設身邊暖房工程為情境,體現數學的生活化;以一題多變、中考題改編等形式進行練習題的層層深入,體現數學的變化美。

以學生個性補充的形式促進課堂新的生成,最大限度的培養(yǎng)學生創(chuàng)新思維,使不同的人在數學上有不同的發(fā)展。本節(jié)課既做到了課程的開放,為充分發(fā)揮學生聰明智慧和創(chuàng)造性的思維提供了空間,又創(chuàng)設了具有獨特教學風格的作文式數學課堂。而多媒體教學的引入更為學生提供了廣闊的思考空間和時間;同時,我注重對學生進行數學文化的薰陶和數學思想的滲透,注重美育、德育與教育的三統(tǒng)一,如小結時由“勾股樹”到“智慧樹”的希望寄語。

勾股定理教案(篇6)

一、教材分析

勾股定理是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學生獲得較為直觀的印象;通過聯系和比較,理解勾股定理,以利于正確的進行運用。

據此,制定教學目標如下:

1、理解并掌握勾股定理及其證明。

2、能夠靈活地運用勾股定理及其計算。

3、培養(yǎng)學生觀察、比較、分析、推理的能力。

4、通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

教學重點:勾股定理的證明和應用。

教學難點:勾股定理的證明。

二、教法和學法

教法和學法是體現在整個教學過程中的,本課的教法和學法體現如下特點:

1、以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學生學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程。

2、切實體現學生的主體地位,讓學生通過觀察、分析、討論、操作、歸納,理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力。

3、通過演示實物,引導學生觀察、操作、分析、證明,使學生得到獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望。

三、教學程序

本節(jié)內容的教學主要體現在學生動手、動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設計如下:

(一)創(chuàng)設情境 以古引新

1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學生學習興趣,激發(fā)學生求知欲。

2、是不是所有的直角三角形都有這個性質呢?教師要善于激疑,使學生進入樂學狀態(tài)。

3、板書課題,出示學習目標。

(二)初步感知 理解教材

教師指導學生自學教材,通過自學感悟理解新知,體現了學生的自主學習意識,鍛煉學生主動探究知識,養(yǎng)成良好的自學習慣。

(三)質疑解難 討論歸納

1、教師設疑或學生提疑。如:怎樣證明勾股定理?學生通過自學,中等以上的學生基本掌握,這時能激發(fā)學生的表現欲。

2、教師引導學生按照要求進行拼圖,觀察并分析;

(1)這兩個圖形有什么特點?

(2)你能寫出這兩個圖形的面積嗎?

(3)如何運用勾股定理?是否還有其他形式?

這時教師組織學生分組討論,調動全體學生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,教師學生共同歸納,形成一致意見,最終解決疑難。

(四)鞏固練習 強化提高

1、出示練習,學生分組解答,并由學生總結解題規(guī)律。課堂教學中動靜結合,以免引起學生的疲勞。

2、出示例1學生試解,教師學生共同評價,以加深對例題的理解與運用。針對例題再次出現鞏固練習,進一步提高學生運用知識的能力,對練習中出現的情況可采取互評、互議的形式,在互評互議中出現的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學重點。

(五)歸納總結 練習反饋

引導學生對知識要點進行總結,梳理學習思路。分發(fā)自我反饋練習,學生獨立完成。

本課意在創(chuàng)設愉悅和諧的樂學氣氛,優(yōu)化教學手段,借助電教手段提高課堂教學效率,建立平等、民主、和諧的教師學生關系。加強教師學生間的合作,營造一種學生敢想、感說、感問的課堂氣氛,讓全體學生都能生動活潑、積極主動地教學活動,在學習中創(chuàng)新精神和實踐能力得到培養(yǎng)。

勾股定理教案(篇7)

一、 教材分析

(一)教材地位

這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標

知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題.

過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想.

情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學.

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發(fā)現勾股定理。

突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解.

二、教法與學法分析:

學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠.另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人.

三、 教學過程設計1.創(chuàng)設情境,提出問題 2.實驗操作,模型構建 3.回歸生活,應用新知

4.知識拓展,鞏固深化5.感悟收獲,布置作業(yè)

(一)創(chuàng)設情境提出問題

(1)圖片欣賞 勾股定理數形圖 1955年希臘發(fā)行 美麗的勾股樹 2002年國際數學 的一枚紀念郵票 大會會標 設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值.

(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié).

二、實驗操作模型構建

1.等腰直角三角形(數格子)

2.一般直角三角形(割補)

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想.

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高.

通過以上實驗歸納總結勾股定理.

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律.

三.回歸生活應用新知

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心.

四、知識拓展鞏固深化

基礎題,情境題,探索題.

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展.知識的運用得到升華.

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機.小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了.你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力.

五、感悟收獲布置作業(yè):這節(jié)課你的收獲是什么?

作業(yè): 1、課本習題2.1 2、搜集有關勾股定理證明的資料.

板書設計 探索勾股定理

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

設計說明::1.探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

2.讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平.

YJS21.cOm更多幼兒園教案小編推薦

勾股定理教案15篇


俗話說,做什么事都要有計劃和準備。幼兒園的老師都希望自己講的課學生們愛聽,能學習的更好,為了防止學生抓不住重點,教案就顯得非常重要,教案有利于老師在課堂上與學生更好的交流。寫好一份優(yōu)質的幼兒園教案要怎么做呢?或許你正在查找類似"勾股定理教案15篇"這樣的內容,歡迎閱讀,希望大家能夠喜歡!

勾股定理教案【篇1】

1.靈活應用勾股定理及逆定理解決實際問題.

2.進一步加深性質定理與判定定理之間關系的認識.

創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

⑵依題意畫出圖形;

⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR―∠QPS=45°.

小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

解略.

本題幫助培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

勾股定理教案【篇2】

(一)創(chuàng)設情景

多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

問題的設計有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,老師要注意引導學生將實際問題轉化為數學問題,也就是“已知一直角三角形的兩邊,求第三邊?”的問題。學生會感到一些困難,從而老師指出學習了今天的這節(jié)課后,同學們就會有辦法解決了。這種以實際問題作為切入點導入新課,不僅自然,而且也反映了“數學來源于生活”,學習數學是為更好“服務于生活”。

(二)動手操作

⒈課件出示課本P99圖19.2.1:

觀察圖中用陰影畫出的三個正方形,你從中能夠得出什么結論?

學生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵學生用語言進行描述,引導學生發(fā)現SP+SQ=SR(此時讓小組“發(fā)言人”發(fā)言),從而讓學生通過正方形的面積之間的關系發(fā)現:對于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當∠C=90°,AC=BC時,則AC2+BC2=AB2。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。

⒉緊接著讓學生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時可讓學生在預先準備的方格紙上畫出圖形,再剪一剪、拼一拼,通過小組合作、交流后,學生就能夠發(fā)現:對于一般的以整數為邊長的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過學生的動手操作、合作交流,來獲取知識,這樣設計有利于突破難點,也讓學生體會到觀察、猜想、歸納的數學思想及學習過程,提高學生的分析問題和解決問題的能力。

⒊再問:當邊長不為整數的直角三角形是否也存在這一結論呢?投影例題:一個邊長分別為1.5,3.6,3.9這種含有小數的直角三角形,讓學生計算。這樣設計的目的是讓學生體會到“從特殊到一般”的情形,這樣歸納的結論更具有一般性。

(三)歸納驗證

【歸納】通過動手操作、合作交流,探索邊長為整數的等腰直角三角形到一般的直角三角形,再到邊長為小數的直角三角形的兩直角邊與斜邊的關系,讓學生在整個學習過程中感受學數學的樂趣,,使學生學會“文字語言”與“數學語言”這兩種表達方式,各小組“發(fā)言人”的積極表現,整堂課充分發(fā)揮學生的主體作用,真正獲取知識,解決問題。

【驗證】先后三次驗證“勾股定理”這一結論,期間學生動手進行了畫圖、剪圖、拼圖,還有測量、計算等活動,使學生從中體會到數形結合和從特殊到一般的數學思想,而且這一過程也有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。

(四)問題解決

⒈讓學生解決開始上課前所提出的問題,前后呼應,讓學生體會到成功的快樂。

⒉自學課本P101例1,然后完成P102練習。

(五)課堂小結

1.小組成員從內容、數學思想方法、獲取知識的途徑進行小結,后由“發(fā)言人”匯報,小組間要互相比一比,看看哪一個小組表現最佳。

2.教師用多媒體介紹“勾股定理史話”

①《周髀算徑》:西周的商高(公元一千多年前)發(fā)現了“勾三股四弦五”這一規(guī)律。

②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨創(chuàng)。

目的是對學生進行愛國主義教育,激勵學生奮發(fā)向上。

(六)布置作業(yè)

課本P104習題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學生進一步體會定理與實際生活的聯系。

以上內容,我僅從“說教材”,“說學情”、“說教法”、“說學法”、“說教學過程”上來說明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領導對本次說課提出寶貴的意見,謝謝!

勾股定理教案【篇3】

1、勾股定理

勾股定理:如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2+b2=c2.

即直角三角形兩直角的平方和等于斜邊的平方.

因此,在運用勾股定理計算三角形的邊長時,要注意如下三點:

(1)注意勾股定理的使用條件:只對直角三角形適用,而不適用于銳角三角形和鈍角三角形;

(2)注意分清斜邊和直角邊,避免盲目代入公式致錯;

(3)注意勾股定理公式的變形:在直角三角形中,已知任意兩邊,可求第三邊長.即c2=a2+b2,a2=c2-b2,b2=c2-a2.

2.學會用拼圖法驗證勾股定理

拼圖法驗證勾股定理的基本思想是:借助于圖形的面積來驗證,依據是對圖形經過割補、拼接后面積不變的原理.

如,利用四個如圖1所示的直角三角形三角形,拼出如圖2所示的三個圖形.

請讀者證明.

如上圖示,在圖(1)中,利用圖1邊長為a,b,c的四個直角三角形拼成的一個以c為邊長的正方形,則圖2(1)中的小正方形的邊長為(b-a),面積為(b-a)2,四個直角三角形的面積為4×ab=2ab.

由圖(1)可知,大正方形的面積=四個直角三角形的面積+小正方形的的面積,即c2=(b-a)2+2ab,則a2+b2=c2問題得證.

請同學們自己證明圖(2)、(3).

3.在數軸上表示無理數

將在數軸上表示無理數的問題轉化為化長為無理數的線段長問題.第一步:利用勾股定理拆分出哪兩條線段長的平方和等于所畫線段(斜邊)長的平方,注意一般其中一條線段的長是整數;第二步:以數軸原點為直角三角形斜邊的頂點,構造直角三角形;第三步:以數軸原點圓心,以斜邊長為半徑畫弧,即可在數軸上找到表示該無理數的點.

二、典例精析

例1如果直角三角形的斜邊與一條直角邊的長分別是13cm和5cm,那么這個直角三角形的面積是cm2.

分析:欲求直角三角形的面積,已知一直角三角形的斜邊與一條直角邊的長,則求得另一直角邊的長即可.根據勾股定理公式的變形,可求得.

解:由勾股定理,得

132-52=144,所以另一條直角邊的長為12.

所以這個直角三角形的面積是×12×5=30(cm2).

例2如圖3(1),一只螞蟻沿棱長為a的正方體表面從頂點A爬到

頂點B,則它走過的最短路程為()

A.B.C.3aD.分析:本題顯然與例2屬同種類型,思路相同.但正方體的

各棱長相等,因此只有一種展開圖.

解:將正方體側面展開

勾股定理教案【篇4】

“勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。課標要求學生必須掌握。

(二)、教學目標:

根據數學課標的要求和教材的具體內容,結合學生實際我確定了本節(jié)課的教學目標。

知識技能:

1、理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。

2、掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形

過程與方法:

1、通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成的過程

2、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形結合方法的應用

3、通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

情感態(tài)度:

1、通過用三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關系

2、在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神

(三)、學情分析:

盡管已到初二下學期學生知識增多,能力增強,但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學生第一次見到,它要求根據已知條件構造一個直角三角形,根據學生的智能狀況,學生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,這樣如何添輔助線就是解決它的關鍵,這樣就確定了本節(jié)課的重點、難點和關鍵。

二、教學過程:

本節(jié)課的設計原則是:使學生在動手操作的基礎上和合作交流的良好氛圍中,通過巧妙而自然地在學生的認識結構與幾何知識結構之間筑了一個信息流通渠道,進而達到完善學生的數學認識結構的目的,

(一)、復習回顧: 復習回顧與勾股定理有關的內容,建立新舊知識之間的聯系。

一開課我就提出了與本節(jié)課關系密切、學生用現有的'知識可探索卻又解決不好的問題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長繩打上等距離的13個結,然后用樁釘如圖那樣的三角形,便得到一個直角三角形。這是為什么?……。這個問題一出現馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視,激發(fā)了學生的興趣,因而全身心地投入到學習中來,創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐,不失時機地讓學生感到數學就在身邊。

(三)、學生在教師的指導下嘗試解決問題,總結規(guī)律(包括難點突破)

因為幾何來源于現實生活,對初二學生來說選擇適當的時機,讓他們從個體實踐經驗中開始學習,可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見到,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等,順利作出了輔助直角三角形,整個證明過程自然、無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程,這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍,充分發(fā)揮教課書的作用,養(yǎng)成學生看書的習慣,這也是在培養(yǎng)學生的自學能力。

勾股定理教案【篇5】

1.掌握勾股定理,了解利用拼圖驗證勾股定理的方法.

1.學會用拼圖的方法驗證勾股定理,培養(yǎng)學生的'創(chuàng)新能力和解決實際問題的能力.

2.在拼圖過程中,鼓勵學生大膽聯想,培養(yǎng)學生數形結合的意識.

利用拼圖的方法驗證勾股定理,是我國古代數學家的一大貢獻.借助對學生進行愛國主義教育.并在拼圖的過程中獲得學習數學的快樂,提高學習數學的興趣.

教師引導和學生自主探索相結合的方法.

在用拼圖的方法驗證勾股定理的過程中.教師要引導學生善于聯想,將形的問題與數的問題聯系起來,讓學生自主探索,大膽地聯系前面知識,推導出勾股定理,并自己嘗試用勾股定理解決實際問題.

1.每個學生準備一張硬紙板;

[師]我們曾學習過整式的運算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內容.誰還能記得當時這兩個公式是如何推出的?

[生]利用多項式乘以多項式的法則從公式的左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

[生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理教案【篇6】

一、說教材分析

本節(jié)研究的是勾股定理的探索及其應用。它從邊的角度進一步對直角三角形的特征進行了刻畫。 它的主要內容是探索勾股定理,驗證勾股定理的正確性,在此基礎上,讓學生利用勾股定理來解決一些實際問題。本節(jié)課是在學生認識直角三角形的基礎上,在了解正方形和等腰直角三角形以后進行學習的,它是前面所學知識的延伸和拓展,又是后面學習勾股定理逆定理的基礎,具有承上啟下的作用。

二、說教學目標

教學目標的確定:教學目標是一堂課的中心任務,它只有在豐富多彩的數學活動中才能充分實現。一堂課的教學目標應全面、適度、明確、具體,便于檢測。因此根據學生已有的認知基礎和新課程標準,我確定了本節(jié)課教學目標為:

1、知識技能:

(1)了解勾股定理的文化背景,體驗勾股定理的探索和驗證過程。

(2)運用勾股定理進行簡單的計算和解釋生活中的實際問題。

(3)運用勾股定理會在數軸上畫出表示無理數的點。

2、數學思考:

在勾股定理的探索、從實際問題抽象出直角三角形和在數軸上畫出表示無理數的點的過程中,發(fā)展合情推理能力,初步體會、掌握轉化和數形結合的思想方法。

3、解決問題:

通過拼圖、探究活動,體驗數學思維的嚴謹性,發(fā)展形象思維。學會與人合作并能與他人交流思維的過程和探究的結果。能夠運用勾股定理解決直角三角形,在數軸上畫出表示無理數的點等有關實際問題。

4、情感態(tài)度:

(1)通過對勾股定理歷史的了解和實例應用,體會勾股定理的文化價值,感受數學文化,激發(fā)學習熱情。

(2)通過獲得成功的經驗和克服困難的經歷,增進數學學習的信心。

(3)通過研究一系列富有探究性的問題,培養(yǎng)學生與他人交流、合作的意識和品質。

三、說教學重、難點

教學重、難點的確定:關注學生是否能與同伴進行有效的合作交流;關注學生是否積極的進行思考;關注學生能否探索出解決問題的方法。

重點:通過探索、拼圖驗證勾股定理及勾股定理的應用過程,使學生獲得一些研究問題與合作交流的方法經驗。

難點:利用數形結合的方法探索發(fā)現、驗證勾股定理及其在實際生活中的應用。

四、知識反映出來的技能、能力、方法、德育等因素

本節(jié)知識通過 “ 探索發(fā)現---拼圖實踐—探索驗證—分析結果—運用定理 ” 等活動過程,使學生進一步理解勾股定理,并從中學會思考,學會探索,學會運用,學會交流,體會知識反映出來的豐富的文化內涵,指導學生認識現實世界中蘊涵著的數學信息。

五、教學方法

數學知識、數學思想和方法必須由學生在現實的數學活動實踐中理解和發(fā)展;教學中,以學生為本位,充分挖掘教材的空間,為學生搭建動手實踐、自主探索、合作交流的平臺;

注重讓學生經歷數學知識的形成過程,充分調動學生的學習積極性,并通過這個過程,使學生體驗學習成功的樂趣,在積極的思維中獲取知識,發(fā)展能力。

六、教學程序設計:

為充分發(fā)揮學生的主體性和教師的主導輔助作用,設計了以下幾個環(huán)節(jié):

(1)創(chuàng)設情境,引入新課

問題

某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊能否進入三樓滅火?

師生行為:教師出示照片及圖片,并提出問題,學生觀察圖片發(fā)表見解。

設計意圖:從現實生活中提出勾股定理,為學生能夠積極主動的投入到探索活動創(chuàng)設情景,激發(fā)學生學習熱情。同時為探索勾股定理提供背景材料。達到引入新課的目的。

(1)獨立探究,合作交流。

講述數學家畢達哥拉斯的故事

問題

A、B、C的面積有什么關系?

SA+SB=SC

直角三角形三邊有什么關系?

兩直邊的平方和等于斜邊的平方

設計意圖:問題是思維的起點,通過激發(fā)學生好奇、探究和主動學習的欲望。利用面積相等法,讓學生發(fā)現以直角三角形兩直角邊為邊長的正方形的面積,以斜邊為邊長的正方形的面積之間的關系。降低學生學習難度,從(3)自主實踐,探索驗證

《課程標準》指出:“數學教學是數學活動的教學?!币髮W生分學習小組,動手實踐,積極思考,獲得技能與解決問題的方法。關注學生動手實踐,關注學生主動探索與合作,關注學生積極思考,給學生思維表達的時間、空間,讓學生經歷探索知識的過程,并在這個過程中得到發(fā)展.。

兩種拼圖方案

1、2、

師生行為:教師演示動畫和圖片,同時提出問題,學生在獨立思考的基礎上以小組為單位,動手拼接,教師深入小組活動傾聽學生的交流,幫助、指導學生完成拼圖活動。學生展示分割、拼接的過程。

設計意圖:通過觀察、拼圖、探究活動,給學生充分的時間與空間討論、交流,鼓勵學生敢于發(fā)表自己的見解,感受合作的重要性,充分調動學生思維的積極性,發(fā)展形象思維,使學生對定理更加深刻,通過這一教學過程來達到突破難點的目的。

(4)應用定理,解決問題

數學源于實踐,運用于實踐;開放性處理教材,鼓勵學生充分地發(fā)表意見,表現自我,讓學生在教師營造的“創(chuàng)新土壤”中成為主人;給學生思維以廣闊的空間,培養(yǎng)學生從多角度運用所學知識尋求解決問題的能力.

勾股定理教案【篇7】

一、例題的意圖分析

例1(P83例2)讓學生養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。

例2(補充)培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。

二、課堂引入

創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法。

三、例習題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1.5=18,PQ=16×1.5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR-∠QPS=45°。

小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識。

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形。

解略。

四、課堂練習

1.小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。

2.如圖,在操場上豎直立著一根長為2米的測影竿,早晨測得它的影長為4米,中午測得它的影長為1米,則A、B、C三點能否構成直角三角形?為什么?

3.如圖,在我國沿海有一艘不明國籍的輪船進入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向

勾股定理教案【篇8】

隨著社會的發(fā)展,新課程改革的不斷深入,數學課已不僅是一些數學知識的學習,更重要的是體現知識的認知發(fā)展過程。教育的目的是培養(yǎng)具有獨立思考能力、具有實踐精神和創(chuàng)新能力的人。一堂好課應該是學生最大限度參與的課?!稊祵W課程標準》中指出學生的數學學習應當是現實的、有意義的、富有挑戰(zhàn)性的,內容要有利與學生主動進行觀察、實驗、猜想、驗證、推理與交流。內容的呈現應采取不同的表達方式,以滿足多樣化的學習需求。數學活動不能單純的依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數學的重要方式。

本節(jié)知識是在學生掌握了直角三角形的三個性質:直角三角形兩銳角互余和30°所對的直角邊等于斜邊的一半以及在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對的角為30°的基礎上展開的。勾股定理是直角三角形的一個非常重要的性質,它揭示了一個直角三角形三邊的數量關系,可解決直角三角形的許多有關的計算,是初三解直角三角形的主要依據之一,中考中的四邊形和圓等綜合題中也經常出現。貫穿了整個幾何學習,更是數形結合的重要典范。更重要的是學生在探索定理的過程中,無論是課前準備和課上交流以及課下活動都讓學生充分感受到學習、思考的重要性,與人合作的重要性以及數學在實際生活中的重要作用,是進行愛國教育的重要題材!

本節(jié)課的教育對象是初二下的學生,共性是思維活躍,參與意識較強。而且一般家庭都有電腦,對教師布置的網上作業(yè)也頗感興趣,并能制作簡單課件。形成了一定的數學學習習慣。

2、會利用勾股定理進行直角三角形的簡單計算。

經歷課前預習和課上觀察、分析、歸納、猜想、驗證并運用實踐的過程,了解數學知識的生成與發(fā)展過程。通過了解勾股定理的幾個著名證法(趙爽證法、歐幾里得證法等),使學生感受數學證明的靈活、優(yōu)美與精巧,感受勾股定理的豐富文化內涵。使學生自主學習能力和分析問題解決問題的能力得到提高。培養(yǎng)與人合作的意識。

1、通過自主學習培養(yǎng)學生探究、發(fā)現問題的能力,體驗獲取數學知識的過程。

2、通過小組合作、探索培養(yǎng)學生的團隊精神,以及不畏艱難,實事求是的學習態(tài)度和嚴謹的數學學習習慣。

3、通過了解有關勾股定理的中西歷史知識,激發(fā)學生的愛國熱情,培養(yǎng)學生的民族自豪感。

本節(jié)課在教材處理上,先讓學生帶著三個問題預習完成網上作業(yè),自制4個兩條直角邊不等的全等的直角三角形,準備一張坐標紙。從而初步了解勾股定理的歷史和內容以及證法,并制作成課件或打印資料,為課上活動做了充分的準備。為突破本課重、難點起到了至關重要的作用。勾股定理這部分內容共計兩課時,本節(jié)課是第一課時。教學重點定位為勾股定理的探索過程及簡單應用。教學難點是勾股定理的證明。把勾股定理的應用放在第二課時進行專題訓練。

(一)創(chuàng)設情境,引入課題。(二)自主探索,獲得定理(三)獨立思考,應用定理(四)暢所欲言,歸納小結。

勾股定理教案【篇9】

(一)教材地位

這節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標

1、知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

2、過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。

3、情感態(tài)度與價值觀: 激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點

經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

教學難點:用面積法(拼圖法)發(fā)現勾股定理。

突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

二、教法與學法分析學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。三、教學過程設計(一)創(chuàng)設情境,提出問題(1)圖片欣賞勾股定理數形圖1955年希臘發(fā)行美麗的勾股樹20xx年國際數學的一枚紀念郵票大會會標設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。(2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié)。(二)實驗操作模型構建1、等腰直角三角形(數格子)2、一般直角三角形(割補)問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。通過以上實驗歸納總結勾股定理。設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。(三)回歸生活應用新知讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。(四)知識拓展鞏固深化基礎題,情境題,探索題。設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華?;A題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維。情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。(五)感悟收獲布置作業(yè)這節(jié)課你的收獲是什么?作業(yè):1、課本習題2.12、搜集有關勾股定理證明的資料。

勾股定理教案【篇10】

探索勾股定理第1課時教學設計

一、教學目標

(1知識與技能目標:用數格子(或割、補等)的方法體驗勾股定理的探索過程,)會初步運用勾股定理進行簡單的計算和實際運用。

(2)過程與方法目標:在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學過程,并體會數形結合和從特殊到一般的數學思想方法。

(3)情感態(tài)度與價值觀目標:在探索勾股定理的過程中,體驗獲得成功的快樂;通過介紹勾股定理的由來,激勵學生發(fā)奮學習。

二、教學重點及難點

重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

難點:以直角三角形為邊的正方形面積的計算。

教學過程:

(一)提出問題

首先創(chuàng)設這樣一個問題情境:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來米長的云梯,如果梯子的底部離墻基的距離是米,請問消防隊員能否進入三樓滅火?問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。

設計意圖:這樣的設計是以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出本節(jié)課探究的主題。

(二)實驗驗證

1、問題探究

(1邊數為整數的直角三角形

類型一:等腰直角三角形。

觀察下圖,你能發(fā)現各圖中三個正方形的面積之間有何關系嗎?

學生通過觀察,歸納發(fā)現:

結論1:以等腰直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

類型二:一般的直角三角形

由結論1我們自然產生聯想:一般的直角三角形是否也具有該性質呢?

觀察下圖,你能發(fā)現各圖中三個正方形的面積之間有何關系嗎?

結論2:“以直角三角形兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積。

做一做:

(1)你能用直角三角形的邊長,b,c來表示上圖中正方形的面積嗎?

(2)你能發(fā)現直角三角形三邊長度之間存在什么關系嗎?

(3)分別以3cm,4cm為直角邊作出直角三角形,并測量斜邊的長度,(2)中的規(guī)律對這個三角形仍然成立嗎?

結論3:直角三角形兩直角邊的平方和,等于斜邊的平方。

設計意圖:由直角三角形三邊長為邊的三個正方形的面積關系,發(fā)現直角三角形三邊的平方關系,初步得到勾股定理的內容.同時,引導學生具體畫出一個直角三角形,通過計算,進一步驗證勾股定理。

2)數不為整數的直角三角形

進一步驗證上面的結論,直角三角形三邊為、1.

2、上面猜想的數量關系還成立嗎?

設計意圖:由于邊數為整數直角三角形的三邊的平方關系,對于一般的直角三角形是否也成立?在這里,讓學生利用更細密的網格紙驗證 ,進一步探討出本節(jié)課的重點----勾股定理。通過邊數為整數和不為整數兩方面的分類探究,充分地讓學生經歷了探索勾股定理的過程,得出的結論也更具有一般性,較好的突出了重點,突破了難點。

(三)總結歸納 勾股定理:

為了讓學生確信結論的正確性,引導學生在紙上任意作一個直角三角形,通過測量、計算來驗證結論的正確性。這一過程有利于培養(yǎng)學生嚴謹、科學的學習態(tài)度。然后引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。 三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。

數學小史:勾股定理是我國最早發(fā)現的,中國古代把直角三角形中較短的直角邊稱為勾,較長的直角邊稱為股,斜邊稱為弦,“勾股定理”因此而得名。(在西方文獻中又稱為畢達哥拉斯定理)

設計意圖:通過介紹勾股定理由來的歷史,激發(fā)學生熱愛祖國,激勵學生發(fā)奮學習。

四)知識拓展 ,鞏固深化

讓學生解決開頭的實際問題

設計意圖:讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

1.情境題:

小明媽媽買了一部29in(74cm)的電視機,小明量了電視機的屏幕后,發(fā)現屏幕只有58cm長和46cm寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

設計意圖:增加學生的生活常識,也體現了數學知識源于生活,并用于生活。

2.探索題:

做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:提升難度,學生通過交流討論的方式,拓展學生的思維、發(fā)展空間想象能力。

(五)課堂小結,概括要點

教師提問:

1.這一節(jié)課我們一起學習了哪些知識和思想方法?

2.對這些內容你有什么體會?與同伴進行交流。

在學生自由發(fā)言的基礎上,師生共同總結:

1.知識:勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方.如果用[a,b,c]分別表示直角三角形的兩直角邊和斜邊,那么[a2+b2=c2]。

2.思想:分類討論、特殊―一般―特殊、形結合思想。

設計意圖:鼓勵學生積極大膽發(fā)言,可增進師生、生生之間的交流、互動,培養(yǎng)學生語言表達和交流的能力。

(六)布置作業(yè),思維延伸

1.教科書習題。

2.思考:是不是任意的三角形的三邊長都滿足[a2+b2=c2]?若不是,你能探究出它們滿足什么關系嗎?和同學們交流。

設計意圖:鞏固基礎知識;引發(fā)思考,強化認識勾股定理適用的條件。對于銳角三角形和鈍角三角形,引導學生利用本節(jié)課的方法得出相應的結論,將本節(jié)課的研究方法延伸到課外。

勾股定理教案【篇11】

一是讓學生自己回顧總結本節(jié)的收獲。(多數為具體的知識和方法)。

二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養(yǎng),適時對大家進行思想教育。

通過本節(jié)課的教學,讓我更深刻地認識到:

1.新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發(fā)展;

2.教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節(jié)課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態(tài)度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;

3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績。

勾股定理教案【篇12】

學習目標

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數型結合的思想。

重點難點

或學習建議學習重點:用面積的方法說明勾股定理的正確.

學習難點:勾股定理的'應用.

學習過程教師

二次備課欄

自學準備與知識導學:

這是1955年希臘為紀念一位數學家曾經發(fā)行的郵票。

郵票上的圖案是根據一個著名的數學定理設計的。

學習交流與問題研討:

1、探索

問題:分別以圖中的直角三角形三邊為邊向三角形外

作正方形,小方格的面積看做1,求這三個正方形的面積?

S正方形BCED=S正方形ACFG=S正方形ABHI=

發(fā)現:

2、實驗

在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。

請完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關系

112

145

41620

91625

發(fā)現:

如何用直角三角形的三邊長來表示這個結論?

這個結論就是我們今天要學習的勾股定理:

如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

練習檢測與拓展延伸:

練習1、求下列直角三角形中未知邊的長

練習2、下列各圖中所示的線段的長度或正方形的面積為多少。

(注:下列各圖中的三角形均為直角三角形)

例1、如圖,在四邊形中,∠,∠,,求.

檢測:

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

(2)b=8,c=17,則S△ABC=________。

2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()

A.12cmB.10cmC.8cmD.6cm

4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)

5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?

課后反思或經驗總結:

1、什么叫勾股定理;

2、什么樣的三角形的三邊滿足勾股定理;

3、用勾股定理解決一些實際問題。

勾股定理教案【篇13】

一、教學目標

1.靈活應用勾股定理及逆定理解決實際問題.

2.進一步加深性質定理與判定定理之間關系的認識.

二、重點、難點

1.重點:靈活應用勾股定理及逆定理解決實際問題.

2.難點:靈活應用勾股定理及逆定理解決實際問題.

3.難點的突破方法:

三、課堂引入

創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

四、例習題分析

例1(P83例2)

分析:⑴了解方位角,及方位名詞;

⑵依題意畫出圖形;

⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR—∠QPS=45°.

小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

解略.

本題幫助培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

勾股定理教案【篇14】

教學目標具體要求:

1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題。

2.過程與方法目標:經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。

3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育。

1.在直角三角形中,若兩直角邊的長分別為1cm,2cm,則斜邊長為xx。

2.已知直角三角形的兩邊長為3、4,則另一條邊長是xx。

3.三角形ABC中,AB=10,AC=17,BC邊上的高線AD=8,求BC的長?

1、如圖,公路上A,B兩點相距25km,C,D為兩村莊,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,現在要在公路AB上建一車站E,

(1)使得C,D兩村到E站的距離相等,E站建在離A站多少km處?

(3)使得C,D兩村到E站的距離最短,E站建在離A站多少km處?

2、如圖,用一張長方形紙片ABCD進行折紙,已知該紙片寬AB為8cm,長BC為10cm.當折疊時,頂點D落在BC邊上的'點F處(折痕為AE).想一想,此時EC有多長?

3、在矩形紙片ABCD中,AD=4cm,AB=10cm,按圖所示方式折疊,使點B與點D重合,折痕為EF,求DE的長。

談一談你這節(jié)課都有哪些收獲?

三、課堂練習以上習題。

四、課后作業(yè)卷子。

本節(jié)課是人教版數學八年級下冊第十七章第一節(jié)第二課時的內容,是學生在學習了三角形的有關知識,了解了直角三角形的概念,掌握了直角三角形的性質和一個三角形是直角三角形的條件的基礎上學習勾股定理,加深對勾股定理的理解,提高學生對數形結合的應用與理解。本節(jié)第一課時安排了對勾股定理的觀察、計算、猜想、證明及簡單應用的過程;第二課時是通過例題分析與講解,讓學生感受勾股定理在實際生活中的應用,通過從實際問題中抽象出直角三角形這一模型,強化轉化思想,培養(yǎng)學生解決問題的意識和應用能力。

勾股定理教案【篇15】

一、回顧交流,合作學習

【活動方略】

活動設計:教師先將學生分成四人小組,交流各自的小結,并結合課本P87的小結進行反思,教師巡視,并且不斷引導學生進入復習軌道.然后進行小組匯報,匯報時可借助投影儀,要求學生上臺匯報,最后教師歸納.

【問題探究1】(投影顯示)

飛機在空中水平飛行,某一時刻剛好飛到小明頭頂正上方4000米處,過了20秒,飛機距離小明頭頂5000米,問:飛機飛行了多少千米?

思路點撥:根據題意,可以先畫出符合題意的圖形,如右圖,圖中△ABC中的∠C=90°,AC=4000米,AB=5000米,要求出飛機這時飛行多少千米,就要知道飛機在20秒時間里飛行的路程,也就是圖中的BC長,在這個問題中,斜邊和一直角邊是已知的,這樣,我們可以根據勾股定理來計算出BC的長.(3000千米)

【活動方略】

教師活動:操作投影儀,引導學生解決問題,請兩位學生上臺演示,然后講評.

學生活動:獨立完成“問題探究1”,然后踴躍舉手,上臺演示或與同伴交流.

【問題探究2】(投影顯示)

一個零件的形狀如右圖,按規(guī)定這個零件中∠A與∠BDC都應為直角,工人師傅量得零件各邊尺寸:AD=4,AB=3,DB=5,DC=12,BC=13,請你判斷這個零件符合要求嗎?為什么?

思路點撥:要檢驗這個零件是否符合要求,只要判斷△ADB和△DBA是否為直角三角形,這樣可以通過勾股定理的逆定理予以解決:

AB2+AD2=32+42=9+16=25=BD2,得∠A=90°,同理可得∠CDB=90°,因此,這個零件符合要求.

【活動方略】

教師活動:操作投影儀,關注學生的思維,請兩位學生上講臺演示之后再評講.

學生活動:思考后,完成“問題探究2”,小結方法.

解:在△ABC中,AB2+AD2=32+42=9+16=25=BD2,

∴△ABD為直角三角形,∠A=90°.

在△BDC中,BD2+DC2=52+122=25+144=169=132=BC2.

∴△BDC是直角三角形,∠CDB=90°

因此這個零件符合要求.

【問題探究3】

甲、乙兩位探險者在沙漠進行探險,某日早晨8:00甲先出發(fā),他以6千米/時的速度向東行走,1小時后乙出發(fā),他以5千米/時的速度向北行進,上午10:00,甲、乙兩人相距多遠?

思路點撥:要求甲、乙兩人的距離,就要確定甲、乙兩人在平面的位置關系,由于甲往東、乙往北,所以甲所走的路線與乙所走的路線互相垂直,然后求出甲、乙走的路程,利用勾股定理,即可求出甲、乙兩人的距離.(13千米)

【活動方略】

教師活動:操作投影儀,巡視、關注學生訓練,并請兩位學生上講臺“板演”.

學生活動:課堂練習,與同伴交流或舉手爭取上臺演示

勾股定理課件教案12篇


所有老師都必須在教課前準備自己的教案和教學資源。為了能夠寫出完美的教案和教學資源,老師們都需要花費相應的心思與精力。在編寫教案和課件時,老師們尤其需要注意確保教學重點不會被忽略。是否也曾有過編寫教案和課件時的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠為您提供更多的幫助!

勾股定理課件教案【篇1】

尊敬的各位領導、各位老師,大家好:

我叫李朝紅,是第十四中學的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。

一、教材分析

1、教材的地位和作用:

在學習本節(jié)課之前學生已經學習了勾股定理,全等三角形的判定等相關知識,為本節(jié)課的學習打好了基礎,學習好本節(jié)課不但可以鞏固學生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關知識的學習做好了鋪墊。

2、教學目標

教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵??紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標

知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。

過程與方法:通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成

過程,體會數形結合和由特殊到一般的數學思想,進一步提高學生分析問題、解決問題的能力。

情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.

3、重點難點

本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點

重點:理解并掌握勾股定理的逆定理,并會應用。

難點:理解勾股定理的逆定理的推導。

二、教法學法分析

八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結合的方法,老師為主導,學生為主體,充分調動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。

教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。

三、教學過程分析:

(一)創(chuàng)設情景,引入新課

1、展示圖片:古埃及人制作直角的方法

2、讓學生試一試用一根繩子確定直角

設計意圖:通過古埃及人制作直角的方法,提出讓學生動手操作,進而使學生產生好奇心:“這樣就能確定直角嗎”,激發(fā)學生的求知欲,點燃其學習的激情,充分調動學生的學習積極性 ,同時也使學生感受到幾何來源于生活,服務于生活的道理,體會數學的價值。

(二)動手檢測,提出假設

在本環(huán)節(jié)中通過情境中的問題,引導學生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

上面三組線段為邊畫出三角形,猜測驗證出其形狀。

再引導啟發(fā)誘導學生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學生足夠的時間和空間,以平等身份參與到學生活動中來,對其實踐活動予以指導。讓學生通過作圖、測量等實踐活動,給出合理的假設與猜測。整個環(huán)節(jié)通過設置的問題串,引導學生動手、動腦、動口相結合,激活學生的思維,培養(yǎng)學生嚴謹的科學態(tài)度,合理的推測能力,嚴密的邏輯思維能力和靈活的動手實踐能力。

(三) 探索歸納,證明假設:

勾股定理逆定理的證明與以往不同,需要構造直角三角形才能完成,如何構造直角三角形就成為解決問題的關鍵。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先

1、 讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現了什么情況?并請學生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

在這個過程中,首先讓學生從特殊的實例中動手操作到證明,學生自然地聯想到了全等三角形的判定,進而由特殊到一般發(fā)現三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關系。

設計意圖:讓學生從特殊的實例動手到證明,進而由特殊到一般,順利地利用構建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現從直觀印象向抽象思維的轉化,同時學生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數學思想在實際中的應用。

這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

(四)學以致用、鞏固提升

本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學生仿照課本上的例題,獨立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數,我們稱為勾股數。第二題我改變題的形式,把一些符合a+b=c的三角形放入網格中讓學生運用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學生運用勾股定理及其逆定理證明并求解。

設計意圖:采用啟發(fā)教學與誘導教學方法相結合的方法分層練習,由淺入深地逐步提高學生解決實際問題的能力,達到鞏固知識,學以致用的目的

(五)回顧總結,強化認知

課堂小結以填空體的形式檢測、歸納總結

設計意圖:讓學生以填空題的形式進行總結,不僅能夠起到檢測的目的,而且?guī)椭鷮W生理清知識脈絡,起到重點強調,產生高度重視的效果。

(六)作業(yè)布置

教材33頁練習

設計意圖:加強學生對勾股定理逆定理的理解,使學生的練習范圍拓展到多個題型。

教學反思:本節(jié)課以學生為主體、教師為主導,通過啟發(fā)與誘導,使學生動手操作、動腦思考、動口表達,讓學生在實踐與探究中發(fā)揮自我,充分調動了學生的自主性與積極性,整個過程注重了學生課上知識的形成與鞏固,以及學生各方面素質的培養(yǎng)??傊竟?jié)課的知識目標基本達成,能力目標基本實現,情感目標基本落實。

以上是我對本節(jié)課的理解,還望各位老師指正。

勾股定理課件教案【篇2】

一、 說教材分析

1. 教材的地位和作用

華師大版八年級上直角三角形三邊關系是學生在學習數的開方和整式的乘除后的一段內容,它是學生在已經掌握了直角三角形的有關性質的基礎上進行學習的,它揭示了一個直角三角形三條邊之間的數量關系,為后面解直角三角形的作好鋪墊,它也是幾何中最重要的定理,它將形和數密切聯系起來,在數學的發(fā)展中起著重要的作用。

因此他的教育教學價值就具體體現在如下三維目標中:

知識與技能:

1、經歷勾股定理的探索過程,體會數形結合思想。

2、理解直角三角形三邊的關系,會應用勾股定理解決一些簡單的實際問題。

過程與方法:

1、經歷觀察—猜想—歸納—驗證等一系列過程,體會數學定理發(fā)現的過程,由特殊到一般的解決問題的方法。

2、在觀察、猜想、歸納、驗證等過程中培養(yǎng)學生的數學語言表達能力和初步的邏輯推理能力。

情感、態(tài)度與價值觀:

1、通過對勾股定理歷史的了解,感受數學文化,激發(fā)學習興趣。

2、在探究活動中,體驗解決問題方法的多樣性,培養(yǎng)學生的合作意識和然所精神。

3、讓學生通過動手實踐,增強探究和創(chuàng)新意識,體驗研究過程,學習研究方法,逐步養(yǎng)成一種積極的生動的,自助合作探究的學習方式。

由于八年級的學生具有一定分析能力,但活動經驗不足,所以

本節(jié)課教學重點:勾股定理的探索過程,并掌握和運用它。

教學難點:分割,補全法證面積相等,探索勾股定理。

二、說教法學法分析:

要上好一堂課,就是要把所確定的三維目標有機地溶入到教學過程中去,所以我采用了“引導探究式”的教學方法:

先從學生熟知的生活實例出發(fā),以生活實踐為依托,將生活圖形數學化,然后由特殊到一般地提出問題,引導學生在自主探究與合作交流中解決問題,同時也真正體現了數學課堂是學生自己的課堂。

學法:我想通過“操作+思考”這樣方式,有效地讓學生在動手、動腦、自主探究與合作交流中來發(fā)現新知,同時讓學生感悟到:學習任何知識的最好方法就是自己去探究。

三、 說教學程序設計

1、 故事引入新課,激起學生學習興趣。

牛頓,瓦特的故事,讓學生科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。畢達哥拉斯的發(fā)現引入新課。

2、探索新知

在這里我設計了四個內容:

①探索等腰直角三角形三邊的關系

②邊長為3、4、5為邊長的直角三角形的三邊關系

③學生畫兩直角邊為2,6的直角三角形,探索三邊的關系

④三邊為a、b、c的直角三角形的三邊的關系,(證明)

⑤勾股定理歷史介紹,讓學生體會勾股定理的文化價值。

體現從特殊到一般的發(fā)現問題的過程。

3、新知運用:

①舉出勾股定理在生活中的運用。(老師講解勾股定理在生活中的運用)

②在直角三角形中,已知∠ B=90° ,AB=6,BC=8,求AC.

③要做一個人字梯,要求人字梯的跨度為6米,高為4米,請問怎么做?

④如圖,學校有一塊長方形花鋪,有極少數人為了避開拐角走“捷徑”,在花鋪內走出了一條“路”.他們僅僅少走了 步路(假設2步為1米),卻踩傷了花草.

4、小結本課:

學完了這節(jié)課,你有什么收獲?

老師補充:科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。數學來源于實踐,而又應用于實踐。解決一個問題的方法是多樣性的,我們要多思考。 勾股定是數學史上的明珠,證明方法有很多種,我們將在下一節(jié)課學習它。

反思:

教學設計主要是體現從特殊到一般的知識形成過程,探索問題的設計上有點難,第二個問題應加個3,3為直角邊的等腰直角三角形讓學生分割或者補全,這樣過度,降低3,4為直角邊的探索探索;在2,6為直角邊時,這個問題可以不用設計進去,就為后面的練習留足時間。探索時間較長,整個課程推行進度較慢,練習較少。

對學生的啟發(fā)不夠,對學生的關注不夠,學生對問題的思考不能及時想出來,沒有及時很好的引導,啟發(fā),應讓學生多一些思考的空間,并及時交給思考的方法。學生反應不是太好,能力差,也或許是因為問題設計的較難,沒有很好的體現出探究。

預期的目標沒有很好的達成,學生雖然掌握了勾股定理,但探索熱情沒有點燃,思維能力,動手能力,探索精神沒有很好的得到發(fā)展。

勾股定理課件教案【篇3】

一、學生知識狀況分析

本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動。學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎。

二、教學任務分析

本節(jié)是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內容是運用勾股定理及其逆定理解決簡單的實際問題。當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發(fā)展學生合作交流的能力。

三、本節(jié)課的教學目標是:

1.通過觀察圖形,探索圖形間的關系,發(fā)展學生的空間觀念.

2.在將實際問題抽象成數學問題的過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

3.在利用勾股定理解決實際問題的過程中,體驗數學學習的實用性.

利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.

四、教法學法

1.教學方法

引導—探究—歸納

本節(jié)課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現本節(jié)課的教學目標,我力求以下三個方面對學生進行引導:

(1)從創(chuàng)設問題情景入手,通過知識再現,孕育教學過程;

(2)從學生活動出發(fā),順勢教學過程;

(3)利用探索研究手段,通過思維深入,領悟教學過程.

2.課前準備

教具:教材、電腦、多媒體課件.

學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具.

五、教學過程分析

本節(jié)課設計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結;第七環(huán)節(jié):布置作業(yè).

1.3勾股定理的應用:課后練習

一、問題引入:

1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個三角形是直角三角形

1.3勾股定理的應用:同步檢測

1.為迎接新年的到來,同學們做了許多拉花布置教室,準備召開新年晚會,小劉搬來一架高2.5米的木梯,準備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應為( )

A.0.7米B.0.8米C.0.9米D.1.0米

2.小華和小剛兄弟兩個同時從家去同一所學校上學,速度都是每分鐘走50米.小華從家到學校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學校(均走直線),小剛到小明家用了6分鐘,小明家到學校用了8分鐘,小剛上學走了個( )

A.銳角彎B.鈍角彎C.直角彎D.不能確定

3.如圖,是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達底部的直吸管在罐內部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )

A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

4.一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數據與其它的數據弄混了,請你幫助他找出來,是第( )組.

A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理課件教案【篇4】

各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。

教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。

一、說教材

“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。

二、說學情

中學生心理學研究指出,初中階段是智力發(fā)展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。

三、說教學目標

根據數學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。

【知識與技能】

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

【過程與方法】

通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

【情感態(tài)度與價值觀】

通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

四、說教學重難點

重點:勾股定理逆定理的應用;

難點:探究勾股定理逆定理的證明過程。

五、說教學方法

科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統(tǒng)一?;诖耍覝蕚洳捎玫慕谭ㄊ侵v練結合法,小組討論法。

六、說教學過程

(一)導入新課

在導入新課環(huán)節(jié),我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節(jié)課的課題——勾股定理逆定理。

【設計意圖】通過復習回顧能很好地將新舊知識聯系起來,使學生形成對知識的系統(tǒng)的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。

(二)探究新知

一開課我就提出了與本節(jié)課關系密切、學生用現有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現,馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發(fā)了學生的興趣,因而全身心地投入到學習中來創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數學就在身邊。

因為幾何來源于現實生活,對初二學生來說選擇適當的時機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學生看書的習慣這也是在培養(yǎng)學生的自學能力。

(三)鞏固提高

本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。

第二題則進了一層用字母代替了數字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節(jié)教法同時注意加強有針對性的個別指導把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

(四)小結作業(yè)

在小結環(huán)節(jié),我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養(yǎng)能力方面比如輔助線的添法。

設計意圖:這樣設計可以幫助學生以反思的形式回憶本節(jié)課所學的知識,加深對知識的印象,有利于學生良好的數學學習習慣的養(yǎng)成。

由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。

勾股定理課件教案【篇5】

教學課題:

勾股定理的應用

教學時間(日期、課時):

教材分析:

學情分析:

教學目標:

能運用勾股定理及直角三角形的判定條件解決實際問題.

在運用勾股定理解決實際問題的過程中,感受數學的“轉化” 思想(把解斜三角形問題轉化為解直角三角形的問題),進一步發(fā)展有條理思考和有條理表達的能力,體會數學的應用價值.

教學準備

《數學學與練》

集體備課意見和主要參考資料

頁邊批注

教學過程

一.新課導入

本課時的教學內容是勾股定理在實際中的應用。除課本提供的情境外,教學中可以根據實際情況另行設計一些具體情境,也利用課本提供的素材組織數學活動。比如,把課本例2改編為開放式的問題情境:

一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m.如果梯子的頂端下滑0.5m,你認為梯子的底端會發(fā)生什么變化?與同學交流.

創(chuàng)設學生身邊的問題情境,為每一個學生提供探索的空間,有利于發(fā)揮學生的主體性;這樣的問題學生常常會從自己的生活經驗出發(fā),產生不同的思考方法和結論(教學中學生可能的結論有:

底端也滑動0.5m;如果梯子的頂端滑到地面上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端下滑0.5m,它的底端的滑動小于0.5m;構造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結論等)。

通過與同學交流,完善各自的想法,有利于學生主動地把實際問題轉化為數學問題,從中感受用數學的眼光審視客觀世界的樂趣.

二.新課講授

問題一在上面的情境中,如果梯子的頂端下滑1m,那么梯子的`底端滑動多少米?

組織學生嘗試用勾股定理解決問題,對有困難的學生教師給予及時的幫助和指導.

問題二從上面所獲得的信息中,你對梯子下滑的變化過程有進一步的思考嗎?與同學交流.

設計問題二促使學生能主動積極地從數學的角度思考實際問題.教學中學生可能會有多種思考.比如,

①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;

②因為梯子頂端下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;

③由勾股數可知,當梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。

教學中不要把尋找規(guī)律作為這個探索活動的目標,應讓學生進行充分的交流,使學生逐步學會運用數學的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經驗和方法.

3.例題教學

課本的例1是勾股定理的簡單應用,教學中可根據教學的實際情況補充一些實際應用問題,把課本習題2.7第4題作為補充例題.通過這個問題的討論,把“32+b2=c2”看作一個方程,設折斷處離地面x尺,依據問題給出的條件就把它轉化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學生感受數學的“轉化”思想,進一步了解勾股定理的悠久歷史和我國古代人民的聰明才智.

三.鞏固練習

1.甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km.

2.如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程(取3)是().

(A)20cm(B)10cm(C)14cm(D)無法確定

3.如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m.求這塊草坪的面積.

四.小結

我們知道勾股定理揭示了直角三角形的三邊之間的數量關系,已知直角三角形中的任意兩邊就可以依據勾股定理求出第三邊.從應用勾股定理解決實際問題中,我們進一步認識到把直角三角形中三邊關系“a2+b2=c2”看成一個方程,只要依據問題的條件把它轉化為我們會解的方程,就把解實際問題轉化為解方程.

勾股定理課件教案【篇6】

一、 教材分析

(一)教材所處的地位

這節(jié)課是義務教育課程標準實驗教科書(北師大)八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)根據課程標準,本課的教學目標是:

1、 能說出勾股定理的內容。

2、 會初步運用勾股定理進行簡單的計算和實際運用。

3、 在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數學思想,并體會數形結合和特殊到一般的思想方法。

4、 通過介紹勾股定理在中國古代的研究,激發(fā)學生熱愛祖國,熱愛祖國悠久文化的思想,激勵學生發(fā)奮學習。

(三)本課的教學重點:探索勾股定理

本課的教學難點:以直角三角形為邊的正方形面積的計算。

二、教法與學法分析:

教法分析:針對八年級學生的知識結構和心理特征,本節(jié)課可選擇引導探索法,由淺入深,由特殊到一般地提出問題。引導學生自主探索,合作交流,這種教學理念反映了時代精神,有利于提高學生的思維能力,能有效地激發(fā)學生的思維積極性,基本教學流程是:提出問題—猜想結論—實驗操作—歸納總結—問題解決—課堂小結—布置作業(yè)七部分。

學法分析:在教師的組織引導下,采用自主探索、合作交流的研討式學習方式,讓學生思考問題,獲取知識,掌握方法,借此培養(yǎng)學生動手、動腦、動口的能力,使學生真正成為學習的主體。

三、 教學過程設計:

(一)提出問題:

首先創(chuàng)設這樣一個問題情境:強大的臺風使得一座高壓線塔在離地面9米處斷裂,塔頂落在離塔底部12米處,高壓線塔折斷之前有多高?

問題設計具有一定的挑戰(zhàn)性,目的是激發(fā)學生的探究欲望,教師引導學生將實際問題轉化成數學問題,也就是“已知一直角三角形的兩邊,如何求第三邊?” 的問題。學生會感到困難,從而教師指出學習了今天這一課后就有辦法解決了。這種以實際問題為切入點引入新課,不僅自然,而且反映了數學來源于實際生活,數學是從人的需要中產生這一認識的基本觀點,同時也體現了知識的發(fā)生過程,而且解決問題的過程也是一個“數學化”的過程。

(二)猜想結論。

教師用計算機演示:

(1)在△ABC中,∠ACB=90°,∠A,∠B,∠C所對邊分別為a,b和c,使△ABC運動起來,但始終保持∠ACB=90°,如拖動A點或B點改變a,b的長度來拖動AB邊繞任一點旋轉△ACB等。

(2)在以上過程中,始終測算 ,各取以上典型運動的某一兩個狀態(tài)的測算值列成表格,讓學生觀察三個數之間有何數量關系,得出猜想。

(三)實驗操作:

1、投影課本圖1—2的有關直角三角形問題,讓學生計算正方形A,B,C的面積,學生可能有不同的方法,不管是通過直接數小方格的個數,還是將C劃分為4個全等的等腰直角三角形來求等等,各種方法都予于肯定,并鼓勵學生用語言進行表達,引導學生發(fā)現正方形A,B,C的面積之間的數量關系,從而學生通過正方形面積之間的關系容易發(fā)現對于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學生參與探索,感受數學學習的過程,也有利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。

2、接著讓學生思考:如果是其它一般的直角三角形,是否也具備這一結論呢?于是投影圖1—3,同樣讓學生計算正方形的面積,但正方形C的面積不易求出,可讓學生在預先準備的方格紙上畫出圖形,再剪一剪,拼一拼后學生也不難發(fā)現對于一般的以整數為邊長的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設計不僅有利于突破難點,而且為歸納結論打下了基礎,讓學生體會到觀察、猜想、歸納的思想,也讓學生的分析問題和解決問題的能力在無形中得到了提高,這對后面的學習極有幫助。

3、給出一個兩直角邊長分別為1.6,2.4這種含小數的直角三角形,對學生有一定的挑戰(zhàn)性。讓學生驗證是否也滿足這個結論,設計的目的是讓學生體會到結論更具有一般性。

(四)歸納總結:

1、歸納

通過對邊長為整數的等腰直角三角形到一般直角三角形再到邊長含小數的直角三角形三邊關系的研究,讓學生用數學語言概括出一般的結論,盡管學生可能講的不完全正確,但對于培養(yǎng)學生運用數學語言進行抽象、概括的能力是有益的,同時發(fā)揮了學生的主體作用,也便于記憶和理解,這比教師直接教給學生一個結論要好的多。

2、總結

勾股定理內容得出后,引導學生用符號語言表示,因為將文字語言轉化為數學語言是學習數學學習的一項基本能力。接著教師向學生介紹“勾,股,弦”的含義、勾股定理,進行點題,并指出勾股定理只適用于直角三角形。最后向學生介紹古今中外對勾股定理的研究,對學生進行愛國主義教育。

(五)問題解決:

讓學生解決開頭的實際問題,前后呼應,學生從中能體會到成功的喜悅。完成課本“想一想”進一步體會勾股定理在實際生活中的應用,數學是與實際生活緊密相連的。

(六)課堂小結:

主要通過學生回憶本節(jié)課所學內容,從內容、應用、數學思想方法、獲取新知的途徑方面先進行小結,后由教師總結。

(七)布置作業(yè):

課本P7習題1.1-- 2,4一方面鞏固勾股定理,另一方面進一步體會定理與實際生活的聯系。另外,補充一道開放題。

四、 設計說明

1、本節(jié)課是公式課,根據學生的知識結構,我采用的教學流程是:提出問題—猜想結論—實驗操作—歸納驗證—問題解決—課堂小結—布置作業(yè)七部分,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般再到更一般的對直角三角形三邊關系的研究,得出結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好思維品質的形成有重要作用,對學生的終身發(fā)展也有一定的作用。

3、關于練習的設計,除實際問題和課本習題以外,我準備設計一道開放題,大致思路是已知直角三角形的兩條邊,求出與這個三角形所有相關的結論。

4、本課小結從內容,應用,數學思想方法,獲取知識的途徑等幾個方面展開,既有知識的總結,又有方法的提煉,這樣對于學生學知識,用知識的意識是有很大的促進的。

勾股定理課件教案【篇7】

一、教材分析

教材所處的地位與作用

“探索勾股定理”是人教版八年級《數學》下冊內容?!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。

二、教學目標

綜上分析及教學大綱要求,本課時教學目標制定如下:

1、知識目標

知道勾股定理的由來,初步理解割補拼接的面積證法。

掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

2、能力目標

在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。

3、情感目標

通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數學激情及愛國情感。

三、教學重難點

本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

四、教學問題診斷

本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說,有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。

五、教法與學法分析

[教學方法與手段]針對八年級學生的知識結構和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

[學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

六、教學流程設計

1、創(chuàng)設情境,引入新課

本節(jié)課開始利用多媒體介紹了在北京召開的20xx年國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)。“好的開始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學到知識。

2、觀察發(fā)現,類比猜想

讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發(fā)現任意直角三角形(圖2)斜邊上長出的正方形中網格不規(guī)則,沒法數出。通過同學們的討論,發(fā)現數不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經過割補變?yōu)橐?guī)則。

3、實驗探究,證明結論

因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

4、練兵之際

這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。

5、自己動手,拼出弦圖

讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

6、總結反思

通過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養(yǎng)這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗室”,學生通過自己活動得出結論,使創(chuàng)新精神與實踐能力得到了發(fā)展。

七、設計說明

1、根據學生的知識結構,我采用的數學流程是:創(chuàng)設情境引入新課——觀察發(fā)現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發(fā)生、形成和發(fā)展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發(fā)展也有很大作用。

勾股定理課件教案【篇8】

我按照“理解—掌握—運用”的梯度設計了如下三組習題。

(1)對應難點,鞏固所學;(2)考查重點,深化新知;(3)解決問題,感受應用

第五步 溫故反思 任務后延

在課堂接近尾聲時,我鼓勵學生從“四基”的要求對本節(jié)課進行小結。進而總結出一個定理、二個方案、三種思想、四種經驗。

然后布置作業(yè),分層作業(yè)體現了教育面向全體學生的理念。

四、教學評價

在探究活動中,教師評價、學生自評與互評相結合,從而體現評價主體多元化和評價方式的多樣化。

五、設計說明

本節(jié)課探究體驗貫穿始終,展示交流貫穿始終,習慣養(yǎng)成貫穿始終,情感教育貫穿始終,文化育人貫穿始終。

采用 “七巧板”代替教材中“畢達哥拉斯地板磚”利用我國傳統(tǒng)文化引入課題,趙爽弦圖證明定理,符合本節(jié)課以我國數學文化為主線這一設計理念,展現了我國古代數學璀璨的歷史,激發(fā)學生再創(chuàng)數學輝煌的愿望。

以上就是我對《勾股定理》這一課的設計說明,有不足之處請評委老師們指正,謝謝大家。

勾股定理課件教案【篇9】

學習目標

1、通過拼圖,用面積的方法說明勾股定理的正確性.

2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數型結合的思想。

重點難點

或學習建議學習重點:用面積的方法說明勾股定理的正確.

學習難點:勾股定理的'應用.

學習過程教師

二次備課欄

自學準備與知識導學:

這是1955年希臘為紀念一位數學家曾經發(fā)行的郵票。

郵票上的圖案是根據一個著名的數學定理設計的。

學習交流與問題研討:

1、探索

問題:分別以圖中的直角三角形三邊為邊向三角形外

作正方形,小方格的面積看做1,求這三個正方形的面積?

S正方形BCED=S正方形ACFG=S正方形ABHI=

發(fā)現:

2、實驗

在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。

請完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關系

112

145

41620

91625

發(fā)現:

如何用直角三角形的三邊長來表示這個結論?

這個結論就是我們今天要學習的勾股定理:

如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

練習檢測與拓展延伸:

練習1、求下列直角三角形中未知邊的長

練習2、下列各圖中所示的線段的長度或正方形的面積為多少。

(注:下列各圖中的三角形均為直角三角形)

例1、如圖,在四邊形中,∠,∠,,求.

檢測:

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

(2)b=8,c=17,則S△ABC=________。

2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()

A.12cmB.10cmC.8cmD.6cm

4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)

5、飛機在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機距離這個男孩5千米,飛機每小時飛行多少千米?

課后反思或經驗總結:

1、什么叫勾股定理;

2、什么樣的三角形的三邊滿足勾股定理;

3、用勾股定理解決一些實際問題。

勾股定理課件教案【篇10】

一、勾股定理是我國古數學的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數量關系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據,也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應用于數學和實際生活的各個方面.教材在編寫時注意培養(yǎng)學生的動手操作能力和分析問題的能力,通過實際分析,使學生獲得較為直觀的印象,通過聯系和比較,了解勾股定理在實際生活中的廣泛應用. 據此,制定教學目標如下:

1.知識和方法目標:通過對一些典型題目的思考,練習,能正確熟練地進行勾股定理有關計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.

3.情感與態(tài)度目標:感受數學在生活中的應用,感受數學定理的美.

教學重點:勾股定理的應用. 教學難點:勾股定理的正確使用.

教學關鍵:在現實情境中捕抓直角三角形,確定好直角三角形之后,再應用勾股定理.

二.說教法和學法

1.以自學輔導為主,充分發(fā)揮教師的主導作用,運用各種手段激發(fā)學習欲望和興趣,組織學生活動,讓學生主動參與學習全過程.

2.切實體現學生的主體地位,讓學生通過觀察,分析,討論,操作,歸納理解定理,提高學生動手操作能力,以及分析問題和解決問題的能力.

3.通過演示實物,引導學生觀察,操作,分析,證明,使學生獲得新知的成功感受,從而激發(fā)學生鉆研新知的欲望.

三、教學程序本節(jié)內容的教學主要體現在學生的動手,動腦方面,根據學生的認知規(guī)律和學習心理,教學程序設置如下: 回顧問:勾股定理的內容是什么? 勾股定理揭示了直角三角形三邊之間的關系,今天我們來學習這個定理在實際生活中的應用.

勾股定理課件教案【篇11】

尊敬的各位評委、老師,您們好,我是臨沂市蒼山縣實驗中學的宋寧。今天我說課的內容是人教版《數學》八年級下冊第十八章第一節(jié)《勾股定理》第一課時,我將從教材、教法與學法、教學過程、教學評價以及設計說明五個方面來闡述對本節(jié)課的理解與設計。

一、教材分析:

(一) 教材的地位與作用

從知識結構上看百度一下,勾股定理揭示了直角三角形三條邊之間的數量關系,為后續(xù)學習解直角三角形提供重要的理論依據,在現實生活中有著廣泛的應用。

從學生認知結構上看,它把形的特征轉化成數量關系,架起了幾何與代數之間的橋梁;

勾股定理又是對學生進行愛國主義教育的良好素材,因此具備相當重要的地位和作用。

根據數學新課程標準以及八年級學生的認知水平我確定如下學習目標:知識技能、數學思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數學文化為主線,激發(fā)學生熱愛祖國悠久文化的情感。

(二)重點與難點

為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學生的思維水平,我將面積法(拼圖法)發(fā)現勾股定理確定為本節(jié)課的難點,我將引領學生動手實驗突出重點,合作交流突破難點。

二、教學與學法分析

教學方法 葉圣陶說過“教師之為教,不在全盤授予,而在相機誘導?!币虼私處熇脦缀沃庇^提出問題,引領學生由淺入深的探索,設計實驗讓學生進行驗證,感悟其中所蘊涵的思想方法。

學法指導 為把學習的主動權還給學生,教師鼓勵學生采用動手實踐,自主探索、合作交流的學習方法,讓學生親自感知體驗知識的形成過程。

三、教學過程

我國數學文化源遠流長、博大精深,為了使學生感受其傳承的魅力,我將本節(jié)課設計為以下五個環(huán)節(jié)。

首先,情境導入 古韻今風

給出《七巧八分圖》中的一組圖片,讓學生利用兩組七巧板進行合作拼圖。(請看視頻)讓學生觀察并思考三個正方形面積之間的關系?它們圍成了什么三角形?反映在三邊上,又蘊含著什么數學奧秘呢?寓教于樂,激發(fā)學生好奇、探究的欲望。

勾股定理課件教案【篇12】

(一)創(chuàng)設問題情境,引入新課:

在這一環(huán)節(jié)中,我設計了這樣一個情境,多媒體動畫展示,米老鼠來到了數學王國里的三角形城堡,要求只利用一根繩子,構造一個直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預測大多數同學會無從下手,這樣引出課題。只有學習了勾股定理的逆定理后,大家都能幫助米老鼠進入城堡,我認為:“大疑而大進”這樣做,充分調動學習內容,激發(fā)求知欲望,動漫演示,又有了很強的趣味性,做到課之初,趣已生,疑已質。

(二)實踐猜想

本環(huán)節(jié)要圍繞以下幾個活動展開:

1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長。

1a=3b=42a=5b=123a=2.5b=64a=6b=8

2、猜一猜,以下列線段長為三邊的三角形形狀

13cm4cm5cm25cm12cm13cm

32.5cm6cm6.5cm46cm8cm10cm

3、擺一擺利用方便筷來操作問題2,利用量角器來度量,驗證問題2的發(fā)現。

4、用恰當的語言敘述你的結論

在算一算中學生復習了勾股定理,猜一猜和擺一擺中學生小組合作動手實踐,在問題1的基礎上做出合理的推測和猜想,這樣分層遞進找到了學生思維的最近發(fā)展區(qū),面向不同層次的每一名學生,每一名學生都有參與數學活動的機會,最后運用恰當的語言表述,得到了勾股定理的逆定理。在整個過程的活動中,教師給學生充分的時間和空間,教師以平等的身份參與小組活動中,傾聽意見,幫助指導學生的實踐活動。學生的擺一擺的過程利用實物投影儀展示,在活動中教師關注;

1)學生的參與意識與動手能力。

2)是否清楚三角形三邊長度的平方關系是因,直角三角形是果。既先有數,后有形。

3)數形結合的思想方法及歸納能力。

(三)推理證明

八年級正是學生由實驗幾何向推理幾何過渡的重要時期,多數學生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構造直角三角形才能完成,而構造直角三角形就成為解決問題的關鍵,直接拋給學生證明,無疑會石沉大海,所以,我采用分層導進的方法,以求一石激起千層浪。

1.三邊長度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?請簡要說明理由?

2.△ABC三邊長a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關系?試說明理由?

為了較好完成教師的誘導,教師要給學生獨立思考的時間,要給學生在組內交流個別意見的時間,教師要深入小組指導與幫助,并利用實物投影儀展示小組成果,取得階段性成果再探究問題2.這樣由特殊到一般,凸顯了構造直角三角形這一解決問題的關鍵,讓他們在不斷的探究過程中,親自體驗參與發(fā)現創(chuàng)造的愉悅,有效的突破了難點。

2025勾股定理教案模板十一篇


本篇優(yōu)秀的“勾股定理教案”文章是幼兒教師教育網編輯認真挑選的結果,如果您想要隨時查看本文請記得收藏。根據教學要求老師在上課前需要準備好教案課件,教案課件里的內容是老師自己去完善的。?學生課堂反應的不同可以幫助教師制定不同的教學策略。

勾股定理教案(篇1)

(一)本節(jié)內容在全書和章節(jié)的地位

這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。勾股定理是學生在已經掌握了直角三角形有關性質的基礎上進行學習的,它是直角三角形的一條非常重要的性質,是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數量關系,它可以解決直角三角形的主要依據之一,在實際生活中用途很大。教材在編寫時注意培養(yǎng)學生的動手操作能力和觀察分析問題的能力;通過實際分析,拼圖等活動,使學生獲得較為直觀的印象;通過聯系比較,理解勾股定理,以便于正確的進行運用。

(二)三維教學目標:

1.【知識與能力目標】

⒈理解并掌握勾股定理的內容和證明,能夠靈活運用勾股定理及其計算;

⒉通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的能力。

2.【過程與方法目標】

在探索勾股定理的過程中,讓學生經歷“觀察-猜想-歸納-驗證”的數學思想,并體會數形結合和從特殊到一般的思想方法。

3.【情感態(tài)度與價值觀】通過介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。

勾股定理教案(篇2)

1.知識與技能目標:會用勾股定理及直角三角形的判定條件解決實際問題,逐步培養(yǎng)“數形結合”和“轉化”數學能力。

2.過程與方法目標:發(fā)展學生的分析問題能力和表達能力。經歷勾股定理的應用過程,熟練掌握其應用方法,明確應用的條件。

3.情感態(tài)度與價值觀目標:通過自主學習的發(fā)展體驗獲取數學知識的感受;通過有關勾股定理的歷史講解,對學生進行德育教育

在本章中,我們探索了直角三角形的三邊關系,并在此基礎上得到了勾股定理,并學習了如何利用拼圖驗證勾股定理,介紹了勾股定理的用途;本章后半部分學習了勾股定理的逆定是以及它的應用.其知識結構如下:

1.勾股定理:

直角三角形兩直角邊的______和等于_______的平方.就是說,對于任意的直角三角形,如果它的兩條直角邊分別為a、b,斜邊為c,那么一定有:————————————.這就是勾股定理.

勾股定理揭示了直角三角形___之間的數量關系,是解決有關線段計算問題的重要依據.

勾股定理的直接作用是知道直角三角形任意兩邊的長度,求第三邊的長.這里一定要注意找準斜邊、直角邊;二要熟悉公式的變形:

“若三角形的兩條邊的平方和等于第三邊的平方,則這個三角形為________.”這一命題是勾股定理的逆定理.它可以幫助我們判斷三角形的形狀.為根據邊的關系解決角的有關問題提供了新的方法.定理的證明采用了構造法.利用已知三角形的邊a,b,c(a2+b2=c2),先構造一個直角邊為a,b的直角三角形,由勾股定理證明第三邊為c,進而通過“SSS”證明兩個三角形全等,證明定理成立.

3.勾股定理的作用:

已知直角三角形的兩邊,求第三邊;

勾股定理的逆定理是用來判定一個三角形是否是直角三角形的,但在判定一個三角形是否是直角三角形時應首先確定該三角形的邊,當其余兩邊的平方和等于邊的平方時,該三角形才是直角三角形.勾股定理的逆定理也可用來證明兩直線是否垂直,這一點同學

勾股定理是直角三角形的性質定理,而勾股定理的逆定理是直角三角形的判定定理,它不僅可以判定三角形是否為直角三角形,還可以判定哪一個角是直角,從而產生了證明兩直線互相垂直的新方法:利用勾股定理的逆定理,通過計算來證明,體現了數形結合的思想.

三角形的三邊分別為a、b、c,其中c為邊,若,則三角形是直角三角形;若,則三角形是銳角三角形;若,則三角形是鈍角三角形.所以使用勾股定理的逆定理時首先要確定三角形的邊.

求:(1) 陰影部分是正方形; (2) 陰影部分是長方形; (3) 陰影部分是半圓.

2. 如圖,以Rt△ABC的三邊為直徑分別向外作三個半圓,試探索三個半圓的面積之間的關系.

例(山東濱州)如圖2,已知△ABC中,AB=17,AC=10,BC邊上的高,AD=8,則邊BC的長為( )

【強化訓練】:1.在直角三角形中,若兩直角邊的長分別為5cm,7cm ,則斜邊長為 .

2.(易錯題、注意分類的思想)已知直角三角形的兩邊長為4、5,則另一條邊長的平方是

3、已知直角三角形兩直角邊長分別為5和12, 求斜邊上的高.(結論:直角三角形的兩條直角邊的積等于斜邊與其高的積,ab=ch)

例、(09年湖南長沙)如圖1所示,等腰中,,

是底邊上的高,若,求 ①AD的長;②ΔABC的面積.

例、(09年濱州)某樓梯的側面視圖如圖3所示,其中米,,

,因某種活動要求鋪設紅色地毯,則在AB段樓梯所鋪地毯的長度應為 .

分析:如何利用所學知識,把折線問題轉化成直線問題,是問題解決的關鍵。仔細觀察圖形,不難發(fā)現,所有臺階的高度之和恰好是直角三角形ABC的直角邊BC的長度,所有臺階的寬度之和恰好是直角三角形ABC的直角邊AC的長度,只需利用勾股定理,求得這兩條線段的長即可。

1、小強想知道學校旗桿的高,他發(fā)現旗桿頂端的繩子垂到地面還多2米,當他把繩子的下端拉開4米后,發(fā)現下端剛好接觸地面,你能幫他算出來嗎?

【強化訓練】:折疊矩形ABCD的一邊AD,點D落在BC邊上的點F處,已知AB=4cm,BC=5cm,求CF 和EC。.

例、如右圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中的正方形的邊長為5,則正方形A,B,C,D的面積的和為

一個是正方形的邊長與面積的關系,另一個是正方形的面積與直角三角形直角邊與斜邊的關系。

例1:分別以下列四組數為一個三角形的邊長:(1)3、4、5(2)5、12、13(3)8、15、17(4)4、5、6,其中能夠成直角三角形的有

【強化訓練】:已知△ABC中,三條邊長分別為a=n-1, b=2n, c=n+1(n>1).試判斷該三角形是否是直角三角形,若是,請指出哪一條邊所對的角是直角.

例:如圖是一塊地,已知AD=4m,CD=3m,∠D=90°,AB=13m,BC=12m,求這塊地的面積。

例、如圖,在棱長為1的正方體ABCD—A’B’C’D’的表面上,求從頂點A到頂點C’的最短距離.

【強化訓練】:如圖一個圓柱,底圓周長6cm,高4cm,一只螞蟻沿外壁爬行,要從A點爬到B點,則最少要爬行 cm

1.設直角三角形的三條邊長為連續(xù)自然數,則這個直角三角形的面積是_____.

2.直角三角形的兩直角邊分別為5cm,12cm,其中斜邊上的高為( ).

3.如圖,△ABC的三邊分別為AC=5,BC=12,AB=13,將△ABC沿AD折疊,使AC落在AB上,求DC的長.

4.如圖,一只鴨子要從邊長分別為16m和6m的長方形水池一角M游到水池另一邊中點N,那么這只鴨子游的最短路程應為多少米?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

8.(海南省中考題)如圖,鐵路上A、B兩點相距25km,C、D為兩村莊,DA垂直AB于A,CB垂直AB于B,已知AD=15km,BC=10km,現在要在鐵路AB上建一個土特產品收購站E,使得C、D兩村到E站的距離相等,則E站建在距A站多少千米處?

5.一只螞蟻從長、寬都是3,高是8的長方體紙箱的A點沿紙箱爬到B點,那么它所爬行的最短路線的長是

則該地毯的長度至少是 米。

勾股定理教案(篇3)

勾股定理它揭示的是直角三角形中三邊的數量關系。它在數學的發(fā)展中起過重要的作用,在現時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

(二)教學目標 知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。 過程與方法:經歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的合情推理意識、主動探究的習慣,感受數形結合和從特殊到一般的思想。 情感態(tài)度與價值觀: 激發(fā)愛國熱情,體驗自己努力得到結論的成就感,體驗數學充滿探索和創(chuàng)造,體驗數學的美感,從而了解數學,喜歡數學。

(三)教學重點:經歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

二、教法與學法分析:

學情分析:七年級學生已經具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠。另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強.

教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境----建立模型----解釋應用---拓展鞏固”的模式, 選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

1、創(chuàng)設情境,提出問題 2、實驗操作,模型構建 3、回歸生活,應用新知 4、知識拓展,鞏固深化5、感悟收獲,布置作業(yè)

(1)圖片欣賞 勾股定理數形圖 1955年希臘發(fā)行 美麗的勾股樹20xx年國際數學的一枚紀念郵票 大會會標

設計意圖:通過圖形欣賞,感受數學美,感受勾股定理的文化價值。

(2) 某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6。5米長的云梯,如果梯子的底部離墻基的距離是2。5米,請問消防隊員能否進入三樓滅火?

設計意圖:以實際問題為切入點引入新課,反映了數學來源于實際生活,產生于人的需要,也體現了知識的發(fā)生過程,解決問題的過程也是一個“數學化”的過程,從而引出下面的環(huán)節(jié)。

問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系? 設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數形結合的思想。

問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

通過以上實驗歸納總結勾股定理。

設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊—— 一般的認知規(guī)律。

讓學生解決開頭情景中的問題,前呼后應,增強學生學數學、用數學的意識,增加學以致用的樂趣和信心。

基礎題,情境題,探索題。

設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展。知識的運用得到升華。

基礎題: 直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據條件提出多少個數學問題?你能解決所提出的問題嗎?

設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境 ,鍛煉了發(fā)散思維.

情境題:小明媽媽買了一部29英寸(74厘米)的電視機。小明量了電視機的屏幕后,發(fā)現屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?

設計意圖:增加學生的生活常識,也體現了數學源于生活,并用于生活。

探索題: 做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

2、搜集有關勾股定理證明的資料。

如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2?b2?c2

設計說明:1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數形結合及從特殊到一般的思想方法.

2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現出來的思維水平、表達水平。

勾股定理教案(篇4)

各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先,我先來說說我對教材的理解。

教材分析是上好一堂課的前提條件,在上好一堂課之前,我首先談一談對教材的理解。

一、說教材

“勾股定理的逆定理”一節(jié)?是在上節(jié)“勾股定理”之后繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化。勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中將有十分廣泛的應用,同時在應用中滲透了利用代數計算的方法證明幾何問題的思想,為將來學習解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內容之一。

二、說學情

中學生心理學研究指出,初中階段是智力發(fā)展的關鍵年齡,學生邏輯思維從經驗型逐步向理論型發(fā)展,觀察能力、記憶能力和想象能力也隨著迅速發(fā)展。學生此前學習了三角形有關的知識,掌握了直角三角形的性質和勾股定理,學生在此基礎上學習勾股定理的逆定理可以加深理解。

三、說教學目標

根據數學課標的要求和教材的具體內容結合學生實際我確定了如下教學目標。

【知識與技能】

理解勾股定理的逆定理的證明方法并能證明勾股定理的逆定理。利用勾股定理的逆定理判定一個三角形是不是直角三角形。

【過程與方法】

通過勾股定理的逆定理的證明,體會數與形結合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題。

【情感態(tài)度與價值觀】

通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。

四、說教學重難點

重點:勾股定理逆定理的應用;

難點:探究勾股定理逆定理的證明過程。

五、說教學方法

科學合理的教學方法能使教學效果事半功倍,達到教與學的和諧完美統(tǒng)一。基于此,我準備采用的教法是講練結合法,小組討論法。

六、說教學過程

(一)導入新課

在導入新課環(huán)節(jié),我會采用溫故知新的導入方法,先讓學生回顧勾股定理有關知識,并引入本節(jié)課的課題——勾股定理逆定理。

【設計意圖】通過復習回顧能很好地將新舊知識聯系起來,使學生形成對知識的系統(tǒng)的認識。并且由舊知開始,能很好地幫助學生克服畏難情緒。

(二)探究新知

一開課我就提出了與本節(jié)課關系密切、學生用現有的知識可探索卻又解決不好的問題去提示本節(jié)課的探究宗旨,演示古代埃及人把一根長繩打上等距離的13個結,然后便得到一個直角三角形這是為什么?這個問題一出現,馬上激起學生已有知識與待研究知識的認識沖突,引起了學生的重視激發(fā)了學生的興趣,因而全身心地投入到學習中來創(chuàng)造了我要學的氣氛,同時也說明了幾何知識來源于實踐不失時機地讓學生感到數學就在身邊。

因為幾何來源于現實生活,對初二學生來說選擇適當的時機讓他們從個體實踐經驗中開始學習可以提高學習的主動性和參與意識,所以勾股定理的逆定理不是由教師直接給出的,而是讓學生通過動手折紙在具體的實踐中觀察滿足條件的三角形直觀感覺上是什么三角形,再用直角三角形插入去驗證猜想。

這樣設計是因為勾股定理逆定理的證明方法是學生第一次見,它要求按照已知條件作一個直角三角形,根據學生的智能狀況學生是不容易想到的,為了突破這個難點,我讓學生動手裁出了一個兩直角邊與所折三角形兩條較小邊相等的直角三角形,通過操作驗證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進行邏輯推理論證提供了直觀的數學模型。

接下來就是利用這個數學模型,從理論上證明這個定理。從動手操作到證明,學生自然地聯想到了全等三角形的性質,證明它與一個直角三角形全等順利作出了輔助直角三角形,整個證明過程自然無神秘感,實現了從生動直觀向抽象思維的轉化,同時學生親身體會了動手操作——觀察——猜測——探索——論證的全過程。這樣學生不是被動接受勾股定理的逆定理?因而使學生感到自然、親切。學生的學習興趣和學習積極性有所提高,使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

在同學們完成證明之后,可讓他們對照課本把證明過程嚴格的閱讀一遍充分發(fā)揮教科書的作用養(yǎng)成學生看書的習慣這也是在培養(yǎng)學生的自學能力。

(三)鞏固提高

本著由淺入深的原則安排了三個題目。演示第一題比較簡單(判斷下列三條線段組成的三角形是不是直角三角形,比如15、8、17;13、14、15等等)讓學生口答讓所有的學生都能完成。

第二題則進了一層用字母代替了數字,繞了一個彎,既可以檢查本課知識又可以提高靈活運用以往知識的能力。

思維提高了課堂教學的效果和利用率。在變式訓練中我還采用講、說、練結合的方法,教師通過觀察、提問、巡視、談話等活動、及時了解學生的學習過程,隨時反饋調節(jié)教法同時注意加強有針對性的個別指導把發(fā)展學生的思維和隨時把握學生的學習效果結合起來。

(四)小結作業(yè)

在小結環(huán)節(jié),我會隨機詢問學生勾股定理的逆定理是什么?如果判斷一個三角形是不是直角三角形,以及勾股定理的逆定理的應用需要注意點什么等問題,先讓學生歸納本節(jié)知識和技能,然后教師作必要的補充,尤其是注意總結思想方法培養(yǎng)能力方面比如輔助線的添法。

設計意圖:這樣設計可以幫助學生以反思的形式回憶本節(jié)課所學的知識,加深對知識的印象,有利于學生良好的數學學習習慣的養(yǎng)成。

由于學生的思維素質存在一定的差異,教學要貫徹“因材施教”的原則,為此我安排了兩組作業(yè)。第一組是基礎題,我會用ppt出示關于勾股定理的逆定理的計算題目,這樣有利于學生學習習慣的培養(yǎng),以及提高他們學好數學的信心。第二組是開放性題目,讓學生課后思考總結一下判定一個三角形是直角三角形的方法。

勾股定理教案(篇5)

尊敬的各位領導、各位老師,大家好:

我叫李朝紅,是第十四中學的一名教師。我今天說課的題目《勾股定理的逆定理》,選自人教課標實驗版教科書數學八年級下冊第十八章第二節(jié),本節(jié)課共分兩個課時,我今天分析的是第一個課時,下面我將從教材、教法學法、教學過程、教學反思四個方面進行闡述。

一、教材分析

1、教材的地位和作用:

在學習本節(jié)課之前學生已經學習了勾股定理,全等三角形的判定等相關知識,為本節(jié)課的學習打好了基礎,學習好本節(jié)課不但可以鞏固學生已有的知識,而且為后面利用勾股定理的逆定理判斷一個三角形是否直角三角形等相關知識的學習做好了鋪墊。

2、教學目標

教學目標支配著教學過程,教學目標的制定和落實是實施課堂教學的關鍵??紤]到學生已有的認知結構心理特征及本班學生的實際情況,我制定了如下教學目標

知識與技能:掌握勾股定理的逆定理,會用勾股定理的逆定理判斷一個三角形是否直角三角形。

過程與方法:通過對勾股定理的逆定理的探索,經歷知識的發(fā)生、發(fā)展與形成

過程,體會數形結合和由特殊到一般的數學思想,進一步提高學生分析問題、解決問題的能力。

情感、態(tài)度、價值觀:在探究勾股定理的逆定理的活動中,滲透與他人交流、合作的意識和探究精神.

3、重點難點

本著課程標準,在吃透教材的基礎上,我確立了如下的教學重、難點

重點:理解并掌握勾股定理的逆定理,并會應用。

難點:理解勾股定理的逆定理的推導。

二、教法學法分析

八年級學生的特點是思維比較活躍,喜歡發(fā)表自己的見解,善于進行小組合作學習,所以我將采用啟發(fā)教學與誘導教學相結合的方法,老師為主導,學生為主體,充分調動學生的學習積極性,讓學生動手操作,動腦思考,動口表達,積極參與到本節(jié)課的教學過程中來,在鍛煉學生思考、觀察、實踐能力的同時,使其科學文化修養(yǎng)與思想道德修養(yǎng)進一步提升。

教法學法分析完畢,我再來分析一下教學過程,這是我本次說課的重點。

三、教學過程分析:

(一)創(chuàng)設情景,引入新課

1、展示圖片:古埃及人制作直角的方法

2、讓學生試一試用一根繩子確定直角

設計意圖:通過古埃及人制作直角的方法,提出讓學生動手操作,進而使學生產生好奇心:“這樣就能確定直角嗎”,激發(fā)學生的求知欲,點燃其學習的激情,充分調動學生的學習積極性 ,同時也使學生感受到幾何來源于生活,服務于生活的道理,體會數學的價值。

(二)動手檢測,提出假設

在本環(huán)節(jié)中通過情境中的問題,引導學生分別用(1)6cm,8cm,10cm (2)5 cm、12cm、13cm (3)3.5 cm 、12cm、 12.5 cm

上面三組線段為邊畫出三角形,猜測驗證出其形狀。

再引導啟發(fā)誘導學生從上面的活動中歸納思考:如果一個三角形的三邊a,b,c滿足a2+b2=c2,那這個三角形是直角三角形嗎?在整個過程的活動中,盡量給學生足夠的時間和空間,以平等身份參與到學生活動中來,對其實踐活動予以指導。讓學生通過作圖、測量等實踐活動,給出合理的假設與猜測。整個環(huán)節(jié)通過設置的問題串,引導學生動手、動腦、動口相結合,激活學生的思維,培養(yǎng)學生嚴謹的科學態(tài)度,合理的推測能力,嚴密的邏輯思維能力和靈活的動手實踐能力。

(三) 探索歸納,證明假設:

勾股定理逆定理的證明與以往不同,需要構造直角三角形才能完成,如何構造直角三角形就成為解決問題的關鍵。如果直接將問題拋給學生證明,他們定會無從下手,所以為了解決這一問題,突破這個難點,我先

1、 讓學生畫了一個三邊長度為3cm,4cm,5cm的三角形和一個以3cm,4cm為直角邊的直角三角形,剪下其中的直角三角形放在另一個三角形上看出現了什么情況?并請學生簡單說明理由。通過操作驗證兩三角形全等,從而顯示了符合條件的三角形是直角三角形,

2、 然后在黑板上畫一個三邊長為a、b、c,且滿足 a2+b2=c2的△ABC,與一個以a、b為直角邊的直角三角形,讓學生觀察它們之間有什么聯系呢?你們又是如何想的?試說明理由。通過推理證明得出勾股定理的逆定理。

在這個過程中,首先讓學生從特殊的實例中動手操作到證明,學生自然地聯想到了全等三角形的判定,進而由特殊到一般發(fā)現三邊長為a、b、c,且滿足 a2+b2=c2的△ABC與以a、b為直角邊的直角三角形的關系。

設計意圖:讓學生從特殊的實例動手到證明,進而由特殊到一般,順利地利用構建法證明了勾股定理的逆定理,整個過程自然、無神秘感,實現從直觀印象向抽象思維的轉化,同時學生親身體會了“操作——觀察——猜測——探索——論證”的過程,體驗了“特殊到一般,個性到共性”的偉大數學思想在實際中的應用。

這樣學生不是被動接受勾股定理的逆定理,因而使學生感到自然、親切,學生的學習興趣和學習積極性有所提高。使學生確實在學習過程中享受到自我創(chuàng)造的快樂。

(四)學以致用、鞏固提升

本著由淺入深的原則,安排了三個題。第一題比較簡單,判斷由a,b,c組成的三角形是不是直角三角形?(1)a=15 b=8 c=17 (2)a=13 b=15 c=14.讓學生仿照課本上的例題,獨立完成,教師提醒書寫格式。并說明像15,8,17能夠成為直角三角形的三條邊長的正整數,我們稱為勾股數。第二題我改變題的形式,把一些符合a+b=c的三角形放入網格中讓學生運用勾股定理及其逆定理來說明理由。第三題是求一個不規(guī)則四邊形的面積,讓學生思考如何添加輔助線,把它分成一個直角三角形和一個非直角但能判定是直角的三角形,讓學生運用勾股定理及其逆定理證明并求解。

設計意圖:采用啟發(fā)教學與誘導教學方法相結合的方法分層練習,由淺入深地逐步提高學生解決實際問題的能力,達到鞏固知識,學以致用的目的

(五)回顧總結,強化認知

課堂小結以填空體的形式檢測、歸納總結

設計意圖:讓學生以填空題的形式進行總結,不僅能夠起到檢測的目的,而且?guī)椭鷮W生理清知識脈絡,起到重點強調,產生高度重視的效果。

(六)作業(yè)布置

教材33頁練習

設計意圖:加強學生對勾股定理逆定理的理解,使學生的練習范圍拓展到多個題型。

教學反思:本節(jié)課以學生為主體、教師為主導,通過啟發(fā)與誘導,使學生動手操作、動腦思考、動口表達,讓學生在實踐與探究中發(fā)揮自我,充分調動了學生的自主性與積極性,整個過程注重了學生課上知識的形成與鞏固,以及學生各方面素質的培養(yǎng)??傊竟?jié)課的知識目標基本達成,能力目標基本實現,情感目標基本落實。

以上是我對本節(jié)課的理解,還望各位老師指正。

勾股定理教案(篇6)

本節(jié)課為人教版八年級數學下冊第十八章第一節(jié),教材64頁至66頁(不含探究1)的內容。其內容包括章前對勾股定理整章的引入:2002年北京召開的國際數學家大會的會徽及“趙爽弦圖”的簡介,反映了我國古代對勾股定理的研究成果,是對學生進行愛國主義教育的良好素材。教材正文中從畢達哥拉斯發(fā)現等腰直角三角形的邊之間的數量關系這一事實引入對勾股定理的探究,用面積法得到勾股定理的結論,而后教材又重點從“趙爽弦圖”的方法對勾股定理進行了詳細的論證;課后習題18.1的第1、2、7、11、12等題目針對勾股定理的內容適當的加以鞏固,特別是第11、12題側重對面積法運用的鞏固。

勾股定理是幾何中幾個重要定理之一,揭示了直角三角形三邊之間的數量關系,是對直角三角形性質的進一步學習和深入,它可以解決許多直角三角形中的計算問題,在實際生活中用途很大。它不僅在數學領域而且在其他自然科學領域中也被廣泛地應用,而說明數學是一門基礎學科,是人們生活的基本工具。

學生接受勾股定理的內容“在直角三角形中兩直角邊的平方和等于斜邊的平方”這一事實從學習的角度不難,包括對它的應用也不成問題。但對勾股定理的論證,教材中介紹的面積證法即:依據圖形經過割補拼接后,只要沒有重疊,沒有空隙,面積就不會改變。學生接受起來有障礙(是第一次接觸面積法),因此從面積的“分割”“補全”兩種方法進行演示同時學生動手親自拼接圖形構成“趙爽弦圖”并親自驗證三個正方形之間的面積關系得到勾股定理的證明。有利的讓學生經歷了“感知、猜想、驗證、概括、證明”的認知過程,感觸知識的產生、發(fā)展、形成以提高學生學習習慣和能力。

本節(jié)的后續(xù)學習中,對勾股定理運用的探究和勾股定理逆命題的論證和應用,都是將圖形與數量緊密的結合,將有利的培養(yǎng)學生數形結合的意識以提高學生分析問題、解決問題的能力。同時也為后期學習四邊形、圓中的有關計算及計算物體面積奠定基礎,因此本節(jié)課無論從知識的角度還是從數學技能、數學思想方法及數學活動經驗等層面都起著舉足輕重的作用。為此,教學重點:勾股定理的內容教學難點:勾股定理的論證

勾股定理教案(篇7)

《勾股定理》教學設計范文

一、內容和內容解析

1.內容

勾股定理的探究、證明及簡單應用.

2.內容解析

勾股定理的內容是:如果直角三角形的兩條直角邊長分別為a、b,斜邊長為c,那么

.它揭示了直角三角形三邊之間的數量關系.在直角三角形中,已知任意兩邊長,就可以求出第三邊長.勾股定理常用來求解線段長度或距離問題.

勾股定理的探究是從特殊的等腰直角三角形出發(fā),到網格中的直角三角形,再到一般的直角三角形,體現了從特殊到一般的探探索、發(fā)現和證明的過程.證明勾股定理的關鍵是利用割補法求以斜邊為邊長的正方形的面積,教學中要注意引導學生通過探索去發(fā)現圖形的性質,提出一般的猜想,并獲得定理的證明.

我國古代在數學方面又許多杰出的研究成果,對于勾股定理的研究就是一個突出的例子.教學中可以介紹我國古代在勾股定理的證明和應用方面取得的成就和作出的貢獻,以培養(yǎng)學生的民族自豪感;圍繞證明勾股定理的過程,培養(yǎng)學生學習數學的熱情和信心.

基于以上分析,確定本節(jié)課的教學重點:探索并證明勾股定理.

二、目標和目標解析

1.教學目標

(1)經歷勾股定理的探究過程.了解關于勾股定理的文化歷史背景,通過對我國古代研究勾股定理的成就的介紹,培養(yǎng)學生的民族自豪感.

(2)能用勾股定理解決一些簡單問題.

2.目標解析

(1)學生通過觀察直角三角形的三邊為邊長的正方形面積之間的關系,歸納并合理地用數學語言表示勾股定理的結論.理解趙爽弦圖的意義及其證明勾股定理的思路,能通過割補法構造圖形證明勾股定理.了解勾股定理相關的史料,知道我國古代在研究勾股定理上的杰出成就.

(2)學生能運用勾股定理進行簡單的計算,關鍵是已知直角三角形的兩邊長能求第三條邊的長度.

三、教學問題診斷分析

勾股定理是反映直角三角形三邊關系的一個特殊的結論.在正方形網格中比較容易發(fā)現以等腰直角三角形三邊為邊長的正方形的面積關系,進而得出三邊之間的關系.但要從等腰直角三角形過渡到網格中的一般直角三角形,提出合理的猜想,學生有較大困難.學生第一次嘗試用構造圖形的方法來證明定理存在較大的困難,解決問題的關鍵是要想到用合理的割補方法求以斜邊為邊的正方形的面積.因此,在教學中需要先引導學生觀察網格背景下的正方形的面積關系,然后思考沒有網格背景下的正方形的面積關系,再將這種關系表示成邊長之間的關系,這有利于學生自然合理地發(fā)現和證明勾股定理.

本節(jié)課的教學難點是:勾股定理的探究和證明.

四、教學過程設計

1. 創(chuàng)設情境 復習引入

國際數學家大會是最高水平的全球性數學學科學術會議,被譽為數學界的“奧運會”.2002年在北京召開了第24屆國際數學家大會.右圖就是大會會徽的圖案.你見過這個圖案嗎?它由哪些我們學過的基本圖形組成?這個圖案有什么特別的意義?前面我們學習了有關三角形的知識,我們知道,三角形有三個角和三條邊.

問題1 三個角的數量關系明確嗎?三條邊的數量關系明確嗎?

師生活動 教師引導,學生回答。

【設計意圖】回顧三角形的內角和是180°以及三角形任何兩邊的和大于第三邊,由三角形三邊的不等關系引導學生思考,三角形三邊之間是否存在等量關系.

我們學習過等腰三角形,知道等腰三角形是兩邊相等的特殊的三角形,它有許多特殊的性質.研究特例是數學研究的一個方向,直角三角形是有一個角為直角的特殊三角形,中國古代人把直角三角形中較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”.

直角三角形中最長的邊是哪條邊?為什么?它們除了大小關系,有沒有更具體的數量關系呢?這就是我們要研究的問題.

2.觀察思考,探究定理

問題2 相傳2500多年前,畢達哥拉斯有一次在朋友家作客,發(fā)現朋友家用磚鋪成的地面圖案反映了直角三角形三邊的某種數量關系.三個正方形A,B,C的面積有什么關系?

畢達哥拉斯(公元前數學家、天文學家。

師生活動 學生觀察圖形,分析、思考其中隱含的規(guī)律.通過直接數等腰直角三角形的個數,或者用割補的方法將小正方形A,B中的等腰直角三角形補成一個大正方形,得出結論:小正方形A,B的面積之和等于大正方形C的面積.

追問 由這三個正方形A,B,C的邊長構成的等腰直角三角形三條邊長之間有怎樣的特殊關系?

師生活動 教師引導學生直接由正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方.

【設計意圖】從最特殊的直角三角形入手,通過觀察正方形面積關系得到三邊關系,對等腰直角三角形邊長關系進行初步的一般化.

問題3 在網格中的一般的'直角三角形,以它的三邊為邊長的三個正方形A,B,C的面積是否也有類似的關系?

師生活動 學生動手計算,分別求出A,B,C的面積并尋求它們之間的關系.

追問 正方形A,B,C所圍成的直角三角形三條邊之間有怎樣的關系?

師生活動 學生獨立思考后分組討論,難點是求以斜邊為邊長的正方形面積,可由師生共同總結得出可以通過割、補兩種方法求出其面積,教師在學生回答的基礎上歸納方法---割補法.可求得C的面積為13,教師引導學生直接由正方形的面積等于邊長的平方歸納出:直角三角形兩條直角邊的平方和等于斜邊的平方.

【設計意圖】為方便計算,網格中的直角三角形邊長通常設定為整數,進一步體會面積割補法,為探究無網格背景下直角三角形三邊關系打下基礎,提供方法.

問題4 通過前面的探究活動,思考:直角三角形三邊之間應該有什么關系?

師生活動 教師引導學生表述:如果直角三角形兩直角邊長分別為,,斜邊長為,那么

【設計意圖】在網格背景下通過觀察和分析得出了等腰直角三角形和一般的直角三角形的三邊關系后,猜想直角三角形的三邊關系是很容易的.

問題5 以上直角三角形的邊長都是具體的數值,一般情況下,如果直角三角形的兩直角邊分別為a,b,斜邊長為c,我們的猜想仍然成立嗎?

師生活動 要求學生通過獨立思考,用a,b表示c.如圖,用“割”的方法可得;用“補”的方法可得.這兩個式子經過整理都可以得到即直角三角形兩直角邊的平方和等于斜邊的平方.中國人稱它為“勾股定理”,外國人稱它為“畢達哥拉斯定理”.

【設計意圖】從網格驗證到脫離網格,通過割補構造圖形和計算推導出一般結論.

問題6 歷史上各國對勾股定理都有研究,下面我們看看我國古代的數學家趙爽對勾股定理的研究,并通過小組合作完成教科書拼圖法證明勾股定理.

師生活動 教師展示“弦圖”,并介紹:這個圖案是公元3世紀三國時期的趙爽在注解《周髀算經》時給出的,人們稱它為“趙爽弦圖”,趙爽根據此圖指出:四個全等的直角三角形(朱實)可以如圖圍成一個大正方形,中間部分是一個小正方形(黃實).我們剛才用割的方法證明使用的就是這個圖形,教師介紹勾股定理相關史料,勾股定理的證明方法據說有400多種,有興趣的同學可以搜集研究一下.

【設計意圖】通過拼圖活動,調動學生思維的積極性,為學生提供從事數學活動的機會,發(fā)展學生的形象思維,使學生對定理的理解更加深刻,體會數學中數形結合的思想.通過對趙爽弦圖的介紹,了解我國古代數學家對勾股定理的發(fā)現及證明所做出的貢獻,增強民族自豪感,通過了解勾股定理的證明方法,增強學生學習數學的自信心.

3.初步應用,鞏固新知

例1 畫一個直角三角形

,

,它的兩直角邊分別是

,量一量它的斜邊

是多少厘米?算一算,你量的結果對嗎?

師生活動 學生操作,教師個別指導.

【設計意圖】通過運算,培養(yǎng)學生的運算能力并正確運用勾股定理解決直角三角形的邊長問題.通過測量進一步驗證勾股定理所得結論的正確性.

例2 在直角三角形中,各邊的長如圖,求出未知邊的長度.

師生活動 學生計算,教師檢驗.

【設計意圖】勾股定理是通過構造圖形法通過面積關系進行證明的.所以勾股定理本質上是反映面積關系的.如果直角三角形的兩條直角邊長分別為

,

,斜邊長為

,那么

.通過對等式變形,可以得出直角三角形三邊之間的關系:

;

;

.在直角三角形中,已知兩邊,求第三邊,應用勾股定理求解,也可建立方程解決問題,滲透方程思想.

例3 螞蟻沿圖中的折線從A點爬到D點,一共爬了多少厘米?

師生活動 學生觀察、思考、計算,教師檢驗.

【設計意圖】設計實際問題背景,提高學生分析問題和解決問題的能力.

4.歸納小結,反思提高

師生共同回顧本節(jié)課所學主要內容,并請學生回答以下問題:

(1)勾股定理總結的是什么數量關系?

(2)勾股定理有什么作用?

(3)閱讀教科書,總結教科書提供的勾股定理的其他證明方法.了解中國人的偉大和外國人的智慧.

【設計意圖】讓學生從不同角度談本節(jié)課學習的主要內容,在學習過程中感受到中國數學文化博大精深和數學的美,感悟數形結合的思想,增強對數學學習的自信.

5.布置作業(yè)

(1)教科書第28頁第1題;

(2)通過互聯網收集定理的多種證法.自主探究定理的證明.

五、目標檢測設計

1.直角三角形的周長為12,斜邊長為5,其面積為( )

A.12 B.10 C.8 D.6

【設計意圖】勾股定理的簡單計算,結合三角形的周長和面積知識進行求解.

2.等邊三角形的高是h,則它的面積是( )

A.

B.

C.

D.

【設計意圖】勾股定理的應用和三角形的面積公式.

3.直角三角形

中,

,

,求

勾股定理教案(篇8)

一是讓學生自己回顧總結本節(jié)的收獲。(多數為具體的知識和方法)。

二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養(yǎng),適時對大家進行思想教育。

通過本節(jié)課的教學,讓我更深刻地認識到:

1.新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發(fā)展;

2.教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節(jié)課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態(tài)度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;

3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績。

勾股定理教案(篇9)

一、教材分析

本節(jié)課是九年制義務教育課程標準實驗教科書(蘇科版)八年級上冊第二章第一節(jié)“勾股定理”的第一課時.在本節(jié)課以前,學生已經學習了有關三角形的一些知識,如三角形的三邊不等關系,三角形全等的判定等。也學過不少利用圖形面積來探求數式運算規(guī)律的例子,如探求乘法公式、單項式乘多項式法則、多項式乘多項式法則等。在學生這些原有的認知水平基礎上,探求直角三角形的又一重要性質——勾股定理。讓學生的知識形成知識鏈,讓學生已具有的數學思維能力得以充分發(fā)揮和發(fā)展。

在探求勾股定理的過程中,蘊涵了豐富的數學思想。把三角形有一個直角“形”的特點轉化為三邊之間的“數”的關系,是數形結合的典范;把探求邊的關系轉化為探求面積的關系,將邊不在格線上的圖形轉化為可計算的格點圖形,是轉化思想的體現;先探求特殊的直角三角形的三邊關系,再猜測一般直角三角形的三邊關系,再解決一些特殊直角三角形的問題,這是特殊——一般——特殊的思想。在本節(jié)課,要創(chuàng)設問題串,提供學生活動的方案,讓學生在活動中思考,在思考中創(chuàng)新,認識和理解勾股定理,并能利用勾股定理解決一些簡單的有關直角三角形的計算問題.

二、教學目標

1、讓學生經歷從數到形再由形到數的轉化過程,經歷探求三個正方形面積間的關系轉化為三邊數量關系的過程。并從過程中讓學生體會數形結合思想,發(fā)展將未知轉化為已知,由特殊推測一般的合情推理能力。

2、讓學生經歷拼圖實驗、計算面積的過程,在過程中養(yǎng)成獨立思考、合作交流的學習習慣;讓各類型的學生在這些過程中發(fā)揮自己特長,通過解決問題增強自信心,激發(fā)學習數學的興趣;通過老師的介紹,感受勾股定理的文化價值.

3、能說出勾股定理,并能用勾股定理解決簡單問題.

三、教學重點

勾股定理的探索過程.

四、教學難點

將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積.

五、教學方法與教學手段

采用探究發(fā)現式教學,提供適當的問題情境.給學生自主探究交流的空間,引導學生有目的地探索.

六、教學過程

(一)創(chuàng)設情境 提出問題

1.同學們,我們已經學過三角形的一些基本知識,如果一個三角形的兩條邊分別長6和8,你知道第三邊的長嗎?你知道第三邊長的范圍嗎?

2.如果又已知這兩邊的夾角,那么第三邊的長是多少?

3.已知直角三角形的兩邊的長,如何求第三邊的長呢?這節(jié)課就讓我們一起來探討這個問題.板書:直角三角形三邊數量關系.

(這是對三角形三邊的不等關系和三角形全等的判定的回顧,從學生從原有的認知水平出發(fā),揭示這節(jié)課產生的根源,符合學生的認知心理,也自然地引出本節(jié)課的目標.讓學生體會到當一般性的問題不好解決時,可以先將一般問題轉化為特殊問題來研究.)

(二)實踐探索 猜想歸納

1、用什么方法來探求板書:直角三角形三邊數量關系呢?

回憶我們曾經利用圖形面積探索過數學公式,大家還記得在哪用過嗎?

(學生討論)

課件展示:平方差公式、完全平方公式、單項式乘多項式、多項式乘多項式.

今天,讓我們試一試通過計算圖形的面積能不能得到直角三角形三邊數量關系.

(從學生已有的學習經驗出發(fā),將探求邊長之間的關系轉化為探求面積之間的關系,讓學生覺得解決今天問題的方法并不陌生,增強探索問題的信心.)

2、(課件展示圖2)觀察圖形,我們分別以直角三角形ABC的三邊為邊向形外作三個正方形.若將圖形①、②、③、④、⑤剪下,用它們可以拼一個與正方形ABDE大小一樣的正方形嗎?

(同位利用教師提供的學案,合作拼圖。)

通過拼圖,你有什么發(fā)現?

(如圖3,以BC為邊的正方形面積與以AC為邊的正方形面積的和等于以AB為邊的正方形面積.拼圖活動,引發(fā)了學生的猜想,增加了研究的趣味性,鍛煉了學生的空間思維能力和動手能力.體現了活動——數學的思想.)

3、拼圖活動引發(fā)我們的靈感;運算推演

證實我們的猜想.為了計算面積方便,我們可

將這幅圖形放在方格紙中.如果每一個小方格的邊長記作“1”,請你求出圖中三個正方形的面積(圖4).

(學生容易回答SP=9,SQ=16。)

你是如何得到的?

(可以數圖形中的小方格的個數,也可以通

過正方形面積公式計算得到。)

如何計算 ?

(的求法是這節(jié)課的難點,這時可讓學生先在學案上獨立分析,再通過小組交流,最后由小組代表到臺前展示.學生可能提出割(圖5)、補(圖6)、平移(圖7)、旋轉(圖8)等方法,旋轉這種方法只適用于斜邊為整數的情況,沒有一般性,若有學生提出,應提醒學生.)

4、肯定學生的研究成果,進而讓學生打開書回顧課本上的提示.從小明、小麗的方法中你能得到什么啟發(fā)?

(把圖形進行“割”和“補”,即把不能利用網格線直接計算面積的圖形轉化成可以利用網格線直接計算面積的圖形,讓學生體會將較難的問題轉化為簡單問題的思想)

5、再給出直角邊為5和3的直角三角形(圖9),讓學生計算分別以三邊作為邊所作的正方形面積.

(這是轉化思想,也是“割補”方法的再一次應用.在

前面的探求過程中有的學生沒能自己做出來,提供再一次的機會,可讓全體學生再次感受轉化思想,體驗成功的樂趣.)

通過計算,你發(fā)現這三個正方形面積間有什么關系嗎?

(SP+SQ=SR,要給學生留有思考時間.)

6、通過以上的實驗、操作、計算,我們發(fā)現以直角三角形的各邊為邊所作的正方形的面積之間有什么關系呢?同學們還有什么疑問嗎?

(以直角邊為邊所作的`正方形的面積和等于以斜邊為邊所作的正方形的面積。如果學生提出我們討論的都是邊長為整數的直角三角形情況,那么邊長是小數時,結論是否成立?教師就演示以下實驗。)

利用方格紙,我們方便計算直角邊為整數的情況,若直角邊為小數時,所得到的正方形面積之間也有如上關系嗎?

將網格線去掉,利用《幾何畫板》的度量工具可以看到SP+SQ=SR.

(利用幾何畫板的高效性、動態(tài)性反映這一過程,讓學生體會到更多的特殊情形,從而為歸納提供基礎,這樣歸納的結論更具有一般性,學生的印象也更深刻.)

7、我們這節(jié)課是探索直角三角形三邊數量關系.至此,你對直角三角形三邊的數量關系有什么發(fā)現?

(面積是邊長的平方,面積間的等量關系轉化為邊長間的等量關系,即直角三角形三邊的等量關系:兩直角邊的平方和等于下邊的平方.)

(這一問題的結論是本節(jié)課的點睛之筆,應充分讓學生總結,交流,表達.)

8、用彎曲的手臂形象地表示勾、股、弦的概念,板書勾股定理,進而給出字母表達式.一段緊張的探索過程之后,播放一段有關勾股歷史的錄音.

(這樣既活躍了課堂氣氛,又展現了勾股歷史,激發(fā)學生熱愛祖國悠久歷史文化,

激勵學生發(fā)奮學習的情感.)

9、閱讀課本,提出問題

(讓學生有將知識內化為自己的知識結構的過程,教師巡視,對有困難的同學給予幫助,促進全班同學共同進步,體現面向全體的教學原則.)

(三)課堂練習 鞏固新知

1.完成課本第45頁練習第1題、第2題.

(1)求下列直角三角形中未知邊的長:

(2)求下列圖中未知數x、y、z的值:

(充分利用課本,在前面閱讀的基礎上做課本上的練習題。提問學生口答,老師再規(guī)范板書一題.通過對勾股定理的基本應用,讓學生知道已知直角三角形三邊中的任意兩邊,可以求第三邊.)

2、 如圖:一塊長約80 m、寬約60 m的長方形草坪,被幾個不自覺的學生沿對角線踏出了一條斜“路”,這種情況在生活中時有發(fā)生。請問同學們:

(1)這幾位同學為什么不走正路,走斜“路”?

(2)他們知道走斜“路”比正路少走幾步嗎?

(3)他們這樣這樣做,值得嗎?

(這是一道貼近學生生活的實例,在勾股定理的運用中滲透了德育教育.)

(四)課堂小結 布置作業(yè)

1、通過本節(jié)課的學習,大家有什么收獲?有什么疑問?你認為還有什么要繼續(xù)探索的問題?

(學生總結本堂課的收獲,可以是知識、應用、數學思想方法以及獲取新知的途徑等.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統(tǒng)化,提高學生的綜合表達能力.如果學生沒有提出繼續(xù)要探討的問題,教師可以引導學生思考:直角三角形的三邊有特殊的等量關系,一般三角形三邊是否也存在一種等量關系呢?再展示上課開始的問題:如果一個三角形的兩條邊分別長6和8,這兩邊的夾角確定了,你知道第三邊的長是多少?這是我們今后將要探討的內容,首尾呼應,激發(fā)學生不滿足于現狀,有不斷提出新問題的欲望,即培養(yǎng)學生的創(chuàng)新意識.)

2、作業(yè)

(1)課本第471頁第2題,并完成第45頁的實驗。

(2)在以下網頁中你可以找到有關勾股定理的豐富的內容,請你結合本節(jié)課的學習

和從網上或書本上自學到的知識寫一篇有關勾股定理的小論文,題目自定,一周后交給課代表并展示交流.

n

(作業(yè)的多元化、多層次,有利于全體學生的全面素質發(fā)展。)教育大全

七、教學設計說明:

本節(jié)課根據學生的認知結構采用“觀察--猜想--歸納--驗證--應用”的教學方法,這一流程體現了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數形結合的思想.

本節(jié)課從學生的原有認知出發(fā)提出問題,揭示這節(jié)課產生的根源,符合學生的認知心理.教科書設計了在方格紙上通過計算面積的方法探究勾股定理的活動,在此基礎上,為了更好地展示這一探索過程,本節(jié)課先讓學生回顧利用圖形面積探求數學公式的經歷,以此確定研究方法.繼而設計了剪紙活動,從中引發(fā)學生的猜想,再利用幾何畫板這一工具帶領學生從直角邊分別為3和4的直角三角形到更多的任意直角三角形的研究,讓學生充分經歷這一觀察、猜想、歸納的過程.其中SR的求法是探求過程中的難點,應讓學生充分地思考、討論、總結方法.通過對特殊到一般的考查,讓學生主動建立由數到形,由形到數的聯想,從中使學生不斷積累數學活動的經驗,歸納出直角三角形三邊數量之間的關系.在教學中鼓勵學生采用觀察分析,自主探索,合作交流的學習方法,培養(yǎng)學生主動的動手,動腦,動口的學習習慣和能力,使學生真正成為學習的主人.

除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神.

練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用.題目的設計中滲透了德育教育,拓展了學生的空間思維,使得一節(jié)幾何課全面地考查了學生的各方面思維.

讓學生總結本堂課的收獲,從內容,到數學思想方法,到獲取知識的途徑等方面.給學生自由的空間,鼓勵學生多說.這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統(tǒng)化,提高學生素質,鍛煉學生的綜合及表達能力.

作業(yè)為了達到提高鞏固的目的,提供給學生網址是為了拓展學生的視野,以期學生能主動地探求對勾股定理更深入的認識.

勾股定理教案(篇10)

學會觀察圖形,勇于探索圖形間的關系,培養(yǎng)學生的空間觀念。

(1)經歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力。

(2)在將實際問題抽象成幾何圖形過程中,提高分析問題、解決問題的能力及滲透數學建模的思想。

(1)通過有趣的問題提高學習數學的興趣。

(2)在解決實際問題的過程中,體驗數學學習的實用性。

教學重點:

探索、發(fā)現事物中隱含的勾股定理及其逆及理,并用它們解決生活實際問題。

教學難點:

利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題。

如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?

學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線。讓學生發(fā)現:沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數學解決實際問題的方法:建立數學模型,構圖,計算。

李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺。

(1)你能替他想辦法完成任務嗎?

(2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

(3)小明隨身只有一個長度為20厘米的刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

1.甲、乙兩位探險者到沙漠進行探險,某日早晨8:00甲先出發(fā),他以6/h的速度向正東行走,1小時后乙出發(fā),他以5/h的速度向正北行走.上午10:00, 甲、乙兩人相距多遠?

2.如圖,臺階A處的螞蟻要爬到B處搬運食物,它怎么走最近?并求出最近距離。

3.有一個高為1、5米,半徑是1米的圓柱形油桶,在靠近邊的地方有一小孔,從孔中插入一鐵棒,已知鐵棒在油桶外的部分為0、5米,問這根鐵棒有多長?

內容:如何利用勾股定理及逆定理解決最短路程問題?

勾股定理教案(篇11)

1.靈活應用勾股定理及逆定理解決實際問題.

2.進一步加深性質定理與判定定理之間關系的認識.

創(chuàng)設情境:在軍事和航海上經常要確定方向和位置,從而使用一些數學知識和數學方法.

⑵依題意畫出圖形;

⑶依題意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因為242+182=302,PQ2+PR2=QR2,根據勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR―∠QPS=45°.

小結:讓學生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的意識.

例2(補充)一根30米長的細繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀.

分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

⑵設未知數列方程,求出三角形的三邊長5、12、13;

⑶根據勾股定理的逆定理,由52+122=132,知三角形為直角三角形.

解略.

本題幫助培養(yǎng)學生利用方程思想解決問題,進一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識.

勾股定理的課件范文


幼兒教師教育網為您精心準備了“勾股定理的課件”的相關資料敬請查收。教案課件是老師教學工作的起始環(huán)節(jié),也是上好課的先決條件,每位老師應該設計好自己的教案課件。寫好教案課件,可以避免老師遺漏重點內容。本文或許能幫你解答疑問希望你喜歡!

勾股定理的課件 篇1

1、讓學生通過對的圖形創(chuàng)造、觀察、思考、猜想、驗證等過程,體會勾股定理的產生過程。

2、通過介紹我國古代研究勾股定理的成就感培養(yǎng)民族自豪感,激發(fā)學生為祖國的復興努力學習。

3、培養(yǎng)學生數學發(fā)現、數學分析和數學推理證明的能力。

四個全等的直角三角形、方格紙、固體膠。

教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。

(2)再分別以這個三角形的三邊向三角形外作3個正方形。

學生活動:先獨立完成,再在小組內互相交流畫法,最后班級展示。

1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數量關系?

2、圖中所畫的直角三角形的邊長分別是多少?請根據面積之間的關系寫出邊長之間存在的數量關系。

3、與小組成員交流探究結果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數量關系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關系的方法叫做什么方法?

學生活動:先獨立思考,再在小組內互相交流探究結果,并猜想直角三角形的三邊關系,最后班級展示。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。

學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內交流算法,最后在班級展示。

1、在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c。

已知a=6,b=8、求c。

已知c=25,b=15、求a。

已知c=9,a=3、求b(結果保留根號)。

學生活動:先獨立完成問題,再組內交流解題心得,最后上臺展示,其他小組幫助解決問題。

教師:說說自己這節(jié)課有哪些收獲?請從數學知識、數學方法、數學運用等方向進行總結。

勾股定理的課件 篇2

一、利用勾股定理進行計算

1.求面積

例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。

析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質,可聯想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。

2.求邊長

例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

點評:這兩道題有一個共同的特征,都沒有現成的直角三角形,都是通過添加適當的輔助線,巧妙構造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數學中很重要的轉化思想,請同學們要留心。

二、利用勾股定理的逆定理判斷直角三角形

例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

析解:由于所給條件是關于a,b,c的一個等式,要判斷△ABC的形狀,設法求出式中的a,b,c的值或找出它們之間的關系(相等與否)等,因此考慮利用因式分解將所給式子進行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

點評:用代數方法來研究幾何問題是勾股定理的逆定理的"數形結合思想"的重要體現。

三、利用勾股定理說明線段平方和、差之間的關系

例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。

析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

點評:若所給題目的已知或結論中含有線段的平方和或平方差關系時,則可考慮構造直角三角形,利用勾股定理來解決問題。

勾股定理的課件 篇3

《勾股定理》是人教版教材八年級數學(下)的內容,第一課時的教學重點是讓學生經歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的豐富文化內涵,激發(fā)學生的學習興趣,對學生進行思想品德教育。

針對教材的任務要求,我是按照如下的教學流程進行的:

通過欣賞在我國北京召開的國際數學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數學成就,引入課題。

接下來,讓學生欣賞傳說故事:相傳25前,畢達格拉斯在朋友家做客時,發(fā)現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。通過故事使學生明白:科學家的偉大成就多數都是在看似平淡無奇的現象中發(fā)現和研究出來的;生活中處處有數學,我們應該學會觀察、思考,將學習與生活緊密結合起來。

這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的培養(yǎng)。

通過對地板圖形中的等腰直角三角形三邊關系到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。

在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內討論,然后在全班討論,盡量學習更多的方法。

先了解趙爽的證明思路,然后讓學生利用學具自己動手剪拼,并利用圖形進行證明。

由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。

1.主要練習勾股定理的其它證明方法。

本節(jié)課上,對教材中的探究內容,不但制作了多媒體課件,還讓每個學生都準備了探究圖形和拼圖紙板。在課堂上,學生通過自己嘗試探究、小組交流合作、集中成果展示等多種形式參與課堂活動,學生普遍參與,學習興趣深厚,參與活動的積極性很高,小組分工合作任務明確,課堂效果很好。學生在掌握了知識的同時,由于真正經歷了探究的整個過程,對科學家敏銳的觀察力和勤于思考的作風理解頗深,并學到了一些新的探究方法,在思想上也受到了教育和啟迪。課堂教學目標順利完成,整個課堂絲毫沒有那種“熟課”學生不想上的痕跡。

2.學生用不同方法得出結論后,我又展示了如下習題對學生進行鞏固訓練:

(1)在△ABC中,∠C=90°。若a=6,b=8,則 c= 。

(2)在△ABC中,∠C=90°。若c=13,b=12,則 a= 。

(3)若直角三角形中,有兩邊長是3和4,則第三 邊長的平方為( )

3.之后又補充了如下稍難的題目進行拓展:

某樓發(fā)生火災,消防車立即趕到距大樓6米的地方搭建云梯,升起云梯到達火災窗口。已知云梯長10米,問發(fā)生火災的窗口距離地面多高?(不計消防車的高度)

通過這幾道題目的訓練學生已經基本掌握了勾股定理。

一是讓學生自己回顧總結本節(jié)的收獲。(多數為具體的知識和方法)。

二是教師要引導學生學習科學家敏銳的觀察力和勤于思考的作風,不斷提高自己的數學素養(yǎng),適時對大家進行思想教育。

通過本節(jié)課的教學,讓我更深刻地認識到:

1.新課改理念只有全面滲透到教育教學工作中,與平時工作緊密結合,才能夠促進學生的全面發(fā)展;

2.教師要充分利用課堂內容為整體課程目標服務,不要僅限于本節(jié)課的知識目標與要求,就知識“教”知識,而要通過知識的學習獲得學習這些知識的方法,同時,還要充分利用課堂對學生進行情感態(tài)度價值觀的教育,真正讓教材成為教育學生的素材,而不是學科教學的全部;

3.要相信學生的能力,為學生創(chuàng)造自我學習和創(chuàng)造的機會。我相信:只要堅持不懈地這樣去做,不但能很好地實施新課改,實現教育的本來目標,而且也一定能讓學生“考出”好的成績。

勾股定理的課件 篇4

教師:很多同學都喜歡在紙上涂涂畫畫,今天想請大家?guī)屠蠋熗瓿梢环盔f,你能按要求完成嗎?

(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形。

(2)再分別以這個三角形的三邊向三角形外作3個正方形。

學生活動:先獨立完成,再在小組內互相交流畫法,最后班級展示。

1、請求出三個正方形的面積,再說說這些面積之間具有怎樣的數量關系?

2、圖中所畫的直角三角形的邊長分別是多少?請根據面積之間的關系寫出邊長之間存在的數量關系。

3、與小組成員交流探究結果?并猜想:如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a,b,c具有怎樣的數量關系?

4、方法提煉:這種利用面積相等得出直角三角形三邊等量關系的方法叫做什么方法?

學生活動:先獨立思考,再在小組內互相交流探究結果,并猜想直角三角形的三邊關系,最后班級展示。

1、你能拼出哪些圖形?能拼出正方形和直角梯形嗎?

2、能否就你拼出的圖形利用面積法說明a2+b2=c2的合理性?如果可以,請寫下自己的推理過程。

學生活動:獨立拼圖,并思考如何利用圖形寫出相應的證明過程,再在組內交流算法,最后在班級展示。

1.在Rt△ABC中,∠C=900,∠A,∠B,∠C的對邊分別為a,b,c

已知a=6,b=8.求c.

已知c=25,b=15.求a .

學生活動:先獨立完成問題,再組內交流解題心得,最后上臺展示,其他小組幫助解決問題。

教師:說說自己這節(jié)課有哪些收獲?請從數學知識、數學方法、數學運用等方向進行總結。

(1)在邊長為1的方格紙上任意畫一個頂點都在格點上的直角三角形;

(2)再分別以這個三角形的三邊為直徑向三角形外作三個半圓,這三個半圓的面積之間有什么關系?看看又會有什么新的數學發(fā)現?

勾股定理的課件 篇5

一、教材分析

教材所處的地位與作用

“探索勾股定理”是人教版八年級《數學》下冊內容?!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數與形密切聯系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產、生活中也有很大的用途。

二、教學目標

綜上分析及教學大綱要求,本課時教學目標制定如下:

1、知識目標

知道勾股定理的由來,初步理解割補拼接的面積證法。

掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

2、能力目標

在探索勾股定理的過程中,讓學生經歷“觀察——合理猜想——歸納——驗證”的數學思想,并體會數形結合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。

3、情感目標

通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數學知識的發(fā)生、發(fā)展過程。

介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數學激情及愛國情感。

三、教學重難點

本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

四、教學問題診斷

本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數學結論的數形結合思想,對于學生來說,有些陌生,難以理解,又加之數學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現狀,我在教法和學法上都進行了改進。

五、教法與學法分析

[教學方法與手段]針對八年級學生的知識結構和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

[學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

六、教學流程設計

1、創(chuàng)設情境,引入新課

本節(jié)課開始利用多媒體介紹了在北京召開的20xx年國際數學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)。“好的開始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃?,在輕松愉悅的氛圍中學到知識。

2、觀察發(fā)現,類比猜想

讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結論。最后對此結論通過在網格中數格子進行驗證,讓學生經歷了“觀察——合理猜測——歸納——驗證”的這一數學思想。在數格子的驗證過程中,發(fā)現任意直角三角形(圖2)斜邊上長出的正方形中網格不規(guī)則,沒法數出。通過同學們的討論,發(fā)現數不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經過割補變?yōu)橐?guī)則。

3、實驗探究,證明結論

因為勾股定理的出現,使數學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數形結合這一數學思想,讓學生親自動手,互相協作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

4、練兵之際

這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。

5、自己動手,拼出弦圖

讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經是把課堂全部還給了學生,讓他們在數學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

6、總結反思

通過這一堂課,我認為數學教學的核心不是知識本身,而是數學的思維方式,而培養(yǎng)這種數學思維方式需要豐富的數學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數學,這樣才能真正的掌握數學,真正擁有數學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數學課堂轉化為“數學實驗室”,學生通過自己活動得出結論,使創(chuàng)新精神與實踐能力得到了發(fā)展。

七、設計說明

1、根據學生的知識結構,我采用的數學流程是:創(chuàng)設情境引入新課——觀察發(fā)現類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現了知識的發(fā)生、形成和發(fā)展的過程,讓學生經歷了觀察——猜想——歸納——驗證的思想和數形結合的思想。

2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發(fā)展也有很大作用。

勾股定理的課件 篇6

(2)學會利用勾股定理進行計算、證明與作圖;

(3)了解有關勾股定理的歷史。

2、能力目標:

(1)在定理的證明中培養(yǎng)學生的拼圖能力;

3、情感目標:

(1)通過自主學習的發(fā)展體驗獲取數學知識的感受;

(2)通過有關勾股定理的歷史講解,對學生進行德育教育。

教學難點:通過有關勾股定理的歷史講解,對學生進行德育教育。

直角三角形的三邊關系,除了滿足一般關系外,還有另外的特殊關系嗎?

讓學生用文字語言將上述問題表述出來。

勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。

強調說明:

學習完一個重要知識點,給學生留有一定的.時間和機會,提出問題,然后大家共同分析討論.

方法一:將四個全等的直角三角形拼成如圖1所示的正方形。

方法二:將四個全等的直角三角形拼成如圖2所示的正方形。

方法三:“總統(tǒng)”法、如圖所示將兩個直角三角形拼成直角梯形。

勾股定理的課件 篇7

1.已知一個直角三角形的兩邊長分別為3和4,則第三邊長的平方是( )

3.(遼寧大連中考)如圖,在△ABC中,C=90,AC=2,點D在BC 上,ADC=

A. B. C. D.

5.如圖,在 中, , , ,點 , 在 上,且 ,

6.如圖,一圓柱高 ,底面半徑為 ,一只螞蟻從點 爬到點 處吃食,要爬行的

A. B. C. D.

9.(2015黑龍江龍東中考)在△ABC中,AB=AC=5,BC=8,點P是BC邊上的動點,過點P作PDAB于點D,PEAC于點E ,則PD+PE的長是( )

10.(2015 山東淄博中考)如圖,在Rt△ABC中,BAC=90,ABC的平分線BD交AC于點D,DE垂直平分BC,點E是垂足,已知DC=5,AD=3,則圖中長為4的線段有( )

11.(甘肅臨夏中考)在等腰三角形 中, , ,則 邊上的高是 .

12.在 中, , , ,以 為一邊作等腰直角三角形 ,使 ,連結 ,則線段 的長為___________.

13.一個三角形的三邊長分別為9、12、15,那么兩個這樣的三角形拼成的四邊形的面積

為__________.

14.如果一梯子底端離建筑物9 m遠,那么15 m長的梯子可達到建筑物的高度是_______m.

15.下列四組數:①5,12,13;②7,24,25;③ , , ;④ , , .其中可以構成直角三角形的有________.(把所有你認為正確的序號都寫上)

16.如圖,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為 ,則正方形 , , , 的面積之和為___________ .

17.如圖,學校有一塊長方形花圃,有極少數人為了避開拐角走捷徑,在花圃內走出了一條路,他們僅僅少走了________步路(假設2步為 ),卻踩傷了花草.

18.(2015湖北黃岡中考)在△ABC中,AB=13 cm,AC=20 cm,BC邊上的高為12 cm,則△ABC的`面積為 .

19.(6分)若 的三邊滿足下列條件,判斷 是不是直角三角形,并說明哪個角是直角.

(1) , , ;

(2) , , .

20.(6分)若三角形的三個內角的比是 ,最短邊長為1,最長邊長為2.

(2)另外一條邊長的平方.

21.(6分)如圖,有一個小朋友拿著一根竹竿要通過一個長方形的門,如果把竹竿豎放,

則比門高出1米,如果斜放,則恰好等于門的對角線的長.已知門寬4米,請你求出竹竿

的長與門的高.

22.(7分)如圖,將 放在每個小正方形的邊長為1的網格中,點 , , 均落在

格點上.

(1)計算 的值等于 ;

(2)請在如圖所示的網格中,用無刻度的直尺,畫出一個以 為一邊的矩形,使矩形

的面積等于 ,并簡要說明畫圖方法(不要求證明).

, ,

請你結合該表格及相關知識,求 , 的值.

24.(7分)如圖,折疊長方形的一邊 ,使點 落在 邊上的點 處, , .求:(1) 的長;(2) 的長.

發(fā),沿長方體表面爬到點 ,求螞蟻怎樣走最短,最短路程是多少?

勾股定理的課件 篇8

教學目標:

一知識技能

1.理解勾股定理的逆定理的證明方法和證明過程;

2.掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是直角三角形;

二數學思考

1.通過勾股定理的逆定理的探索,經歷知識的發(fā)生發(fā)展與形成的過程;

2.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數形結合法的應用.

三解決問題

通過勾股定理的逆定理的證明及其應用,體會數形結合法在問題解決中的作用,并能運用勾股定理的逆定理解決相關問題.

四情感態(tài)度

1.通過三角形三邊的數量關系來判斷三角形的形狀,體驗數與形的內在聯系,感受定理與逆定理之間的和諧及辯證統(tǒng)一關系;

2.在探究勾股定理的逆定理的證明及應用的活動中,通過一系列富有探究性的問題,滲透與他人交流合作的意識和探究精神.

教學重難點:

一重點:勾股定理的逆定理及其應用.

二難點:勾股定理的逆定理的證明.

教學方法

啟發(fā)引導分組討論合作交流等。

教學媒體

多媒體課件演示。

教學過程:

一復習孕新,引入課題

問題:

(1) 勾股定理的內容是什么?

(2) 求以線段ab為直角邊的直角三角形的斜邊c的長:

① a=3,b=4

② a=2.5,b=6

③ a=4,b=7.5

(3) 分別以上述abc為邊的三角形的形狀會是什么樣的呢?

二動手實踐,檢驗推測

1.把準備好的一根打了13個等距離結的繩子,按3個結4個結5個結的長度為邊擺放成一個三角形,請觀察并說出此三角形的形狀?

學生分組活動,動手操作,并在組內進行交流討論的基礎上,作出實踐性預測.

教師深入小組參與活動,并幫助指導部分學生完成任務,得出勾股定理的逆命題.在此基礎上,介紹:古埃及和我國古代大禹治水都是用這種方法來確定直角的.

2.分別以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊畫出兩個三角形,請觀察并說出此三角形的形狀?

3.結合三角形三邊長度的平方關系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關系嗎?

三探索歸納,證明猜想

問題

1.三邊長度分別為3 cm4 cm5 cm的三角形與以3 cm4 cm為直角邊的直角三角形之間有什么關系?你是怎樣得到的?

2.你能證明以2.5cm6cm6.5cm和4cm7.5cm8.5cm為三邊長的三角形是直角三角形嗎?

3.如圖18.2-2,若△ABC的三邊長

滿足

,試證明△ABC是直角三角形,請簡要地寫出證明過程.

教師提出問題,并適時誘導,指導學生完成問題3的證明.之后,歸納得出勾股定理的逆定理.

四嘗試運用,熟悉定理

問題

1例1:判斷由線段

組成的三角形是不是直角三角形:

(1)

(2)

2三角形的兩邊長分別為3和4,要使這個三角形是直角三角形,則第三條邊長是多少?

教師巡視,了解學生對知識的掌握情況.

特別關注學生在練習中反映出的問題,有針對性地講解,學生能否熟練地應用勾股定理的逆定理去分析和解決問題

五類比模仿,鞏固新知

1.練習:練習題13.

2.思考:習題18.2第5題.

部分學生演板,剩余學生在課堂練習本上獨立完成.

小結梳理,內化新知

六1.小結:教師引導學生回憶本節(jié)課所學的知識.

2.作業(yè):

(1)必做題:習題18.2第1題(2)(4)和第3題;

(2)選做題:習題18.2第46題.

相關推薦

  • 勾股定理教案15篇 俗話說,做什么事都要有計劃和準備。幼兒園的老師都希望自己講的課學生們愛聽,能學習的更好,為了防止學生抓不住重點,教案就顯得非常重要,教案有利于老師在課堂上與學生更好的交流。寫好一份優(yōu)質的幼兒園教案要怎么做呢?或許你正在查找類似"勾股定理教案15篇"這樣的內容,歡迎閱讀,希望大家能夠喜歡!1.靈活應用...
    2024-09-25 閱讀全文
  • 勾股定理課件教案12篇 所有老師都必須在教課前準備自己的教案和教學資源。為了能夠寫出完美的教案和教學資源,老師們都需要花費相應的心思與精力。在編寫教案和課件時,老師們尤其需要注意確保教學重點不會被忽略。是否也曾有過編寫教案和課件時的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠為您提供更多的幫助!...
    2023-06-16 閱讀全文
  • 2025勾股定理教案模板十一篇 本篇優(yōu)秀的“勾股定理教案”文章是幼兒教師教育網編輯認真挑選的結果,如果您想要隨時查看本文請記得收藏。根據教學要求老師在上課前需要準備好教案課件,教案課件里的內容是老師自己去完善的。?學生課堂反應的不同可以幫助教師制定不同的教學策略。...
    2024-03-24 閱讀全文
  • 勾股定理的應用課件匯集 俗話說,不打無準備之仗。在幼兒園教師的工作中,經常會提前準備一些需要的資料。資料一般指代可供人們參考的信息知識等。參考相關資料會讓我們的學習工作效率更高。所以,您有沒有了解過幼師資料的種類呢?下面是小編精心整理的"勾股定理的應用課件匯集",歡迎閱讀,希望你能喜歡!能運用勾股定理及直角三角形的判別條件...
    2024-06-27 閱讀全文
  • 勾股定理課件十五篇 下面是由欄目小編為大家?guī)淼摹肮垂啥ɡ碚n件”,此文一讀相信您會有新的收獲。教案課件是老師上課做的提前準備,因此在寫的時候就不要草草了事了。教案的編寫需要注重思維方式和習慣的培養(yǎng)和養(yǎng)成。...
    2023-08-12 閱讀全文

俗話說,做什么事都要有計劃和準備。幼兒園的老師都希望自己講的課學生們愛聽,能學習的更好,為了防止學生抓不住重點,教案就顯得非常重要,教案有利于老師在課堂上與學生更好的交流。寫好一份優(yōu)質的幼兒園教案要怎么做呢?或許你正在查找類似"勾股定理教案15篇"這樣的內容,歡迎閱讀,希望大家能夠喜歡!1.靈活應用...

2024-09-25 閱讀全文

所有老師都必須在教課前準備自己的教案和教學資源。為了能夠寫出完美的教案和教學資源,老師們都需要花費相應的心思與精力。在編寫教案和課件時,老師們尤其需要注意確保教學重點不會被忽略。是否也曾有過編寫教案和課件時的苦惱呢?那么,本文的勾股定理課件教案為大家量身打造,希望能夠為您提供更多的幫助!...

2023-06-16 閱讀全文

本篇優(yōu)秀的“勾股定理教案”文章是幼兒教師教育網編輯認真挑選的結果,如果您想要隨時查看本文請記得收藏。根據教學要求老師在上課前需要準備好教案課件,教案課件里的內容是老師自己去完善的。?學生課堂反應的不同可以幫助教師制定不同的教學策略。...

2024-03-24 閱讀全文

俗話說,不打無準備之仗。在幼兒園教師的工作中,經常會提前準備一些需要的資料。資料一般指代可供人們參考的信息知識等。參考相關資料會讓我們的學習工作效率更高。所以,您有沒有了解過幼師資料的種類呢?下面是小編精心整理的"勾股定理的應用課件匯集",歡迎閱讀,希望你能喜歡!能運用勾股定理及直角三角形的判別條件...

2024-06-27 閱讀全文

下面是由欄目小編為大家?guī)淼摹肮垂啥ɡ碚n件”,此文一讀相信您會有新的收獲。教案課件是老師上課做的提前準備,因此在寫的時候就不要草草了事了。教案的編寫需要注重思維方式和習慣的培養(yǎng)和養(yǎng)成。...

2023-08-12 閱讀全文